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Abstract
We present Mesos, a platform for sharing commod-
ity clusters between multiple diverse cluster computing
frameworks, such as Hadoop and MPI. Sharing improves
cluster utilization and avoids per-framework data repli-
cation. Mesos shares resources in a fine-grained man-
ner, allowing frameworks to achieve data locality by
taking turns reading data stored on each machine. To
support the sophisticated schedulers of today’s frame-
works, Mesos introduces a distributed two-level schedul-
ing mechanism called resource offers. Mesos decides
how many resources to offer each framework, while
frameworks decide which resources to accept and which
computations to run on them. Our results show that
Mesos can achieve near-optimal data locality when shar-
ing the cluster among diverse frameworks, can scale to
50,000 (emulated) nodes, and is resilient to failures.

1 Introduction
Clusters of commodity servers have become a major
computing platform, powering both large Internet ser-
vices and a growing number of data-intensive scientific
applications. Driven by these applications, researchers
and practitioners have been developing a diverse array of
cluster computing frameworks to simplify programming
the cluster. Prominent examples include MapReduce
[23], Dryad [30], MapReduce Online [22] (which sup-
ports streaming jobs), Pregel [34] (a specialized frame-
work for graph computations), and others [33, 18, 28].

It seems clear that new cluster computing frameworks1

will continue to emerge, and that no framework will be
optimal for all applications. Therefore, organizations
will want to run multiple frameworks in the same clus-
ter, picking the best one for each application. Sharing
a cluster between frameworks improves utilization and
allows applications to share access to large datasets that
may be too costly to replicate.

1By framework we mean a software system that manages and exe-
cutes one or more jobs on a cluster.

The solutions of choice to share a cluster today are ei-
ther to statically partition the cluster and run one frame-
work per partition, or allocate a set of VMs to each
framework. Unfortunately, these solutions achieve nei-
ther high utilization nor efficient data sharing. The main
problem is the mismatch between the allocation granular-
ities of these solutions and of existing frameworks. Many
frameworks, such as Hadoop and Dryad, employ a fine-
grained resource sharing model, where nodes are subdi-
vided into “slots” and jobs are composed of short tasks
that are matched to slots [31, 44]. The short duration of
tasks and the ability to run multiple tasks per node allow
jobs to achieve high data locality, as each job will quickly
get a chance to run on nodes storing its input data. Short
tasks also allow frameworks to achieve high utilization,
as jobs can rapidly scale when new nodes become avail-
able. Unfortunately, because these frameworks are de-
veloped independently, there is no way to perform fine-
grained sharing across frameworks, making it difficult to
share clusters and data efficiently between them.

In this paper, we propose Mesos, a thin resource shar-
ing layer that enables fine-grained sharing across diverse
cluster computing frameworks, by giving frameworks a
common interface for accessing cluster resources.

The main design question that Mesos must address is
how to match resources with tasks. This is challenging
for several reasons. First, a solution will need to sup-
port a wide array of both current and future frameworks,
each of which will have different scheduling needs based
on its programming model, communication pattern, task
dependencies, and data placement. Second, the solution
must be highly scalable, as modern clusters contain tens
of thousands of nodes and have hundreds of jobs with
millions of tasks active at a time. Third, the scheduling
system must be fault-tolerant and highly available, as all
the applications in the cluster depend on it.

One approach would be for Mesos to implement a cen-
tralized scheduler that takes as input framework require-
ments, resource availability, and organizational policies,
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and computes a global schedule for all tasks. While this
approach can optimize scheduling across frameworks, it
faces several challenges. The first is complexity. The
scheduler would need to provide a sufficiently expres-
sive API to capture all frameworks’ requirements, and
to solve an on-line optimization problem for millions
of tasks. Even if such a scheduler were feasible, this
complexity would have a negative impact on its scala-
bility and resilience. Second, as new frameworks and
new scheduling policies for current frameworks are con-
stantly being developed [42, 44, 46, 32], it is not clear
whether we are even at the point to have a full specifi-
cation of framework requirements. Third, many existing
frameworks implement their own sophisticated schedul-
ing [31, 44], and moving this functionality to a global
scheduler would require expensive refactoring.

