
Crowdsourced Enumeration Queries
Beth Trushkowsky, Tim Kraska, Michael J. Franklin, Purnamrita Sarkar

AMPLab, UC Berkeley, United States
{trush, kraska, franklin, psarkar}@cs.berkeley.edu

Abstract— Hybrid human/computer database systems promise

to greatly expand the usefulness of query processing by incorpo-

rating the crowd for data gathering and other tasks. Such systems

raise many implementation questions. Perhaps the most funda-

mental question is that the closed world assumption underlying

relational query semantics does not hold in such systems. As a

consequence the meaning of even simple queries can be called

into question. Furthermore, query progress monitoring becomes

difficult due to non-uniformities in the arrival of crowdsourced

data and peculiarities of how people work in crowdsourcing

systems. To address these issues, we develop statistical tools

that enable users and systems developers to reason about query

completeness. These tools can also help drive query execution

and crowdsourcing strategies. We evaluate our techniques using

experiments on a popular crowdsourcing platform.

I. INTRODUCTION

Advances in machine learning, natural language processing,
image understanding, etc. continue to expand the range of
problems that can be addressed by computers. But despite
these advances, people still outperform state-of-the-art algo-
rithms for many data-intensive tasks. Such tasks typically
involve ambiguity, deep understanding of language or context,
or subjective reasoning.

Crowdsourcing has emerged as a paradigm for leverag-
ing human intelligence and activity at large scale. Popular
crowdsourcing platforms such as Amazon Mechanical Turk
(AMT) provide access to hundreds of thousands of human
workers via programmatic interfaces (APIs). These APIs pro-
vide an intriguing new opportunity, namely, to create hy-
brid human/computer systems for data-intensive applications.
Such systems, could, to quote J.C.R. Licklider’s famous 1960
prediction for man-computer symbiosis, “...process data in a
way not approached by the information-handling machines we
know today.” [1].

A. Query Processing with Crowds

Recently, a number of projects have begun to explore
the potential of hybrid human/computer systems for database
query processing. These include CrowdDB [2], Qurk [3],
and sCOOP [4]. In these systems, human workers can per-
form query operations such as subjective comparisons, fuzzy
matching for predicates and joins, entity resolution, etc. As
shown in [2], these simple extensions can greatly extend the
usefulness of a query processing system.

Of course, many challenges arise when adding people to
query processing, due to the peculiarities in latency, cost,
quality and predictability of human workers. For example,
data obtained from the crowd must be validated, spelling

mistakes must be fixed, duplicates must be removed, etc.
Similar issues arise in data ingest for traditional database
systems through ETL (Extract, Transform and Load) and
data integration, but techniques have also been developed
specifically for crowdsourced input [5], [6], [7], [8].

The above concerns, while both interesting and important,
are not the focus of this paper. Rather, we believe that there
are more fundamental issues at play in such hybrid systems.
Specifically, when the crowd can augment the data in the
database to help answer a query, the traditional closed-world
assumption on which relational database query processing is
based, no longer holds. This fundamental change calls into
question the basic meaning of queries and query results in a
hybrid human/computer database system.

B. Can You Really Get it All?
In this paper, we consider one of the most ba-

sic RDBMS operation, namely, scanning a single table
with predicates. Consider, for example, a SQL query
to list all restaurants in San Francisco serving scal-
lops: SELECT * FROM RESTAURANTS WHERE CITY =
‘San Francisco’ and DISH = ‘Scallops’. In a
traditional RDBMS there is a single correct answer for this
query, and it can be obtained by scanning the table, filtering
the records, and returning all matching records of the table.
This approach works even for relations that are in reality
unbounded, because the closed world assumption dictates that
any records not present in the database at query execution
time do not exist. Of course, such limitations can be a source
of frustration for users trying to obtain useful real-world
information from database systems.

In contrast, in a crowdsourced system like CrowdDB, once
the records in the stored table are exhausted, jobs can be sent
to the crowd asking for additional records. The question then
becomes: when is the query result set complete? Crowdsourced
queries can be inherently fuzzy or have unbounded result
sets, with tuples scattered over the web or only in human
minds. For example, consider a query for a list of graduating
Ph.D. students currently on the job market, or companies in
California interested in green technology. Such queries are
often considered one of the main use cases for crowd-enabled
database systems, as they reside in the sweet spot between
too much work for the user but not executed often enough to
justify a complex machine learning solution.

In this paper we address the question of “How should
users think about enumeration queries in the open world
of a crowdsourced database system?”. We develop statistical
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Fig. 1. States experiments: average unique vs. total number of answers

tools that enable users to reason about tradeoffs between
time/cost and completeness, and that can be used to drive
query execution and crowdsourcing strategies.

C. Counting Species
The key idea of our technique is to use the arrival rate of

new answers from the crowd to reason about the completeness
of the query. Consider the execution of a “SELECT *” query
in a crowdsourced database system where workers are asked to
provide individual records of the table. For example, one could
query for the names of the 50 US states using a microtask
crowdsourcing platform like AMT by generating HITs (i.e.,
Human Intelligence Tasks) that would have workers provide
the name of one or more states. As workers return results,
the system collects the answers, keeping a list of the unique
answers (suitably cleansed) as they arrive.

Figure 1 shows the results of running that query, with the
number of unique answers received shown on the vertical axis,
and the total number of answers received on the x-axis. As
would be expected, initially there is a high rate of arrival for
previously unseen answers, but as the query progresses (and
more answers have been seen) the arrival rate of new answers
begins to taper off, until the full population (i.e., the 50 states,
in this case) has been identified.

This behavior is well-known in fields such as biology and
statistics, where this type of figure is known as the Species
Accumulation Curve (SAC) [9]. Imagine you were trying to
count the number of unique species of animals on an island
by putting out traps overnight, identifying the unique species
found in the traps the next morning, releasing the animals
and repeating this daily. By observing the rate at which new
species are identified over time, you can begin to infer how
close to the true number of species you are. We can use similar
reasoning to help understand the execution of set enumeration
queries in a crowdsourced query processor.

