Introduction to Queueing Theory for Computer Scientists

Raj Jain

Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu
A Mini-Course offered at UC Berkeley, Sept-Oct 2012
These slides and audio/video recordings are available on-line at:
http://amplab.cs.berkeley.edu/courses/queue
and http://www.cse.wustl.edu/~jain/queue
UC Berkeley, Fall 2012 \qquad ©2012 Raj Jain

Contents of the course

- Tentative Schedule
- Pre-requisites

Queueing vs. Queuing

\square Queueing is one character longer than Queuing

- Oxford English dictionary (England) is much thicker than Webster English dictionary (American) because English add extra letters to words: Colour, Flavour, Humour, Neighbour
- It is not American vs. English.

There are no queues in England. They form a line.
\square Queueing is unique - the only word with 5 vowels together

- Queueing is original until 1950's.
- MS word dictionary has only queuing. Corrects queueing to queuing. \Rightarrow Now both are equally used.
- Amazon has 1176 books on queueing and 1260 books on queuing
\square Google Scholar has 184000 papers on queueing and 212000 on queuing.
\square Queueing is used by most respected computer scientists including Kleinrock, e.g., Queueing Systems Journal.

Goals of This Course

- Introductory course on Applications of Queueing Theory for Computer Scientists

1. Introduction to Queueing Theory
2. Analysis of A Single Queue
3. Queueing Networks
4. Operational Laws
5. Mean Value Analysis and Related Techniques

Queueing Models: What You will learn?

- What are various types of queues.
- What is meant by an $M / M / m / B / K$ queue?
- How to obtain response time, queue lengths, and server utilizations?
- How to represent a system using a network of several queues?
- How to analyze simple queueing networks?
- How to obtain bounds on the system performance using queueing models?

Example

- Exercise 31.3: The average response time of a server is three seconds. During a one-minute observation interval, the idle time on the system was ten seconds.
Using a queueing model for the system, determine the following:
> System utilization
> Average service time per query
> Number of queries completed during the observation interval
- Average number of jobs in the system
> Probability of number of jobs in the system being greater than 10
> 90-percentile response time
> 90-percentile waiting time
UC Berkeley, Fall 2012

Examples of Recent Applications

- Server virtualized system with live VM migration
- Service delivery improvements for cloud service providers
- Trading power consumption against performance by reserving blocks of servers
- Optimal partitioning of a multi-core server processor
\square Modeling and optimizing the delay-energy tradeoff in TDM systems with sleep mode
\square Optimal inter-cell coordination for multiple user classes with elastic traffic

Prerequisite

- Basic Probability and Statistics:
> Mean, variance, standard deviation
$>$ Density function, Distribution function
> Coefficient of variation
Correlation coefficient
- Median, mode, quantile
> Normal distribution, Exponential distribution

Tentative Schedule

1	$09 / 26 / 12$	Introduction, Notation
2	$10 / 03 / 12$	Single Queue
3	$10 / 10 / 12$	Queueing Networks
4	$10 / 17 / 12$	Operational Laws
5	$10 / 24 / 12$	Operational Laws
6	$10 / 31 / 12$	Mean Value Analysis

Homeworks

- Application of the concepts to a system of your choice.
- Due by Monday noon time by email.

Other Related Topics

- Measurement techniques:
> Workload selection
> Workload characterization
- Probability and Statistics:
> Use of mean, median, modes, confidence Intervals
> Regression
- Experimental Design
> Maximum information from minimum number of experiments
- Simulation

Quiz 0: Prerequisites

True or False?
T F
The mean of a uniform $(0,1)$ variate is 1 .
The sum of two normal variates with means 4 and 3 has a mean of 7 .
The probability of a fair coin coming up head once and tail once in two throws is 1 .
The density function $\mathrm{f}(\mathrm{x})$ approaches 1 as x approaches ∞.
Given two variables, the variable with higher median also has a higher mean.
The probability of a fair coin coming up heads twice in a row is $1 / 4$.
The difference of two normal variates with means 4 and 3 has a mean of $4 / 3$.
The cumulative distribution function $\mathrm{F}(\mathrm{x})$ approaches 1 as x approaches ∞.
High coefficient of variation implies a low variance and vice versa.
Marks = Correct Answers \qquad - Incorrect Answers \qquad $=$ \qquad
http://amplab.cs.berkeley.edu/courses/queue/quiz0.html

Quiz 1: Post Quiz

True or False?
T F
M/M/1/3/100 queue has 3 servers
A single server queue with arrival rate of $1 \mathrm{jobs} / \mathrm{sec}$ and a service time of 0.5 seconds has server utilization of 0.5

The delay in an $\mathrm{G} / \mathrm{G} / \infty$ system is equal to the job service time.
\square In a product form queueing network, the probability of a state can be obtained by multiplying state probabilities of individual queues.
\square During a 10 second observation period, 400 jobs were serviced by a processor which can process 200 jobs per second. The processor utilization is 50%.
MVA can be used to compute response times for non-product form networks.
Marks $=$ Correct Answers \qquad - Incorrect Answers \qquad $=$ \qquad
http://amplab.cs.berkeley.edu/courses/queue/quizl.html