Instead, Mesos takes a different approach: delegating
control over scheduling to the frameworks. This is ac-
complished through a new abstraction, called a resource
offer, which encapsulates a bundle of resources that a
framework can allocate on a cluster node to run tasks.
Mesos decides how many resources to offer each frame-
work, based on an organizational policy such as fair shar-
ing, while frameworks decide which resources to accept
and which tasks to run on them. While this decentral-
ized scheduling model may not always lead to globally
optimal scheduling, we have found that it performs sur-
prisingly well in practice, allowing frameworks to meet
goals such as data locality nearly perfectly. In addition,
resource offers are simple and efficient to implement, al-
lowing Mesos to be highly scalable and robust to failures.

Mesos’s flexible fine-grained sharing model also has
other advantages. First, even organizations that only use
one framework can use Mesos to run multiple instances
of that framework in the same cluster, or multiple ver-
sions of the framework. Our contacts at Yahoo! and
Facebook indicate that this would be a compelling way to
isolate production and experimental Hadoop workloads
and to roll out new versions of Hadoop [14, 12].

Second, by providing a means of sharing resources
across frameworks, Mesos allows framework develop-
ers to build specialized frameworks targeted at particu-
lar problem domains rather than one-size-fits-all abstrac-
tions. Frameworks can therefore evolve faster and pro-
vide better support for each problem domain.

We have implemented Mesos in 10,000 lines of C++.
The system scales to 50,000 (emulated) nodes and uses
ZooKeeper [4] for fault tolerance. To evaluate Mesos, we
have ported three cluster computing systems to run over
it: Hadoop, MPI, and the Torque batch scheduler. To val-
idate our hypothesis that specialized frameworks provide
value over general ones, we have also built a new frame-
work on top of Mesos called Spark, optimized for itera-
tive jobs where a dataset is reused in many parallel oper-
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Figure 1: CDF of job and task durations in Facebook’s Hadoop
data warehouse (data from [44]).

ations, and shown that Spark can outperform Hadoop by
10x in iterative machine learning workloads.

This paper is organized as follows. Section 2 details
the data center environment that Mesos is designed for.
Section 3 presents the architecture of Mesos. Section 4
analyzes our distributed scheduling model and character-
izes the environments it works well in. We present our
implementation of Mesos in Section 5 and evaluate it in
Section 6. Section 7 surveys related work. Finally, we
conclude in Section 8.

2 Target Environment
As an example of a workload we aim to support, con-
sider the Hadoop data warehouse at Facebook [5, 6].
Facebook loads logs from its web services into a 1200-
node Hadoop cluster, where they are used for applica-
tions such as business intelligence, spam detection, and
ad optimization. In addition to “production” jobs that run
periodically, the cluster is used for many experimental
jobs, ranging from multi-hour machine learning compu-
tations to 1-2 minute ad-hoc queries submitted interac-
tively through an SQL interface to Hadoop called Hive
[3]. Most jobs are short (the median being 84s long), and
the jobs are composed of fine-grained map and reduce
tasks (the median task being 23s), as shown in Figure 1.

To meet the performance requirements of these jobs,
Facebook uses a fair scheduler for Hadoop that takes
advantage of the fine-grained nature of the workload to
make scheduling decisions at the level of map and re-
duce tasks and to optimize data locality [44]. Unfortu-
nately, this means that the cluster can only run Hadoop
jobs. If a user wishes to write a new ad targeting al-
gorithm in MPI instead of MapReduce, perhaps because
MPI is more efficient for this job’s communication pat-
tern, then the user must set up a separate MPI cluster and
import terabytes of data into it.2 Mesos aims to enable
fine-grained sharing between multiple cluster computing
frameworks, while giving these frameworks enough con-
trol to achieve placement goals such as data locality.

2This problem is not hypothetical; our contacts at Yahoo! and Face-
book report that users want to run MPI and MapReduce Online [13, 12].
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Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPI).

3 Architecture
We begin our description of Mesos by discussing our de-
sign philosophy. We then describe the components of
Mesos, our resource allocation mechanisms, and how
Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy

Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters.
Because cluster frameworks are both highly diverse and
rapidly evolving, our overriding design philosophy has
been to define a minimal interface that enables efficient
resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frame-
works. Pushing control to the frameworks has two bene-
fits. First, it allows frameworks to implement diverse ap-
proaches to various problems in the cluster (e.g., achiev-
ing data locality, dealing with faults), and to evolve these
solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system,
which makes it easier to keep Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-
pect higher-level libraries implementing common func-
tionality (such as fault tolerance) to be built on top of
it. These libraries would be analogous to library OSes in
the exokernel [25]. Putting this functionality in libraries
rather than in Mesos allows Mesos to remain small and
flexible, and lets the libraries evolve independently.