D. Overview of the Paper
In this paper, we apply species estimation techniques from

the statistics and biology literature to understand and manage
the execution of set enumeration queries in crowdsourced
database systems. We find that while the classical theory
provides the key to understanding the meaning of such queries,
there are certain peculiarities in the behavior of microtask
crowdsourcing workers that require us to develop new methods
to improve the accuracy of cardinality estimation in this
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environment. We also describe methods to leverage these
techniques to help users make intelligent tradeoffs between
time/cost and completeness. These techniques extend beyond
crowdsourced databases and, for example, can help to estimate
the completeness of deep-web queries.

To summarize, we make the following contributions:
• We formalize the process of crowdsourced set enumeration

and describe how it violates statistical fundamental assump-
tions of existing species estimation techniques.

• We develop a technique to estimate result cardinality and
query progress in the presence of crowd-specific behaviors.

• We devise a pay-as-you-go approach to allow informed
decisions about the cost/completeness tradeoff, we well as
a technique to determine if data scraping could be applied.

• We examine the effectiveness of our techniques via experi-
ments using Amazon Mechanical Turk (AMT).

The paper is organized as follows: In Section II we give back-
ground on the CrowdDB system. Section III describes how
crowd-specific behaviors break assumptions on which species
estimation algorithms are based. In Section IV we develop
techniques to improve the estimation in the presence of crowd-
specific behavior, whereas Section V discusses a heuristic to
detect when alternate data-gathering techniques could be used.
Section VI introduces a pay-as-you-go technique. Section VII
covers related work and in Section VIII we conclude.

II. BACKGROUND: CROWDDB
CrowdDB is a hybrid human-machine database system that

uses human input to process queries. CrowdDB currently
supports two crowdsourcing platforms: AMT and our own
mobile platform [10]. We focus on AMT in this paper, the
leading platform for so-called microtasks. Microtasks, also
called Human Intelligence Tasks (HITs) in AMT, usually do
not require any special training and do not take more than
a few minutes to complete. AMT provides a marketplace for
microtasks that allows requesters to post HITs and workers to
search for and work on HITs for a small reward, typically a
few cents each.

Figure 2 shows the architecture of CrowdDB. CrowdDB
incorporates traditional query compilation, optimization and



Fig. 3. Ice cream flavors task UI on AMT

execution components, which are extended to cope with
human-generated input. In addition the system is extended
with crowd-specific components, such as a user interface (UI)
manager and quality control/progress monitor. Users issue
queries using CrowdSQL, an extension of standard SQL.
CrowdDB automatically generates UIs as HTML forms based
on the CROWD annotations and optional free-text annotations
of columns and tables in the schema. Figure 3 shows an
example HTML-based UI that would be presented to a worker
for the following crowd table definition:

CREATE CROWD TABLE ice_cream_flavor {
name VARCHAR PRIMARY KEY

}

Although CrowdDB supports alternate user interfaces (e.g.,
showing previously received answers), this paper focuses on
a pure form of the set enumeration question. The use of
alternative UIs is the subject of future work.

During query processing, the system automatically posts one
or more HITs using the AMT web service API and collects the
answers as they arrive. After receiving the answers, CrowdDB
performs simple quality control using quorum votes before it
passes the answers to the query execution engine. Finally, the
system continuously updates the query result and estimates
the quality of the current result based on the new answers.
The user may thus stop the query as soon as the quality is
sufficient or intervene if a problem is detected. More details
about the CrowdDB components and query execution are given
in [2]. This paper focuses on the quality control and progress
component that allows the user to continuously reason about
query completeness and cost.

III. A MODEL AND ANALYSIS OF PROGRESS ESTIMATION
FOR CROWDSOURCED ENUMERATIONS

To evaluate progress as answers are arriving, the system
needs an estimate of the result set’s cardinality in order to cal-
culate the percentage complete. Species estimation algorithms
from statistics and biology literature tackle a similar goal:
an estimate of the number of distinct species is determined
using observations of species in the locale of interest. These
techniques are also used in traditional database systems to
inform query optimization of large tables [11]. In this section,
we describe our observations of how the crowd answers set-
enumeration queries and why existing estimation techniques
yield inaccurate estimates. We also present a model for crowd-
sourced enumerations and list the requirements for human-
tolerant cardinality estimators.

A. The Problem with Existing Estimators

Various techniques have been devised in biology to estimate
the number of species [12], [13] as well as in the database
community to estimate the number of distinct values in a
table [11]. They all operate similarly: a sample is drawn at
random from a population (e.g., the entire table) and based on
the frequency of observed items (distinct values), the number
of unobserved items (number of missing distinct values) is
estimated. The techniques differ most notably in their assump-
tions, in particular that distinct value estimation techniques
assume that the population (i.e., table) size is known. Unfor-
tunately, knowledge of the population size is only possible in
the closed world; in systems with crowdsourced enumerations,
records can be acquired on-demand, thus the table size is
potentially infinite. We focus the remaining discussion on
species estimators suitable for the open world because they
allow for an infinite population.

To gain an understanding of the crowd’s ability to answer
set enumeration queries and its impact on existing estimation
techniques, we crowdsourced the elements of sets for which
the true cardinality is known, using the UI exemplified in
Figure 3. We use the open-world-safe estimator “Chao92”
[14] as it is widely used in the species estimation literature
[15].1 Figure 4 shows the observed Chao92 estimate (“actual”)
evaluated as answers arrive in one AMT experiment in which
we crowdsourced the names of the 192 United Nations (UN)
member countries and compares it to the expected behavior
using simulation with the empirical data distribution derived
from all our UN experiment runs. We focus on a single repre-
sentative experiment rather than an average over multiple runs
to investigate the behavior a user would observe; averaging
can also disguise the effects described next.

Note in Figure 4 that the value of the estimate begins
approaching the true value of 192, however it then significantly
overestimates the true value for most of the remaining time of
the experiment. This is surprising as our simulation shows
that the estimate should become more accurate and stable
as it receives more data (“expected” in Figure 4). As it
turns out, the way in which crowd workers each provide
their answers deeply impacts the behavior of an estimation
algorithm. For example, in five runs of the UN experiment,
we observed various trends in how the crowd responds to
a set enumeration query. A worker could enumerate the
UN countries by traversing an alphabetical list, starting with
Afghanistan. However, it was not uncommon for workers to
begin their answer sequence with a few countries they knew of
(e.g., United States, India, Pakistan, China, etc.), or to provide
a completely non-alphabetical sequence. We even observed
alphabetical traversals that began at the end or in the middle
of the alphabet! In general, people may use different internal
biases or techniques for finding items in the set (we discuss full
list traversals in Section V). We also noticed that individual

1We experimented with various other estimators for the open-world such as
“Chao84”[16], “Jackknife”[17], and “uniform maximum-likelihood”[14] and
also found Chao92 to be superior.
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workers complete different amounts of work and arrive/depart
from the experiment at different points in time.

