Paul Erdős and Eric Milner published in 1972 A theorem in the partition calculus, where they established that if is a countable ordinal and , then there is a countable ordinal such that

meaning that any graph whose set of vertices is either contains a clique (complete subgraph) whose set of vertices has order type or an independent set of size .

The result is false if is replaced by , except for when , in which case we can take as well, this is Ramsey’s theorem.

The least such that is , in which case a stronger result holds, namely . In fact, more is true: the homogeneous set of order type can be taken to be a stationary subset of , and the set of type can be required to be closed, meaning that its th member is the supremum of the other members of the set. Since stationary sets contain closed subsets of any countable order type, we see that holds for any countable ordinal , where the subindex cl indicates that the sets of vertices of type or are required to be closed on their supremum.

It is thus natural to wonder whether a closed version of the Erdős-Milner theorem holds. Jacob Hilton and I establish precisely this result in our paper Topological Ramsey numbers and countable ordinals.

This was a problem I had been curious about for a while, but kept not finding time to investigate. Finally I found a student at Boise State interested in working on this question for their master’s thesis, which gave me the perfect excuse to think seriously about it. I wrote a series of detailed notes for my student, who ended up leaving the program early, so I decided to continue and turn the notes into a paper. I even gave a preliminary talk on the results I had, together with some other results on the partition calculus of small countable ordinals. Hilton was a graduate student at that point, and he contacted me when he found out I was studying the problem, since this was precisely the topic of his dissertation. We decided to combine what we had, and soon we managed to extend our results and solve the full problem.

Many questions remain, as we believe the general bounds we found can be significantly improved, and it seems interesting to compute the optimal value of such that for specific values of and . Omer Mermelstein has some striking results in this direction.

Our paper appeared in Foundations of Mathematics, the proceedings of the conference in honor of Hugh Woodin’s 60th birthday. It can also be found on the arXiv and on my papers page.

This entry was posted on Friday, February 1st, 2019 at 1:54 pm and is filed under math.GN, math.LO, Papers. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Georgii: Let me start with some brief remarks. In a series of three papers: a. Wacław Sierpiński, "Contribution à la théorie des séries divergentes", Comp. Rend. Soc. Sci. Varsovie 3 (1910) 89–93 (in Polish). b. Wacław Sierpiński, "Remarque sur la théorème de Riemann relatif aux séries semi-convergentes", Prac. Mat. Fiz. XXI (1910) 17–20 […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is that the existence of a nonprincipal ultrafilter does not imply the existence of a Vitali set. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${ […]

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

Equality is part of the background (first-order) logic, so it is included, but there is no need to mention it. The situation is the same in many other theories. If you want to work in a language without equality, on the other hand, then this is mentioned explicitly. It is true that from extensionality (and logical axioms), one can prove that two sets are equ […]

$L$ has such a nice canonical structure that one can use it to define a global well-ordering. That is, there is a formula $\phi(u,v)$ that (provably in $\mathsf{ZF}$) well-orders all of $L$, so that its restriction to any specific set $A$ in $L$ is a set well-ordering of $A$. The well-ordering $\varphi$ you are asking about can be obtained as the restriction […]

Gödel sentences are by construction $\Pi^0_1$ statements, that is, they have the form "for all $n$ ...", where ... is a recursive statement (think "a statement that a computer can decide"). For instance, the typical Gödel sentence for a system $T$ coming from the second incompleteness theorem says that "for all $n$ that code a proof […]

When I first saw the question, I remembered there was a proof on MO using Ramsey theory, but couldn't remember how the argument went, so I came up with the following, that I first posted as a comment: A cute proof using Schur's theorem: Fix $a$ in your semigroup $S$, and color $n$ and $m$ with the same color whenever $a^n=a^m$. By Schur's theo […]

It depends on what you are doing. I assume by lower level you really mean high level, or general, or 2-digit class. In that case, 54 is general topology, 26 is real functions, 03 is mathematical logic and foundations. "Point-set topology" most likely refers to the stuff in 54, or to the theory of Baire functions, as in 26A21, or to descriptive set […]