3.2 Overview

Figure 2 shows the main components of Mesos. Mesos
consists of a master process that manages slave daemons
running on each cluster node, and frameworks that run
tasks on these slaves.

The master implements fine-grained sharing across
frameworks using resource offers. Each resource of-
fer contains a list of free resources on multiple slaves.
The master decides how many resources to offer to each
framework according to a given organizational policy,
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Figure 3: Resource offer example.

such as fair sharing, or strict priority. To support a di-
verse set of policies, the master employs a modular ar-
chitecture that makes it easy to add new allocation mod-
ules via a pluggin mechanism. To make the master fault-
tolerant we use ZooKeeper [4] to implement the failover
mechanism (see Section 3.6).

A framework running on top of Mesos consists of two
components: a scheduler that registers with the master
to be offered resources, and an executor process that is
launched on slave nodes to run the framework’s tasks.
While the master determines how many resources are of-
fered to each framework, the frameworks’ schedulers se-
lect which of the offered resources to use. When a frame-
works accepts offered resources, it passes to Mesos a de-
scription of the tasks it wants to run on them. In turn,
Mesos launches the tasks on the corresponding slaves.

Figure 3 shows an example of how a framework gets
scheduled to run a task. In step (1), slave 1 reports to the
master that it has 4 CPUs and 4 GB of memory free. The
master then invokes the allocation policy module, which
tells it that framework 1 should be offered all available
resources. In step (2) the master sends a resource of-
fer describing what is available on slave 1 to framework
1. In step (3), the framework’s scheduler replies to the
master with information about two tasks to run on the
slave, using 〈2 CPUs, 1 GB RAM〉 for the first task, and
〈1 CPUs, 2 GB RAM〉 for the second task. Finally, in
step (4), the master sends the tasks to the slave, which al-
locates appropriate resources to the framework’s execu-
tor, which in turn launches the two tasks (depicted with
dotted-line borders in the figure). Because 1 CPU and 1
GB of RAM are still unallocated, the allocation module
may now offer them to framework 2. In addition, this
resource offer process repeats when tasks finish and new
resources become free.

While the thin interface provided by Mesos allows
it to scale and allows the frameworks to evolve inde-
pendently, one question remains: how can the con-
straints of a framework be satisfied without Mesos know-
ing about these constraints? In particular, how can a
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framework achieve data locality without Mesos know-
ing which nodes store the data required by the frame-
work? Mesos answers these questions by simply giving
frameworks the ability to reject offers. A framework will
reject the offers that do not satisfy its constraints and ac-
cept the ones that do. In particular, we have found that
a simple policy called delay scheduling [44], in which
frameworks wait for a limited time to acquire nodes stor-
ing the input data, yields nearly optimal data locality. We
report these results in Section 6.3.

In the remainder of this section, we describe how
Mesos performs two key functionalities: resource offer
allocation (performed by allocation modules in the mas-
ter), and resource isolation (performed by slaves). We
then describe the main elements that make the resource
offer mechanism robust and efficient.

3.3 Resource Allocation

Mesos delegates allocation decisions to a pluggable allo-
cation module, so that organizations can tailor allocation
to their needs. In normal operation, Mesos takes advan-
tage of the fact that most tasks are short, and only real-
locate resources when tasks finish. This usually happens
frequently enough so that new frameworks acquire their
share quickly. For example, if a framework’s share is
10% of the cluster, it needs to wait on average 10% of
the mean task length to receive its share. If resources are
not freed quickly enough, the allocation module also has
the ability to revoke (kill) tasks.

So far, we have implemented two simple allocation
modules: one that performs fair sharing [27] and one that
implements strict priorities. Similar policies are used by
current schedulers for Hadoop and Dryad [31, 44].

3.3.1 Revocation

As described earlier, in an environment with fine-grained
tasks, Mesos can reallocate resources quickly by simply
waiting for tasks to finish. However, if a cluster becomes
filled by long tasks, e.g., due to a buggy job or a greedy
framework, Mesos can also revoke (kill) tasks. Before
killing a task, Mesos gives its framework a grace period
to clean it up. Mesos asks the respective executor to kill
the task, but kills the entire executor and all its tasks if
it does not respond to the request. We leave it up to the
allocation module to implement the policy for revoking
tasks, but describe two related mechanisms here.