The next subsection formalizes a model of how answers
arrive from the crowd in response to a set enumeration query,
as well as a description of how crowd behaviors impact
the sample of answers received. We then use simulation to
demonstrate the principles of how these behaviors play off
one another and thereby influence an estimation algorithm.

B. A Model for Human Enumerations

Species estimation algorithms assume a with-replacement
sample from some unknown distribution describing item likeli-
hoods (visualized in Figure 5(a)). The order in which elements
of the sample arrive is irrelevant in this context.

After analyzing the crowdsourced enumerations, for exam-
ple in the previously mentioned UN experiment, we found
that this assumption does not hold for crowdsourced sets.
In contrast to with-replacement samples, workers provide
answers from an underlying distribution without replacement.
Furthermore, workers might sample from different underlying
distributions (e.g., one might provide answers alphabetically,
while another worker provides answers in a more random
order).

This process of sampling significantly differs from what tra-
ditional estimators assume, and it can be represented as a two-
layer sampling process as shown in Figure 5(b). The bottom
layer consists of many sampling processes, each correspond-
ing to one worker, that sample from some data distribution
without replacement. The top layer processes samples with
replacement from the set of the bottom-layer processes (i.e.,
workers). Thus, the ordered stream of answers from the crowd
represents a with-replacement sampling amongst workers who
are each sampling a data distribution without replacement.

C. The Impact of Humans

The impact of the two-layer sampling process on the es-
timation can vary significantly based on the parameterization
of the process (e.g., the number of worker processes, different
underlying distributions, etc.). In this section, we study the
impact of different parameterizations, define when it is actually
possible to make a completeness estimation as well as the
requirements for an estimator considering human behavior.

1) Sampling Without Replacement: When a worker submits
multiple items for a set enumeration query, each answer is
different from his previous ones. In other words, individuals
are sampling without replacement from some underlying dis-
tribution that describes the likelihood of selecting each answer.
Of course, this behavior is beneficial with respect to the goal of
acquiring all the items in the set, as low-probability items be-
come more likely after the high-probability items have already
been provided by that worker (we do not pay for duplicated
work from a single worker). A negative side effect of workers
sampling without replacement is that the estimation algorithm
receives less information about the relative frequency of items,
and thus the skew, of the underlying data distribution; having
knowledge of the skew is a requirement for a good estimate.

2) Worker skew: On crowdsourcing platforms like AMT, it
is common that some workers complete many more HITs than
others. This skew in relative worker HIT completion has been
labeled the “streakers vs. samplers” effect [18]. In the two-
layer sampling process, worker skew dictates which worker
supplies the next answer; streakers are chosen with higher
frequency. High worker skew can cause the arrival rate of
unique answers to be even more rapid than that caused by
sampling without replacement alone, causing the estimator to
over-predict. The reasoning is intuitive: if one worker gets
to provide a majority of the answers, and he provides only
answers he has not yet given, then a majority of the total
answer set will be made up of his unique answers.

Furthermore, in an extreme scenario in which one worker
provides all answers, the two-layer process reduces to one
process sampling from one underlying distribution without
replacement. In this case, completeness estimation becomes
impossible because no inference can be made regarding the
underlying distribution. Another extreme is if an infinite
number of “samplers” would provide one answer each using
the same underlying distribution, the resulting sample would
correspond to the original scenario of sampling with replace-
ment (Figure 5(a)).

The latter is the reason why it is still possible to make esti-
mations even in the presence of human-generated set enumer-
ations. Figure 6(a) shows the impact of having more workers
on the averaged Chao92 estimates with 100 simulation runs
using a uniform data distribution over 200 items. As expected,



(a) with vs. without replacement (b) forms of skew (c) impact of streaker

100 200 300 400 500 600

0
10

0
20

0
30

0
40

0

# answers

ch
ao

92
 e

st
im

at
e

!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!

3 workers w/o replace
5 workers, w/o replace
with replacement

!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

500 1000 1500 2000

0
10

0
20

0
30

0
40

0

# answers

ch
ao

92
 e

st
im

at
e

!
!
!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!

!
!
!
!
!
!
!
!
!
!
!

!
!
!!!

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

ws=T, dd=T
ws=F, dd=T
ws=T, dd=F
ws=F, dd=F

!
!
!!!!!!

!!
!!

!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

500 1000 1500 2000

0
10

0
20

0
30

0
40

0

# answers

ch
ao

92
 e

st
im

at
e !!

!
!
!
!!!!

!!
!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!
!!

!!!!
!

!

!

!

!

!
!
!
!
!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

ws=T, dd=T
ws=F, dd=T
ws=T, dd=F
ws=F, dd=F

Fig. 6. Cardinality estimation simulations illustrating the impact of worker behaviors

the with-replacement sample overestimates slightly because of
the uniform data distribution, but quickly approaches the true
value of 200. The without-replacement samples overestimate
even more and remain in that state for longer.

D. Different and Skewed Data Distributions

Individual workers also may be drawing their answers from
different data distributions. For example, the most likely item
for one worker could be the least likely item for another. These
differences could arise from varying cultural or regional biases,
or alternate techniques for finding the data on the web. A
mixture of multiple distributions over the same data results in a
combined distribution that is “flatter” than its constituent parts,
thereby becoming less skewed. In contrast, when the under-
lying data distribution is heavily skewed and shared amongst
workers, the estimator will typically underestimate because
there will not be a sufficient number of items representing the
long tail of the distribution.

Figure 6(b) visualizes the impact of different data distri-
butions combined with different worker skew on the Chao92
estimate by showing four combinations: the absence/presence
of worker skew (WS) and the shared/different data distribu-
tions for workers (DD). For all cases, we use a power law
data distribution in which the most likely item has probability
p, the second-most likely has probability p(1 − p), etc.; we
set p = 0.03. To simulate different data distributions, we
randomly permute the original distribution for each worker.

