
We Don’t Know Enough to make a Big Data Benchmark Suite -
An Academia-Industry View

Yanpei Chen, UC Berkeley / Cloudera
ychen2@eecs.berkeley.edu / yanpei@cloudera.com

1. Overview
Benchmarks facilitate performance comparison between

equivalent systems. They inform procurement decisions,
configuration tuning, features planning, deployment valida-
tion, and many other efforts in engineering, marketing, and
customer support. Benchmarks are important when the un-
derlying system enjoys sufficient maturity such that the pri-
ority moves beyond chaotic feature addition and debugging,
and sufficient customers and vendors exist such that perfor-
mance matters. Big data systems are entering this phase.

Characteristics of big data systems present unique chal-
lenges for benchmarking efforts. These include (1) system
complexity, which makes it difficult to develop mental mod-
els, (2) use case diversity, which complicates efforts to iden-
tify representative behavior, (3) data scale, which makes it
challenging to reproduce behavior, and (4) rapid system evo-
lution, which requires benchmarks keep pace with changes
in the underlying systems.

The position of this paper comes from an unprecedented
empirical analysis of seven production workloads of MapRe-
duce, an important class of big data systems. The main
lesson we learned is that we do not know much about real
life use cases of big data systems at all. Without real life
empirical insights, both vendors and customers often have
incorrect assumptions about their own workloads. Scientifi-
cally speaking, we are not quite ready to declare anything to
be worthy of the label “big data benchmark.” Nonetheless,
we should encourage further measurement, exploration, and
development of stopgap tools.

2. Real-life MapReduce Workloads
We collected large-scale, long-term MapReduce workloads

traces at customers of Cloudera, a leading vendor of enter-
prise Apache Hadoop, and at Facebook, a leading Hadoop
user. The workloads span diverse industries including so-
cial networks, e-commerce, media, telecommunications, and
retail. Table 1 summarize the workloads. Key insights are:

− There is a new class of MapReduce workloads for inter-
active, semi-streaming analysis that differs considerably
from the original use case of purely batch computations.

− There is a wide range of behavior within this workload
class, such that we must exercise caution in regarding any
aspect of workload dynamics as “typical”.

− Some prior assumptions about MapReduce such as uni-
form data access, regular diurnal patterns, and prevalence
of large jobs no longer hold.

− Workloads constantly evolve, such that even for the same
cluster, design insights need to be periodically refreshed.

Trace Machines Length Date Jobs Bytes
moved

CC-a <100 1 month 2011 5759 80 TB
CC-b 300 9 days 2011 22974 600 TB
CC-c 700 1 month 2011 21030 18 PB
CC-d 400-500 2+ months 2011 13283 8 PB
CC-e 100 9 days 2011 10790 590 TB

FB-2009 600 6 months 2009 1129193 9.4 PB
FB-2010 3000 1.5 months 2010 1169184 1.5 EB

Total >5000 ≈ 1 year - 2372213 1.6 EB

Table 1: Summary of MapReduce traces. CC is short for
“Cloudera Customer”. FB is short for “Facebook”. Bytes moved
is input + shuffle + output data sizes for all jobs.

The full workload analysis is under publication review. To
spur discussion, we list some quantitative observations:

− Data access patterns: Skew in data accesses range be-
tween an 80-1 and 80-8 rule. Temporal locality exists,
and 80% of data re-accesses occur on the range of min-
utes to hours.

− Load variation over time: The cluster load is bursty and
unpredictable. Peak-to-median ratio in cluster load range
from 9:1 to 260:1.

− Common job types: All workloads contain a range of job
types. Over 90% of all jobs are characterized by 10s of
KB to GB of data, a range of data patterns between the
map and reduce stages, and durations of 10s of seconds to
a few minutes. Other job types appear with a wide range
of frequencies.

− SQL-like programming frameworks: The cluster load that
comes from Hive, Pig, and other such frameworks is up
to 80% and at least 20%. Additional tracing at the Hive,
Pig, and HBase levels is required.

3. Components of a Benchmark Suite
The diversity of workload behavior means that we should

be extremely careful in considering any one aspect of the ob-
served behavior to be “representative” and thus worthy of
including in a benchmark. The following lists some chal-
lenges associated with building a general benchmark for
MapReduce. Overcoming these challenges require additional
scientific advances in understanding and quantifying the per-
formance of large scale computer systems.

Pre-populating the data.
The data sizes, skew, and temporal locality all affect per-

formance and therefore should be captured in a good bench-
mark. Such a benchmark needs to pre-generate data that
reflects real life data access patterns.



Generating the processing stream.
A representative processing stream needs to capture the

job sizes, shapes, sequences, and submission rate variations
over time. It is non-trivial to understand which features of
the processing stream we can safely omit for a large range
of performance comparison scenarios.

Mix MapReduce and SQL-like frameworks.
Cluster management systems need to multiplex jobs writ-

ten in the native MapReduce API and from SQL-like frame-
works (Hive, Pig, and HBase). A benchmark should include
both types of processing in realistic mixes.