First, while killing a task has a low impact on many
frameworks (e.g., MapReduce or stateless web servers),
it is harmful for frameworks with interdependent tasks
(e.g., MPI). We allow these frameworks to avoid be-
ing killed by letting allocation modules expose a guar-
anteed allocation to each framework – a quantity of
resources that the framework may hold without losing
tasks. Frameworks read their guaranteed allocations

through an API call. Allocation modules are responsible
for ensuring that the guaranteed allocations they provide
can all be met concurrently. For now, we have kept the
semantics of guaranteed allocations simple: if a frame-
work is below its guaranteed allocation, none of its tasks
should be killed, and if it is above, any of its tasks may be
killed. However, if this model is found to be too simple,
it is also possible to let frameworks specify priorities for
their tasks, so that the allocation module can try to kill
only low-priority tasks.

Second, to decide when to trigger revocation, alloca-
tion modules must know which frameworks would use
more resources if they were offered them. Frameworks
indicate their interest in offers through an API call.

3.4 Isolation

Mesos provides performance isolation between frame-
work executors running on the same slave by leveraging
existing OS isolation mechanisms. Since these mecha-
nisms are platform-dependent, we support multiple iso-
lation mechanisms through pluggable isolation modules.

Our current implementation isolates resources us-
ing operating system container technologies, specifically
Linux containers [10] and Solaris projects [17]. These
technologies can limit the CPU, memory, network band-
width, and (in new Linux kernels) I/O usage of a pro-
cess tree. They also support dynamic reconfiguration of a
container’s resource limits, which is necessary for Mesos
to be able to add and remove resources from an executor
as it starts and finishes tasks. In the future, we also plan
to investigate using virtual machines for isolation.

We note that node isolation technologies are not per-
fect, but that using containers is already an advantage
over the state of the art in frameworks such as Hadoop,
where tasks from different jobs on the same machine
simply run in separate processes.

3.5 Making Resource Offers Scalable and Robust

Because task scheduling in Mesos is a distributed process
in which the master and framework schedulers communi-
cate, it needs to be efficient and robust to failures. Mesos
includes three mechanisms to help with this goal.

First, because some frameworks will always reject cer-
tain resources, Mesos lets them short-circuit the rejection
process and avoid communication by providing filters to
the master. We support two types of filters: “only offer
nodes from list L” and “only offer nodes with at least R
resources free”. A resource that fails a filter is treated ex-
actly like a rejected resource. By default, any resources
rejected during an offer have a temporary 5 second filter
placed on them, to minimize the programming burden on
developers who do not wish to manually set filters.

Second, because a framework may take time to re-
spond to an offer, Mesos counts resources offered to a
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framework towards its share of the cluster for the purpose
of allocation. This is a strong incentive for frameworks
to respond to offers quickly and to filter out resources
that they cannot use, so that they can get offers for more
suitable resources faster.

Third, if a framework has not responded to an offer
for a sufficiently long time, Mesos rescinds the offer and
re-offers the resources to other frameworks.

We also note that even without the use of filters, Mesos
can make tens of thousands of resource offers per second,
because the scheduling algorithm it must perform (fair
sharing) is highly efficient.

3.6 Fault Tolerance

Since all the frameworks depends on the master, it is crit-
ical to make the master fault-tolerant. To achieve this we
use two techniques. First, we have designed the master to
be soft state, i.e., the master can reconstruct completely
its internal state from the periodic messages it gets from
the slaves, and from the framework schedulers. Second,
we have implemented a hot-standby design, where the
master is shadowed by several backups that are ready
to take over when the master fails. Upon master fail-
ure, we use ZooKeeper [4] to select a new master from
the existing backups, and direct all slaves and framework
schedulers to this master. Subsequently, the new master
will reconstruct the internal state from the messages it
receives from slaves and framework schedulers.

Aside from handling master failures, Mesos reports
task, slave and executor failures to frameworks’ sched-
ulers. Frameworks can then react to failures using the
policies of their choice.

Finally, to deal with scheduler failures, Mesos allows a
framework to register multiple schedulers such that when
one fails, another one is notified by the Mesos master to
take over. Frameworks must use their own mechanisms
to share state between their schedulers.

4 Mesos Behavior
In this section, we study Mesos’s behavior for different
workloads. Our main goal here is not to develop a de-
tailed and exact model of the system, but to provide a
coarse understanding of its behavior.