The simulation shows that the worst scenario is charac-
terized by a high worker skew and a single shared data
distribution (WS=T and DD=F). With a shared skewed dis-
tribution, Chao92 will start out underestimating because all
workers are answering with the same high-probability items.
However, with high worker skew, the streaker(s) provide(s)
many unique answers quickly causing many more unique items
than encountered with sampling with replacement.

On the other hand, the best scenario is when there is no
worker skew but there are different data distribution (WS=F
and DD=T). By using different data distributions without
overemphasizing a few workers, the overall sample looks more
uniform, similar to Figure 6(a) with replacement, due to the
flattening effect of DD on skewed data.

E. Worker Arrival

Finally, the estimate can be impacted by the arrival and
departure of workers during the experiment. All workers
do not necessarily provide answers during the lifetime of a
query. Instead they come and go as they please. However, the
estimator can be strongly impacted when streakers arrive who
then suddenly dominate the total number of answers.

Figure 6(c) demonstrates the impact a single worker can
have. It uses the same simulation setup as in Figure 6(b),
but also simulates an additional single streaker starting at
200 HITs who continuously provides all 200 answers before
anyone else has a chance to submit another answer. As the
figure shows, it causes Chao92 to over-predict in all four cases.
However, if workers use different data distributions the impact
is not as severe. Again, this happens because DD makes the
sample appear more uniformly distributed.

F. Discussion

Particular crowd behaviors are inherent in a marketplace like
AMT. The order in which each worker provides his answers
and how many he gives can depend on individual biases and
preferences. The four elements of crowd behavior we outlined
above (without-replacement sampling, worker skew, different
distributions, and worker arrival) can each cause Chao92 to
perform poorly. The most volatile of these behaviors is worker
skew, particularly when the data distribution itself is skewed;
a single overzealous worker could cause massive fluctuations
in the estimate.

Our goal is to make Chao92 more fault-tolerant to the
impact of such a streaker; we discuss our technique for a
streaker-tolerant cardinality estimator next. In Section V, we
revisit the scenario in which the estimator under-predicts due
to one or more shared, highly skewed data distributions.
In some cases, workers’ answer sequences originate from a
common list traversal. We develop a heuristic for detecting this
behavior, which can be used to inform the decision to switch
to an alternate data-gathering UI. Later on in Section VI, we
describe a technique analyzing the cost versus benefit tradeoff
of paying for more answers, helpful even when the cardinality
estimate can only serve as a lower bound due to high data skew
or inherent fuzziness in items’ set membership.



IV. STREAKER-TOLERANT COMPLETENESS ESTIMATOR

Our goal is to provide the user with a progress estimate
for an open-world query based on the answers that have been
gathered so far. However, in the last section we demonstrated
how having a crowd of humans enumerate a set creates a
two-layer sampling process, and that the order in which items
arrive depends heavily on different worker behaviors—which
impacts the accuracy of the estimator.

In this section, we extend the Chao92 algorithm to make
the estimator more robust against the impact of individual
workers. We focus our effort mainly on reducing the impact
of streakers and worker arrival, and exclude for now cases for
which we can not make a good prediction, discussed in the
following subsections in more detail. We first introduce the
basic estimator model and Chao92 more formally before we
present our extension that handles streaker impact. Finally,
we evaluate our technique by first proposing a new metric
that incorporates the notions of estimate stability and fast
convergence to the true cardinality, then applying this metric
to measure the effectiveness of our technique using various
use cases in addition to the UN.

A. Basic Estimator Model and F-Statistic

Receiving answers from workers is analogous to drawing
samples from some underlying distribution of unknown size
N ; each answer corresponds to one sample from the item
distribution. We can rephrase the problem as a species esti-
mation problem as follows: The set of HITs received from
AMT is a sample of size n drawn from a population in which
elements can be from N different classes, numbered 1 − N
(N , unknown, is what we seek); c is the number of unique
classes (species) seen in the sample. Let ni be the number of
elements in the sample that belong to class i, with 1 ≤ i ≤ N .
Of course some ni = 0 because they have not been observed
in the sample. Let pi be the probability that an element from
class i is selected by a worker,

�N
i=1 pi = 1; such a sample

is often described as a multinomial sample [12].
One might try to estimate the underlying distribution

{p1, ..., pN } in order to predict the cardinality N . However,
Burnham and Overton show in [17] that the aggregated
“frequency of frequencies”-statistic (hereon f -statistic) is suf-
ficient for estimating the number of unobserved species for
non-parametric algorithms. The f -statistic captures the relative
frequency of observed classes in the sample. For a population
that can be partitioned into N classes (items), and given a
sample of size n, let fj be the number of classes that have
exactly j members in the sample. Note f1 represents the
“singletons” and f2 the “doubletons”. The goal is to estimate
the cardinality by predicting f0, the number of unseen classes.

B. The Chao92 Estimator

Our technique is based on the Chao92 [14] estimator, which
uses sample coverage to predict N . The sample coverage C is
the sum of the probabilities pi of the observed classes. How-
ever, since the underlying distribution p1...pN is unknown, the

Good-Turing estimator [19] using the f -statistic is used:

Ĉ = 1 − f1/n (1)

Furthermore, the Chao92 estimator attempts to explicitly char-
acterize and incorporate the skew of the underlying distribution
using the coefficient of variance (CV), denoted γ, a metric
that can be used to describe the variance in a probability
distribution [14]; we can use the CV to compare the skew of
different class distributions. The CV is defined as the standard
deviation divided by the mean. Given the pi’s (p1 · · · pN )
that describe the probability of the ith class being selected,
with mean p̄ =

�
i pi/N = 1/N , the CV is expressed as

γ =
��

i(pi − p̄)2/N
�1/2 / p̄ [14]. A higher CV indicates

higher variance amongst the pi’s, while a CV of 0 indicates
that each item is equally likely.

The true CV cannot be calculated without knowledge of the
pi’s, so Chao92 uses an estimate γ̂ based on the f -statistic:

γ̂2 = max
�

c
Ĉ

�
i i(i − 1)fi

n(n − 1) − 1 , 0
�

(2)

The final estimator is then defined as:

N̂chao92 = c

Ĉ
+ n(1 − Ĉ)

Ĉ
γ̂2 (3)

Note that if γ̂2 = 0 (i.e., indicating a uniform distribution),
the estimator reduces to c/Ĉ.