Scaled-down workloads.
It is economically challenging to reproduce behavior at

production scale. It is not clear what is the best way to
“normalize” workload size (data size, number of jobs, or
processing per data) against cluster size (number of nodes,
CPU capacity, or available memory).

Empirical models.
The observed workload behavior do not fit well-known

statistical distributions. Benchmarks should assume an em-
pirical model of workloads, i.e., the workload traces are the
model. This departs from some existing approaches [3],
where the targeted workloads allow simple models to be used
for generating the data and the processing stream.

A truly workload perspective.
Microbenchmarks that execute a small number of jobs one

at a time are useful for diagnosing a system subject to very
specific processing needs (terasort, Gridmix 1 and 2, Hi-
Bench, Hive Benchmark, Pigmix, the benchmarks from [2]).
A general MapReduce benchmark should treat a workload
as a steady processing stream involving complex and time-
varying superposition of many concurrent jobs.

Workload suites.
We should accept that no single set of behaviors is repre-

sentative. Hence, the benchmark should consist of a suite
of multiple workloads. Systems could trade optimized per-
formance for one workload type against more average per-
formance for another, and customers should select solutions
targeting their particular workload.

A stopgap tool used at Cloudera.
Cloudera uses a large set of tools for quality assurance,

performance testing, and deployment certifcation. One tool
is the Statistical Workload Injector for MapReduce (https:
//github.com/SWIMProjectUCB/SWIM/wiki). This is a joint
academia-industry effort, with considerable assitance from
collaborators at Facebook, and the original developers cur-
rently spread between UC Berkeley, Cloudera, VMware, and
Splunk. SWIM is New BSD Licensed, and partially address
the above challenges. It can pre-populate HDFS using uni-
form synthetic data, scaled to the number of nodes in the
cluster, and replay the workload using synthetic jobs. The
methodology is further discussed in [1]. The public SWIM
repository includes scaled-down versions of the FB-2009 and
FB-2010 workloads. An internal version also includes the
Cloudera workloads. We are contacting the end customers
to seek permission to make public their workloads.

4. Recommendations
It is important to “do the right thing.” What is scientif-

ically correct ultimately helps the entire community - cus-
tomers, vendors, researchers. We advocate a cautious ap-
proach to developing a big data benchmark. Something so

ambitiously phrased will guide or mis-guide development for
a large range of systems and over a long period of time. Our
observations of several real life workloads compel us to ac-
knowledge that the science is not quite there yet to declare
anything as “the big data benchmark.” We recommend the
following to close the existing knowledge gap.

Share empirical knowledge.
A big data benchmark should be built on empirically sub-

stantiated insights. The bar for inclusion in the bench-
mark suite should be higher than qualitative and unveri-
fiable claims of “our customers do thus.” The complexity,
diversity, scale, and rapid evolution of big data systems im-
ply that both customers and vendors often have incorrect or
outdated assumptions about workload behavior. Therefore,
quantitative, empirical data is essential to identifying the set
of common use cases. A neutral, cross-organization, joint
academia-industry consortium could facilitate data sharing.

Adopt a systems view of the workload.
We should capture workload behavior at the highest level

conceptual boundaries of the underlying system, e.g., MapRe-
duce jobs, Hive queries. This allows comparison between
systems of the same type, e.g., between MapReduce sys-
tems from different vendors. We call this the system view of
the workload. Tracing capabilities often exists at this level.

Alternate workload views are possible but problematic.
The physical view captures hardware behavior (CPU, mem-
ory, disk, network). It allows hardware tuning of a particular
system deployment, e.g., a cluster, but precludes compari-
son between deployments. The functional view captures the
system-independent user intent, e.g., the desired outcome
of the computation or data management process. It allows
comparison between different system types, e.g., between
a RDBMS and a MapReduce system. We currently lack
knowledge to describe workload behavior at this level.

Advance performance science.
Further advances in performance science will overcome

benchmarking challenges such as the lack of rigorous method
to scale down a workload or the current inability to capture
the function view of workload behavior. Breakthroughs in
these areas likely require joint academia-industry efforts - in-
dustry supply real life data, use cases, experiences, require-
ments, and academia combine insights across companies and
industries to distill concepts and formulate frameworks. Col-
laboration should be encouraged.

Learn from existing benchmarking communities.
The desire for rigorous performance comparisons predates

the rise of big data. Some established systems have widely
accepted benchmarks and qualify for the loosely defined la-
bel of “big data.” These systems include relational databases,
network file systems, scientific computing, and others. Lessons
learned from these communities should inform the scientific,
engineering, organizational, and community aspects of de-
veloping big data benchmark suites.

5. References
[1] Y. Chen et al. The Case for Evaluating MapReduce

Performance Using Workload Suites. In MASCOTS 2011.

[2] A. Pavlo et al. A comparison of approaches to large-scale
data analysis. In SIGMOD 2009.

[3] Transactional Processing Performance Council. TPC-*
Benchmarks. http://www.tpc.org/.