In short, we find that Mesos performs very well when
frameworks can scale up and down elastically, tasks
durations are homogeneous, and frameworks prefer all
nodes equally (Section 4.2). When different frameworks
prefer different nodes, we show that Mesos can emulate a
centralized scheduler that uses fair sharing across frame-
works (Section 4.2.1). In addition, we show that Mesos
can handle heterogeneous task durations without im-
pacting the performance of frameworks with short tasks
(§4.3). We also discuss how frameworks are incentivized
to improve their performance under Mesos, and argue

that these incentives also improve overall cluster utiliza-
tion (§4.4). We conclude this section with some limita-
tions of Mesos’s distributed scheduling model (§4.5).

4.1 Definitions, Metrics and Assumptions

In our discussion, we consider three metrics:
• Framework ramp-up time: time it takes a new

framework to achieve its allocation (e.g., fair share);

• Job completion time: time it takes a job to complete,
assuming one job per framework;

• System utilization: total cluster utilization.
We characterize workloads along four attributes:
• Scale up: Frameworks can elastically increase their

allocation to take advantage of free resources.

• Scale down: Frameworks can relinquish resources
without significantly impacting their performance.

• Minimum allocation: Frameworks require a certain
minimum number of slots before they can start us-
ing their slots.

• Task distribution: The distribution of the task dura-
tions. We consider both homogeneous and hetero-
geneous distributions.

We differentiate between two types of resources:
mandatory and preferred. A resource is mandatory if a
framework must acquire it in order to run. For example, a
graphical processor unit (GPU) is mandatory if a frame-
work cannot run without access to GPU. In contrast, a re-
source is preferred if a framework performs “better” us-
ing it, but can also run using another equivalent resource.
For example, a framework may prefer using a node that
locally stores its data, but it can remotely access the data
from other nodes if it must.

We assume the amount of mandatory resources re-
quested by a framework never exceeds its guaranteed
share. This ensures that frameworks will not deadlock
waiting for the mandatory resources to become available.
For simplicity, we also assume that all tasks run on iden-
tical slices of machines, called slots, and that each frame-
work runs a single job.

We consider two types of frameworks: elastic and
rigid. An elastic framework (e.g., Hadoop, Dryad) can
scale its resources up and down, i.e., it can start using
slots as soon as it acquires them and release slots as soon
its task finish. In contrast, a rigid framework (e.g., MPI)
can start running its jobs only after it has allocated all its
slots, i.e., the minimum allocation of a rigid framework
is equal to its full allocation.

4.2 Homogeneous Tasks

We consider a cluster with n slots and a framework, f ,
that is entitled to k slots. For the purpose of this analy-
sis, we consider two distributions of the task durations:
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Elastic Framework Rigid Framework
Constant dist. Exponential dist. Constant dist. Exponential dist.

Ramp-up time Ts Ts ln k Ts Ts ln k
Completion time (1/2 + β)Ts (1 + β)Ts (1 + β)Ts (ln k + β)Ts
Utilization 1 1 β/(1/2 + β) β/(ln k − 1 + β)

Table 1: Ramp-up time, job completion time and utilization for both elastic and rigid frameworks, and for both constant and
exponential task duration distributions. The framework starts with no slots. k is the number of slots the framework is entitled under
the scheduling policy, and βTs represents the time it takes a job to complete assuming the framework gets all k slots at once.

constant and exponential. The mean task duration is Ts,
and assume that framework f runs a job which requires
βkTs computation time. Thus, assuming the framework
has k slots, it takes the job βTs time to finish.

Table 1 summarizes the job completion times and the
utilization for the two types of frameworks and for the
two types of task length distributions. As expected, elas-
tic frameworks with constant task durations perform the
best, while rigid frameworks with exponential task dura-
tion perform the worst. Due to lack of space we present
here only the results and include derivations in [29].

Framework ramp-up time If task durations are con-
stant, it will take framework f at most Ts time to acquire
k slots. This is simply because during a Ts interval, ev-
ery slot will become available, which will enable Mesos
to offer the framework all its k preferred slots. If the du-
ration distribution is exponential, the expected ramp-up
time can be as high as Ts ln k [29].

Job completion time The expected completion time3

of an elastic job is at most (1 + β)Ts, which is within
Ts (i.e., the mean duration of a task) of the completion
time of the job when it gets all its slots instantaneously.
Rigid jobs achieve similar completion times for constant
job durations, but exhibit much higher completion times
for exponential job durations, i.e., (ln k + β)Ts. This
is simply because it takes a framework Ts ln k time on
average to acquire all its slots and launch the job.