C. An Estimator for Crowdsourced Enumeration
The Chao92 estimator is heavily influenced by the presence

of rare items in the sample; the coverage estimate Ĉ is
based entirely on the percentage of singleton answers (f1s).
Recall from Section III the different crowd behaviors—many
of them result in rapid arrival of unique answers. When unique
items appear “too quickly”, the estimator interprets this as
a sign the complete set size is larger than it truly is. We
develop an estimator based on Chao92 that ameliorates some
of the overestimation issues caused by an overabundance of
f1 answers.

Most of the dramatic overestimation occurs in the presence
of streakers, i.e., significant skew in the amount of answers
provided by each worker. Notably, problems occur when one
or a few workers contribute substantially more answers than
others, possibly also drawing answers from a different data
distribution. As other workers are not given the opportunity
to provide answers that would subsequently increase the f2s,
f3s, etc. in the sample, Chao92 predicts a full set cardinality
that is too large. Thus our estimator is designed to identify any
worker(s) who are outliers with respect to their contribution
of unique answers in the sample (their f1 answers).

The idea behind making the Chao92 estimator more resilient
against streakers is to alter the f -statistic. The first step is
to identify those workers who are “f1 outliers”. We define
outlier in a traditional sense, two standard deviations outside
the mean of all workers W . To avoid false negatives due to
a true outlier’s influence on the mean and standard deviation,
both statistics are calculated without including the potential
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Fig. 7. Estimator results on representative UN country and US states experiments

outlier’s f1 count. The f1 count of worker i is compared to
the mean x̄i and the sample standard deviation σ̂i:

x̄i =
�

∀j,j �=i

f1(j)
W − 1 σ̂i =

����
�

∀j,j �=i

(f1(j) − x̄i)2

W − 2 (4)

We create f̃1 from the original f1 by reducing each worker
i’s f1-contribution to fall within 2σ̂i + x̄i:

f̃1 =
�

i

min(f1(i), 2σ̂i + x̄i) (5)

The final estimator is similar to equation 3 except that it
uses the f̃1 statistic. For example, with a coefficient of variance
γ̂2 = 0, it would simplify to:

N̂crowd = cn

n −
�

i min(f1(i), 2σ̂i + x̄i)
(6)

Although a small adjustment, N̂crowd is more robust against
the impact of streakers than the original Chao92, as we show
in our evaluation next.

D. Experimental Results

We ran over 30,000 HITs on AMT for set enumeration
tasks to evaluate our technique. Several CROWD tables we
experimented with include small and large well-defined sets
like NBA teams, US states, UN member countries, as well as
sets that can truly leverage human perception and experience
like indoor plants with low-light needs, restaurants in San
Francisco serving scallops, slim-fit tuxedos, and ice cream
flavors. Workers were paid $0.01-$0.05 to provide one item
in the result set using the UI shown in Figure 3; they were
allowed to complete multiple tasks if they wanted to submit
more than one answer. In the remainder of this paper we focus
on a subset of the experiments, some with known cardinality
and fixed membership, US states (nine experiment runs) and
UN member countries (five runs), as well as more open ended
queries like plants, restaurants, tuxedos, and ice cream flavors
(one run each).

1) Error Metric: Due to a lack of a good metric to evaluate
estimators with respect to stability and convergence rate, we
developed an error metric Φ that captures bias (absolute
distance from the true value), as well as the estimator’s time to
convergence and stability. The idea is to weight the magnitude
of the estimator’s bias more as the size of the sample increases.
Let N denote the known true value, and N̂i denote the estimate
after i samples. After n samples, Φ is defined as:

Φ =
�n

i=1 |N̂i − N |i�
i

= 2
�n

i=1 |N̂i − N |i
n(n + 1) (7)

A lower Φ value means a smaller averaged bias and thus,
a better estimate. The weighting renders a harsher penalty
for incorrectness later on than in the beginning, in addition
to penalizing an estimator that takes longer to reach the true
value; this addresses the convergence rate criteria. The error
metric also rewards estimators for staying near the true value.

2) Results: UN and States: We first illustrate how N̂crowd

behaves for a representative set of UN member countries and
US states experiments; we elide the full set for space reasons.
For both experiments the UI from Figure 3 was shown by
CrowdDB to ask for an UN member country, respectively
US state, on AMT for $0.01 cents per task. Figures 7(a-
h) show cardinality estimates as well as the Φ metric for
the selected experiments. We observed that our estimate has
an improvement over Chao92 for most UN experiments we
performed as Figure 7(a) and (b) show. In UN 1 our estimates
reduces the overestimation of Chao92 that occurred during the
middle of the experiment. In the UN 2 experiment, one streaker
dominated the total answer set at the beginning—a substantial
outlier. Once his contribution was reduced dramatically, the
remaining workers’ answers had significant overlap because
most were enumerating the list of nations alphabetically,
resulting in a low cardinality because of the heavily skewed
data distribution this scenario creates. Recall from the previous
section that the expected behavior of the estimator in this
case is to under-predict. In contrast, the third UN experiment
run had several streakers at the beginning who each had
very different data distributions (i.e., enumerating the list of
nations from different alphabetical start points). While the
heuristic helped level the f1 contribution from these workers,
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Fig. 8. Estimator results for the real use cases

overestimation still occurs due to the combined number of
singleton answers from these workers. In a few cases, our
estimator performs worse than Chao92, e.g., UN 4. Note that
underestimation is expected when workers share a heavily
skewed distribution; a streaker causing an estimate to be higher
than it should results in a value closer to the true value.

The effect of our estimate compared to Chao92 is less
significant in the States experiments, which exhibit less worker
skew. Figure 7(f) and (g) show two US states experiments
that have a moderate streaker problem and illustrate how our
technique improves the prediction, whereas for a third state
experiment shown in Figure 7(g), our estimator reduces the
impact of streakers but takes longer to converge for similar
reasons as in the UN 4 experiment.

