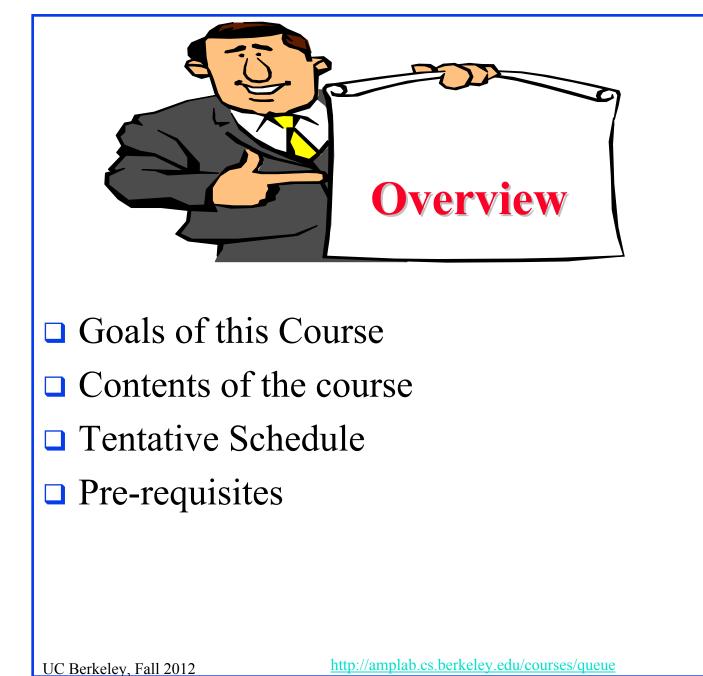
Introduction to Queueing Theory for Computer Scientists


Raj Jain

Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings are available on-line at: <u>http://amplab.cs.berkeley.edu/courses/queue</u> and <u>http://www.cse.wustl.edu/~jain/queue</u>

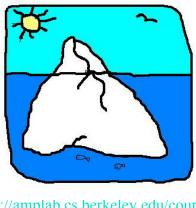
UC Berkeley, Fall 2012

http://amplab.cs.berkeley.edu/courses/queue

©2012 Raj Jain

Queueing vs. Queuing

- Queueing is one character longer than Queuing
- Oxford English dictionary (England) is much thicker than Webster English dictionary (American) because English add extra letters to words: Colour, Flavour, Humour, Neighbour
- It is not American vs. English.
 There are no queues in England. They form a line.
- □ Queueing is unique the only word with 5 vowels together
- □ Queueing is original until 1950's.
- MS word dictionary has only queuing. Corrects queueing to queuing.
 Now both are equally used.
- □ Amazon has 1176 books on queueing and 1260 books on queuing
- Google Scholar has 184000 papers on queueing and 212000 on queuing.
- Queueing is used by most respected computer scientists including Kleinrock, e.g., Queueing Systems Journal.


UC Berkeley, Fall 2012

http://amplab.cs.berkeley.edu/courses/queue

©2012 Raj Jain

Goals of This Course

- Introductory course on Applications of Queueing Theory for Computer Scientists
- 1. Introduction to Queueing Theory
- 2. Analysis of A Single Queue
- 3. Queueing Networks
- 4. Operational Laws
- 5. Mean Value Analysis and Related Techniques

Queueing Models: What You will learn?

- □ What are various types of queues.
- □ What is meant by an M/M/m/B/K queue?
- How to obtain response time, queue lengths, and server utilizations?
- □ How to represent a system using a network of several queues?
- □ How to analyze simple queueing networks?
- How to obtain bounds on the system performance using queueing models?

Example

Exercise 31.3: The average response time of a server is three seconds. During a one-minute observation interval, the idle time on the system was ten seconds.

Using a queueing model for the system, determine the following:

- System utilization
- > Average service time per query
- Number of queries completed during the observation interval
- > Average number of jobs in the system
- Probability of number of jobs in the system being greater than 10
- > 90-percentile response time
- > 90-percentile waiting time

UC Berkeley, Fall 2012

Examples of Recent Applications

- Server virtualized system with live VM migration
- □ Service delivery improvements for **cloud service** providers
- Trading power consumption against performance by reserving blocks of servers
- Optimal partitioning of a **multi-core** server processor
- Modeling and optimizing the delay-energy tradeoff in TDM systems with sleep mode
- Optimal inter-cell coordination for multiple user classes with elastic traffic

Prerequisite

- **Basic Probability and Statistics:**
 - > Mean, variance, standard deviation
 - Density function, Distribution function
 - Coefficient of variation
 Correlation coefficient
 - Median, mode, quantile
 - Normal distribution, Exponential distribution

Tentative Schedule

1	09/26/12	Introduction, Notation
2	10/03/12	Single Queue
3	10/10/12	Queueing Networks
4	10/17/12	Operational Laws
5	10/24/12	Operational Laws
6	10/31/12	Mean Value Analysis

Homeworks

- □ Application of the concepts to a system of your choice.
- Due by Monday noon time by email.

Text Book

 R. Jain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363 (Winner of the "1992 Best Computer Systems Book" Award from Computer Press Association")

Other Related Topics

- Measurement techniques:
 - Workload selection
 - Workload characterization
- Probability and Statistics:
 - > Use of mean, median, modes, confidence Intervals
 - > Regression
- Experimental Design
 - Maximum information from minimum number of experiments
- **Gimulation**

Quiz 0: Prerequisites

True or False?

ΤF

 \Box \Box The mean of a uniform(0,1) variate is 1.

 \Box \Box The sum of two normal variates with means 4 and 3 has a mean of 7.

- ☐ ☐ The probability of a fair coin coming up head once and tail once in two throws is 1.
- **\Box \Box** The density function f(x) approaches 1 as x approaches ∞ .

 \Box \Box Given two variables, the variable with higher median also has a higher mean.

- \Box \Box The probability of a fair coin coming up heads twice in a row is 1/4.
- \Box \Box The difference of two normal variates with means 4 and 3 has a mean of 4/3.
- \Box \Box The cumulative distribution function F(x) approaches 1 as x approaches ∞ .
- □ □ High coefficient of variation implies a low variance and vice versa.

Marks = Correct Answers _____ - Incorrect Answers _____ = ____

http://amplab.cs.berkeley.edu/courses/queue/quiz0.html

http://amplab.cs.berkeley.edu/courses/queue

Quiz 1: Post Quiz

True or False?

ΤF

- \square \square M/M/1/3/100 queue has 3 servers
- □ □ A single server queue with arrival rate of 1 jobs/sec and a service time of 0.5 seconds has server utilization of 0.5
- \Box \Box The delay in an G/G/ ∞ system is equal to the job service time.
- □ □ In a product form queueing network, the probability of a state can be obtained by multiplying state probabilities of individual queues.
- □ □ During a 10 second observation period, 400 jobs were serviced by a processor which can process 200 jobs per second. The processor utilization is 50%.
- □ □ MVA can be used to compute response times for non-product form networks.
- Marks = Correct Answers _____ Incorrect Answers _____ = ____

http://amplab.cs.berkeley.edu/courses/queue/quiz1.html

UC Berkeley, Fall 2012

http://amplab.cs.berkeley.edu/courses/queue

- Queueing in computer systems is quite common
- Understanding queueing theory will help you make design decisions
- Simple models are often more useful than sophisticated complex expressions with invalid assumptions.