System utilization Elastic jobs fully utilize their allo-
cated slots, since they can use every slot as soon as they
get it. As a result, assuming infinite demand, a system
running elastic jobs is fully utilized. Rigid frameworks
provide slightly worse utilizations, as their jobs cannot
start before they get their full allocations, and thus they
waste the slots acquired early.

4.2.1 Placement Preferences

So far, we have assumed that frameworks have no slot
preferences. In practice, different frameworks prefer dif-
ferent nodes and their preferences may change over time.
In this section, we consider the case where frameworks
have different preferred slots.

The natural question is how well Mesos will work in
this case when compared to a centralized scheduler that

3When computing job completion time we assume that the last tasks
of the job running on the framework’s k slots finish at the same time.

has full information about framework preferences. We
consider two cases: (a) there exists a system configura-
tion in which each framework gets all its preferred slots
and achieves its full allocation, and (b) there is no such
configuration, i.e., the demand for preferred slots exceeds
the supply.

In the first case, it is easy to see that, irrespective of the
initial configuration, the system will converge to the state
where each framework allocates its preferred slots after
at most one Ts interval. This is simple because during
a Ts interval all slots become available, and as a result
each framework will be offered its preferred slots.

In the second case, there is no configuration in which
all frameworks can satisfy their preferences. The key
question in this case is how should one allocate the pre-
ferred slots across the frameworks demanding them. In
particular, assume there are x slots preferred bym frame-
works, where framework i requests ri such slots, and∑m

i=1 ri > x. While many allocation policies are pos-
sible, here we consider the weighted fair allocation pol-
icy where the weight associated with a framework is its
intended allocation, si. In other words, assuming that
each framework has enough demand, framework i will
get x×si/(

∑m
i=1 si).

The challenge with Mesos is that the scheduler does
not know the preferences of each framework. Fortu-
nately, it turns out that there is an easy way to achieve
the fair allocation of the preferred slots described above:
simply offer slots to frameworks proportionally to their
intended allocations. In particular, when a slot becomes
available, Mesos can offer that slot to framework i with
probability si/(

∑n
i=1 si), where n is the total number

of frameworks in the system. Note that this scheme is
similar to lottery scheduling [41]. Furthermore, note that
since each framework i receives roughly si slots during
a time interval Ts, the analysis of the ramp-up and com-
pletion times in Section 4.2 still holds.

4.3 Heterogeneous Tasks

So far we have assumed that frameworks have homoge-
neous task duration distributions. In this section, we dis-
cuss heterogeneous tasks, in particular, tasks that are ei-
ther short and long, where the mean duration of the long
tasks is significantly longer than the mean of the short
tasks. Such heterogeneous workload can hurt frame-
works with short jobs. Indeed, in the worst case, all
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nodes required by a short job might be filled with long
tasks, so the job may need to wait a long time (relative to
its running time) to acquire resources on these nodes.

The master can alleviate this by implementing an allo-
cation policy that limits the number of slots on each node
that can be used by long tasks, e.g., no more than 50% of
the slots on each node can run long tasks. This ensures
there are enough short tasks on each node whose slots be-
come available with high frequency, giving frameworks
better opportunities to quickly acquire a slot on one of
their preferred nodes. Note that the master does not need
to know whether a task is short or long. By simply us-
ing different timeouts to revoke short and long slots, the
master incentivizes the frameworks to run long tasks on
long slots only. Otherwise, if a framework runs a long
task on a short slot, its performance may suffer, as the
slot will be most likely revoked before the task finishes.

4.4 Framework Incentives

Mesos implements a decentralized scheduling approach,
where each framework decides which offers to accept or
reject. As with any decentralized system, it is impor-
tant to understand the incentives of various entities in the
system. In this section, we discuss the incentives of a
framework to improve the response times of its jobs.

Short tasks: A framework is incentivized to use short
tasks for two reasons. First, it will be able to allocate
any slots; in contrast frameworks with long tasks are re-
stricted to a subset of slots. Second, using small tasks
minimizes the wasted work if the framework loses a task,
either due to revocation or simply due to failures.

No minimum allocation: The ability of a framework
to use resources as soon as it allocates them–instead of
waiting to reach a given minimum allocation–would al-
low the framework to start (and complete) its jobs earlier.

Scale down: The ability to scale down allows a frame-
work to grab opportunistically the available resources, as
it can later release them with little negative impact.

Do not accept unknown resources: Frameworks are
incentivized not to accept resources that they cannot use
because most allocation policies will account for all the
resources that a framework owns when deciding which
framework to offer resources to next.