3) Results: Real Use Cases: Our real use cases demonstrate
several of the worker behaviors that we observed in the UN
experiments as well; in particular, the presence of overzealous
workers who contributed many more unique answers than
others. Figures 8(a-c) show the original Chao92 and our
estimates for the plants, restaurants, tuxedos, and ice cream
flavors experiments. In all cases, our estimator successfully
reduces the impact these streakers have on the prediction of
complete set cardinality. Note that we cannot evaluate the
error Φ for these experiments because the true cardinality is
unknown. During the plant experiment, one worker from the
beginning consistently contributed more unique answers than
the other workers, e.g., “rabbit’s foot”; many workers stuck
to the well-known answers (e.g., snake plant, peace lily). In
contrast, in the restaurant experiment a streaker contributed
many f1 answers at the beginning, but other workers even-
tually provided many of those same answers. The tuxedos
experiment demonstrates how a streaker who arrives later in
the experiment affects the estimate, causing a sharp increase
in the Chao92 estimate which is ameliorated by N̂crowd.

E. Discussion

In this section, we showed that our estimator successfully
provides more accurate prediction for crowd-based set enumer-
ations in the presence of overzealous workers (i.e., streakers).
Our technique specifically tackles cardinality overestimation,
which can be quite extreme and misleads the user into thinking
he is lacking many more items in the set than he really is. It
should be noted, however, that any heuristic, including ours,
can only cope with a certain range of worker behavior that
one could encounter when crowdsourcing a set. For example, if
only one worker provides any answers, there is no information
about the underlying data distribution for the estimator to
take advantage of. On the other hand, if there are many

workers producing few answers from a heavily skewed data
distribution, an estimator is likely to underestimate because
there will always be very few f1 answers in the set. Most of
the real experiments we ran on AMT did not fall into these
extreme categories, and the heuristic is able to ameliorate the
moderate impact of worker behavior on cardinality estimation.

V. LIST WALKING

As described in Section III, when workers share the same
or multiple heavily skewed data distribution, particularly if
there is low worker skew, the estimator may under-predict the
total set size. Such a heavily skewed distribution can occur if
workers are traversing the same list for answers; we notice this
behavior in some of our experiments. We refer to this effect
as list walking. While unsurprising for the UN or States, list
walking appears even in the ice cream flavor experiment.

Detecting list walking makes it possible to change the
crowd-sourcing strategy to save money. For example, we are
currently exploring how to use workers to scrape the data using
a browser plugin shown in Figure 9, where workers mark the
data to extract. In cases where one or two lists containing the
full set exists, such as the UN countries, this switch could
be helpful for getting them all. However, switching strategies
for sets for which no single list exists (e.g., ice cream flavors)
would not make sense. Thus the goal is to detect if list walking
is particularly prominent in the set of workers’ answers to
inform the decision regarding data gathering UIs.

Fig. 9. Scraper Context Menu

In this section we devise a technique for detecting list
walking based on the likelihood that multiple workers provide
answers in the same exact order. We show that our technique
can detect various degrees of list walking in our experiments.

A. Detecting lists
The goal of detecting list walking is to differentiate between

samples drawn from a skewed item distribution and the exis-
tence of a list, which leads to a deterministic answer sequence.
Simple approaches, such as looking for alphabetical order,
finding sequences with high rank correlation or small edit-
distance would either fail to detect non-alphabetical orders or
disregard the case where workers return the same order simply



by chance. In the rest of this section, we focus on a heuristic
to determine the likelihood that a given number of workers w
would respond with s answers in the exact same order.

List walking is similar to extreme skew in the item distri-
bution; however even under the most skewed distribution, at
some point (i.e., large w or large s), providing the exact same
sequence of answers will be highly unlikely. Our heuristic
determines the probability that multiple workers would give
the same answer order if they were really sampling from
the same item distribution. Once this probability drops below
a particular threshold (we use 0.01), we conclude that list
walking is likely to be present in the answers. We also consider
cases of list walking with different offsets (i.e., both workers
start from the fifth item on the list), but we do not consider
approximate matches which may happen if a worker skips
items on the list. Detecting list walking in those scenarios is
considered as future work. Furthermore, approximate matches
in answer order may make the sample more random and hence
more desirable for estimation purposes.

1) Preliminary setup: binomial distribution: Let W be the
total number of workers who have provided answer sequences
of length s or more. Among these, let w be the number of
workers who have the same sequence of answers with length
s starting at the same offset o in common. We refer to this
sequence as the target sequence α of length s, which itself
is composed of the individual answers αi at every position
i starting with offset o (α = (αo+1, . . . , αo+s)). If pα is
the probability of observing that sequence from some worker,
we are interested in the probability that w out of W total
workers would have that sequence. This probability can be
expressed using the binomial distribution: W corresponds to
the number of trials and w represents the number of successes,
with probability mass function (PMF):

Pr(w; W, pα) =
�

W

w

�
pw

α (1 − pα)W −w (8)

Note that the combinatorial factor captures the likelihood of
having w workers sharing the given sequence by chance just
because there are many workers W . In our scenario, we do
not necessarily care about the probability of exactly w workers
providing the same sequence, but rather the probability of w
or more workers with the same answer sequence:

Pr≥(w; W, pα) = 1 −
w−1�

i=0

�
W

i

�
pi

α(1 − pα)W −i (9)

The probability in equation 9 determines if the target se-
quence shared among w out of W workers is likely caused by
list walking. We now discuss pα, the probability of observing
a particular target sequence α of length s.

2) Defining the probability of a target sequence: Not all
workers use the same list or use the same order to walk
through the list, so we want pα to reflect the observed
answer sequences from workers. We do this by estimating
the probability pα(i) of encountering answer αi in the ith

position of the target sequence by the fraction of times this
answer appears in the ith position among all W answers.

Let r(i) be the number of times answer αi appears in the
ith position among all the sequences W being compared,
pα(i) is defined as ri/W . For example, if the target sequence
α starting at offset o is “A,B,C” and the first answers for
four workers are “A”,“A”,“A”, and “B”, respectively, ro+1/W
would be 3/4. Now the probability of seeing α is a product
of the probabilities of observing αo+1, then αo+2, etc.

pα =
o+s�

i=o

ri

W
(10)

Relying solely on the data in this manner could lead to
false negatives in the extreme case where w = W , i.e.,
where all workers use the same target sequence. Note that
in this case pα attains the maximum possible value of 1.
As a result, pα will be greater than any threshold we pick.
We need to incorporate both the true data via ri/W as well
as our most pessimistic belief of the underlying skew. As a
pessimistic prior, we choose the highly skewed Grays self-
similar distribution [20], often used for the 80/20 rule. Only if
we find a sequence which can not be explained (with more than
1% chance) with the 80/20 distribution, we believe we have
encountered list walking. Assuming a high skew distribution is
conservative because it is more likely that workers will answer
in the same order if they were truly sampling than with, say, a
uniform distribution. The self-similar distribution with h = 0.2
is beneficial for our analysis because when sampling without
replacement, the most likely item has 80% (1 − h = 0.8)
chance of being selected and, once that item is selected and
removed, the next most likely item has an 80% chance as well.

As a first step, we assume that the target sequence follows
the self-similar distribution exactly by always choosing the
most likely sequence. In this case α is simply a concatenation
of the most likely answer, followed by the second most likely
answer, and so on. Hence the likelihood of selecting this
sequence under our prior belief is (1 − h)s and the likelihood
that a set of w workers select this same sequence is:

(1 − h)sw (11)
Note that this probability does not calculate the probability

of having any given sequence of length s shared among w
workers; instead it represents the likelihood of having the most
likely sequence in common. Incorporating the probability of
all sequences of length s would be the sum of the probabilities
of each sequence order, i.e., the most likely sequence plus the
second most likely sequence, etc. However, we found that the
terms after the most likely sequence contribute little and our
implementation of that version had little effect on the results;
thus do not consider it further.

To combine the distribution derived from data and our prior
belief in the maximum skew, we use a smoothing factor β
to shift the emphasis from the data to the distribution; higher
values of β put more emphasis on the data. Using β to combine
equation 10 with equation 11, we yield the probability of
having the target sequence α (of length s) in common:

pα =
s�

i=1

�
β

ri

W
+ (1 − β)(1 − h)

�
(12)
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Fig. 10. HITs detected as list-walking for different experiments

If β = 1, pα only incorporates the frequency information from
the data, so if all workers are walking down the same list, then
the probability in equation 12 would be 1 (thus not detecting
the list use). Note also that when β = 0, pα just uses the
80−20 distribution and will reduce to (1−h)s.We demonstrate
the effect of different values of β next.

B. Experimental Results

To apply our heuristic to the AMT experiments, we prune
the search space by using a window size s of at least 5 over
the answers per worker. That is, for a sequence of answers of
at least size s that have more than one worker in common,
we compute the probability of that sequence using equation 8.
If the probability falls below the threshold 0.01, we consider
the sequence as being from a list. Our version of windowing
ensures that we compare sequences that start at the same offset
o across all workers, as equation 12 leverages the relative order
that workers provide answers. A shingling approach to detect
lists with different offsets across workers is beyond the scope
of this paper. We check for list use over time (number of
HITs) and quantify how many of the observed HITs were part
of a list; this gives a sense of the impact of list use in the
experiment. Due to space, we describe only a few results.

Figure 10 shows the number of affected HITs in one of
the States experiments, one of the UN experiments, and for
the ice cream flavors experiment. We use representative single
runs as opposed to averages to better visualize the effect that
a user of the systems would observe. The lines correspond to
using equation 12 with different β values 0.2, 0.5, 0.8. Lower
β values detect fewer lists or it takes more HITs to detect lists.

The States experiments experienced little or no list walking.
While there are definitely webpages that show the list of US
states, perhaps it was not too much harder for workers to think
of them on their own. All UN experiments exhibited some
list use, with the list of course being the alphabetical list of
countries that can be found online. However, we also notice
that in one of the experiments a few workers went through the
list in reverse alphabetical order. Interestingly, we also detect
some list walking in the ice cream experiment, despite it being
a personal question easily answerable without consulting a
source online. After some searching for the original sources,
we actually found a few lists used for ice cream flavors, like
those from the “Penn State Creamery” and “Frederick’s Ice
Cream”. Several lists were actually not alphabetical, including

a list of the “15 most popular ice cream flavors” as well as
forum thread on ChaCha.com discussing ice cream flavors.

Our results show that our heuristic is able to detect when
multiple workers are consulting the same list and how severe
list walking is. For example, it reports that for the UN 2
experiment around 20-25% of all HITs are impacted by list
walking. Whereas for the ice cream flavors experiment less
than 10% are impacted. So far we use the list walking detection
to warn the user that the accuracy of the prediction might be
impacted. In the future, we plan to automatically switch to
alternative crowdsourcing strategies and ask the AMT workers
to scrape the list with the UI shown in Figure 9.

VI. COST VS. BENEFIT: PAY-AS-YOU-GO

While there are times list walking can be detected and the
complete result set garnered by accessing the list directly, in
many real use cases such lists are not available. Furthermore,
the result set for some queries may have unbounded size, a
highly skewed distribution and/or extreme worker behavior
that make predicting its size nonsensical, as discussed in
Section III. For these cases, it makes more sense to try to
estimate the benefit of spending more money, i.e., predicting
the shape of the SAC (e.g., Figure 1) in the near future. In
this section we analyze pay-as-you-go techniques to predict
this cost versus benefit tradeoff of getting more answers by
expending additional effort.

A. Estimating Benefit via Sample Coverage

A query optimizer in an open-world system would want
to estimate the benefit of increased crowdsourcing effort to
consider the end user’s quality goals. For the set enumeration
query in CrowdDB, we are interested in how many more
unique items would be acquired with m more HITs, given
the current number of received answers. Again, we leverage
techniques from the species estimation community, which
developed techniques to evaluate the benefit of additional
physical effort like setting more animal traps. To our knowl-
edge, this is the first time that these techniques are applied in
the context of database queries.

In [21], the authors derive an estimator (hereon Shen) for
the expected number of species N̂Shen that would be found
in an increased sample of size m. The approach assumes we
have an estimate of the number of unobserved elements f̂0 and
that the unobserved elements have equal relative abundances.