We note that these incentives are all well aligned with
our goal of improving utilization. When frameworks use
short tasks, Mesos can reallocate resources quickly be-
tween them, reducing the need for wasted work due to
revocation. If frameworks have no minimum allocation
and can scale up and down, they will opportunistically
utilize all the resources they can obtain. Finally, if frame-
works do not accept resources that they do not under-
stand, they will leave them for frameworks that do.

4.5 Limitations of Distributed Scheduling

Although we have shown that distributed scheduling
works well in a range of workloads relevant to current
cluster environments, like any decentralized approach, it
can perform worse than a centralized scheduler. We have
identified three limitations of the distributed model:

Fragmentation: When tasks have heterogeneous re-
source demands, a distributed collection of frameworks
may not be able to optimize bin packing as well as a cen-
tralized scheduler.

There is another possible bad outcome if allocation
modules reallocate resources in a naive manner: when
a cluster is filled by tasks with small resource require-
ments, a framework f with large resource requirements
may starve, because whenever a small task finishes, f
cannot accept the resources freed up by it, but other
frameworks can. To accommodate frameworks with
large per-task resource requirements, allocation modules
can support a minimum offer size on each slave, and ab-
stain from offering resources on that slave until this min-
imum amount is free.

Note that the wasted space due to both suboptimal bin
packing and fragmentation is bounded by the ratio be-
tween the largest task size and the node size. Therefore,
clusters running “larger” nodes (e.g., multicore nodes)
and “smaller” tasks within those nodes (e.g., having a
cap on task resources) will be able to achieve high uti-
lization even with a distributed scheduling model.

Interdependent framework constraints: It’s possible
to construct scenarios where, because of esoteric inter-
dependencies between frameworks’ performance, only a
single global allocation of the cluster resources performs
well. We argue such scenarios are rare in practice. In
the model discussed in this section, where frameworks
only have preferences over placement, we showed that
allocations approximate those of optimal schedulers.

Framework complexity: Using resources offers may
make framework scheduling more complex. We argue,
however, that this difficulty is not in fact onerous. First,
whether using Mesos or a centralized scheduler, frame-
works need to know their preferences; in a centralized
scheduler, the framework would need to express them to
the scheduler, whereas in Mesos, it needs to use them to
decide which offers to accept. Second, many scheduling
policies for existing frameworks are online algorithms,
because frameworks cannot predict task times and must
be able to handle failures and stragglers [46, 44]. These
policies are easily implemented over resource offers.

5 Implementation
We have implemented Mesos in about 10,000 lines of
C++. The system runs on Linux, Solaris and Mac OS X.
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Mesos applications can be programmed in C, C++,
Java, and Python. We use SWIG [16] to generate in-
terface bindings for the latter two languages.

To reduce the complexity of our implementation, we
use a C++ library called libprocess [8] that provides
an actor-based programming model using efficient asyn-
chronous I/O mechanisms (epoll, kqueue, etc). We
also leverage Apache ZooKeeper [4] to perform leader
election, as described in Section 3.6. Finally, our current
frameworks use HDFS [2] to share data.

Our implementation can use Linux containers [10] or
Solaris projects [17] to isolate applications. We currently
isolate CPU cores and memory.4

We have implemented five frameworks on top of
Mesos. First, we have ported three existing cluster sys-
tems to Mesos: Hadoop [2], the Torque resource sched-
uler [37], and the MPICH2 implementation of MPI [21].
None of these ports required changing these frameworks’
APIs, so all of them can run unmodified user programs.
In addition, we built a specialized framework for iterative
jobs called Spark, which we discuss in Section 5.3.

5.1 Hadoop Port

Porting Hadoop to run on Mesos required relatively few
modifications, because Hadoop concepts such as map
and reduce tasks correspond cleanly to Mesos abstrac-
tions. In addition, the Hadoop “master”, known as the
JobTracker, and Hadoop “slaves”, known as TaskTrack-
ers, naturally fit into the Mesos model as a framework
scheduler and executor.

To add support for running Hadoop on Mesos, we took
advantage of the fact that Hadoop already has a plug-
gable API for writing job schedulers. We wrote a Hadoop
scheduler that connects to Mesos, launches TaskTrackers
as its executors, and maps each Hadoop task to a Mesos
task. When there are unlaunched tasks in Hadoop, our
scheduler first launches Mesos tasks on the nodes of the
cluster that it wants to use, and then sends the Hadoop
tasks to them using Hadoop’s existing task launching in-
terface. Finally, our executor notifies Mesos when tasks
finish by listening for task finish events using an interface
provided by the TaskTracker.