Error: Average UN Experiments

m n = 200 n = 500 n = 800
10 1 0.6 0
50 5 1.6 1.6

100 8.4 3 3
Error: Plant Experiment

m n = 100 n = 200 n = 300
10 2 3 0
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100 7 1 -

Error: Average States Experiments
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100 5.7 2 -
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m n = 1K n = 1.5K n = 2K
10 4 0 0
50 9 1 0
100 13 1 3

Error: Tuxedo Experiment

m n = 30 n = 50 n = 70
10 3 0 1
50 8 10 -
100 - - -

Fig. 11. Pay-as-you-go cost-benefit predictions using Shen

However, this cardinality estimate f̂0 can incorporate a coeffi-
cient of variance estimate (equation 2) to account for skew, as
shown by Chao92. An estimate of the unique elements found
in an increased effort of size m is:

N̂Shen = f̂0

�
1 −

�
1 − 1 − Ĉ

f̂0

�m�
(13)

We present results based on the Chao92 estimate of f̂0. Our
estimator is designed to reduce the impact of streakers to yield
a more accurate estimate of total set size, i.e., as m → ∞,
however disregarding the rapid arrival rate of new times can
cause local predictions with N̂shen to under-predict. Thus
we use the original Chao92 estimate for the pay-as-you-go
prediction.

Another technique [22] models the “expected mean” SAC
with a binomial mixture model. It performs similarly to the
coverage approach; we do not discuss it further.

B. Experimental Results

We evaluated the effectiveness of the N̂shen estimator in
determining how many more unique items would arrive if
m additional answers were given by workers; this analysis
would be done after having already received n answers (HITs).
Accuracy is calculated as the absolute value of the error (bias);
the absolute value allows for averaging the errors. The tables in
Figure 11 contain the errors for various queries. For example,
in the UN experiment after n = 500 the average error for the
next m = 50 HITs is 1.6 (i.e., on average the prediction is
off by 1.6). For some cells, we were not able to evaluate the
prediction as we did not receive enough answers for at least
one of the experiments. These cases are marked with an dash.

For all experiments, predictions for small m are easier since
only the near future is considered, thus they tend to be more
accurate. The larger the m, the further the prediction has to
reach and thus the more error-prone the result, particularly if
m exceeds the current HITs size n [21]). The pay-as-you-go
results are also aligned with the intuition the SAC provides: at
the beginning when there are few worker answers, it is fairly
inexpensive to acquire new unique items. Towards the end,
more unique items are hard to come by.

Worker behavior also has an influence on the pay-as-you-
go predictions. The Shen estimator tends to under-predict
before the accumulation curve plateaus, as the curve is steeper
than expected. This happens because workers sample without
replacement—unique answers appear more quickly than they
would from a with-replacement sample. While minimizing
all error is ideal, under-prediction is not catastrophic since

the user will end up getting more bang for his buck than
anticipated. There is also potential to use knowledge of worker
skew and particularly the presence of streakers to inform the
user when an under-prediction is likely. Thus N̂shen provides a
reasonable mechanism for the user to analyze the cost-benefit
tradeoff of acquiring more answers in the set.

VII. RELATED WORK

In this paper we focused on estimating progress towards
completion of a query result set, an aspect of query quality.
To our knowledge, quality of an open-ended question posed
to the crowd has not been directly addressed in literature. In
contrast, techniques have been proposed for quality control for
individual set elements [5], [8].

Our estimation techniques build on top of existing work on
species or class estimation [12], [9], [13]. These techniques
have also been used and extended in database literature for
distinct value estimation [11], [23]. For example, a hybrid
approach is proposed in [11], choosing between the Shlosser
estimator [24] and a version of the Jackknife estimator [17] the
authors modified to suit a finite population (i.e., known table
size). This approach is further improved and extended by [23]
to derive a lower bound on error. Unfortunately, both the error
bounds and developed estimators for distinct values in a table
explicitly incorporate knowledge of the full table size, possible
only in the closed world. Furthermore, none of the techniques
consider the sampling scenario of crowdsourced queries and
are therefore not applicable as discussed in Section III.

Species estimation techniques were also explored for search
and meta-search engines. For example, in [25] the authors
develop an algorithm to estimate the size of any set of
documents defined by certain conditions based on previously
executed queries. Whereas [26] describes an algorithm to
estimate the corpus size for a meta-search engine in order
to better direct queries to search engines. Similar techniques
are also used to measure the quality of search engines [27].
All techniques differ from those described in this paper, as
they do not consider the specific worker behavior and assume
sampling with replacement.

Recent work also tries to explore species estimation tech-
niques for the deep web [28], [29]. Again, the proposed tech-
niques have strong assumptions regarding the sample which
do not hold in the crowd setting. Some of these assumptions
might not even hold in the context of the deep web. We believe
that our techniques, which are more robust against biased
samples, are applicable in the context of deep web search/data
integration and consider it future work.



Although this work was done as part of CrowdDB [2],
it could be applied to other hybrid human-machine database
systems, such as Qurk [3] or sCOOP [30]. Both systems allow
for acquiring sets from the crowd but do not yet provide any
quality control mechanisms for it.

There is an array of literature on crowdsourcing in general,
addressing issues from improving and controlling latency [31],
[6] to correcting the impact of worker capabilities [32]. This
work is orthogonal to estimating the set quality.

VIII. FUTURE WORK AND CONCLUSION

People are particularly well-suited for gathering new infor-
mation because they have access to both real-life experience
and online sources of information. Incorporating crowdsourced
information into a database, however, raises questions regard-
ing the meaning of query results without the closed-world
assumption – how does one even reason about a simple
SELECT * query? We argue that progress estimation allows
the user to make sense of query results in the open world.
We develop techniques for analyzing progress via result set
cardinality estimation that consider crowd behaviors, based on
species estimation algorithms.

Many future directions exist, ranging from different user
interfaces for soliciting worker input to incorporating the
above techniques into a query optimizer. We have done initial
explorations into a “negative suggest” UI that only allows
workers to enter answers no one has yet provided. A hybrid
approach with this interface and the current interface could
be used to expand an existing set and/or target rare items. In
this paper, we assume that workers do not provide incorrect
answers, as a variety of quality control solutions for single
answers are proposed already in the literature. However, fuzzy
set membership (e.g., is Pizza or Basil a valid ice-cream flavor)
imposes interesting new challenges on quality control for sets.
Techniques developed for crowdsourced queries in databases
are readily applicable to deep web queries. Human perception
is advantageous in answering these queries, and the question
of query completeness appears in this context as well.

Using statistical techniques we enable users to reason about
query progress and cost-benefit trade-offs in the open world.
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