We use delay scheduling [44] to achieve data locality
by waiting for slots on the nodes that contain task in-
put data. In addition, our approach allowed us to reuse
Hadoop’s existing algorithms for re-scheduling of failed
tasks and speculative execution (straggler mitigation).

We also needed to change how map output data is
served to reduce tasks. Hadoop normally writes map
output files to the local filesystem, then serves these to
reduce tasks using an HTTP server included in the Task-
Tracker. However, the TaskTracker within Mesos runs as

4Support for network and IO isolation was recently added to the
Linux kernel [9] and we plan to add support for these resources too.

an executor, which may be terminated if it is not running
tasks, which would make map output files unavailable
to reduce tasks. We solved this problem by providing
a shared file server on each node in the cluster to serve
local files. Such a service is useful beyond Hadoop, to
other frameworks that write data locally on each node.

In total, our Hadoop port is 1500 lines of code.

5.2 Torque and MPI Ports

We have ported the Torque cluster resource manager to
run as a framework on Mesos. The framework consists
of a Mesos framework scheduler and framework execu-
tor, written in 360 lines of Python code, that launch and
manage different components of Torque. In addition, we
modified 3 lines of Torque source code to allow it to elas-
tically scale up and down on Mesos depending on the
jobs in its queue.

After registering with the Mesos master, the frame-
work scheduler configures and launches a Torque server
and then periodically monitors the server’s job queue.
While the queue is empty, the framework scheduler re-
leases all tasks (down to an optional minimum, which we
set to 0) and refuses all resource offers it receives from
Mesos. Once a job gets added to Torque’s queue (using
the standard qsub command), the framework scheduler
begins accepting new resource offers. As long as there
are jobs in Torque’s queue, the framework scheduler ac-
cepts offers as necessary to satisfy the constraints of as
many jobs in the queue as possible. On each node where
offers are accepted Mesos launches the framework ex-
ecutor, which in turn starts a Torque backend daemon and
registers it with the Torque server. When enough Torque
backend daemons have registered, the torque server will
launch the next job in its queue.

Because jobs that run on Torque (e.g. MPI) may not be
fault tolerant, Torque avoids having its tasks revoked by
not accepting resources beyond its guaranteed allocation.

In addition to the Torque framework, we also created
a Mesos MPI “wrapper” framework, written in 200 lines
of Python code, for running MPI jobs directly on Mesos.

5.3 Spark Framework

To show the value of simple but specialized frameworks,
we built Spark, a new framework for iterative jobs that
was motivated from discussions with machine learning
researchers at our institution.

One iterative algorithm used frequently in machine
learning is logistic regression [11]. An implementation
of logistic regression in Hadoop must run each iteration
as a separate MapReduce job, because each iteration de-
pends on values computed in the previous round. In this
case, every iteration must re-read the input file from disk
into memory. In Dryad, the whole job can be expressed
as a data flow DAG as shown in Figure 4a, but the data
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Figure 4: Data flow of a logistic regression job in Dryad
vs. Spark. Solid lines show data flow within the framework.
Dashed lines show reads from a distributed file system. Spark
reuses processes across iterations, only loading data once.

must still must be reloaded from disk into memory at
each iteration. Reusing the data in memory between iter-
ations in Dryad would require cyclic data flow.

Spark’s execution is shown in Figure 4b. Spark uses
the long-lived nature of Mesos executors to cache a slice
of the data set in memory at each executor, and then run
multiple iterations on this cached data. This caching is
achieved in a fault-tolerant manner: if a node is lost,
Spark remembers how to recompute its slice of the data.

Spark leverages Scala [?] to provide a language-
integrated syntax similar to DryadLINQ [43]: users in-
voke parallel operations by applying a function on a
special “distributed dataset” object, and the body of the
function is captured as a closure to run as a set of tasks in
Mesos. Spark then schedules these tasks to run on execu-
tors that already have the appropriate data cached, using
delay scheduling. By building on-top-of Mesos, Spark’s
implementation only required 1300 lines of code.

Due to lack of space, we have limited our discussion of
Spark in this paper and refer the reader to [45] for details.

6 Evaluation
We evaluated Mesos through a series of experiments on
the Amazon Elastic Compute Cloud (EC2). We begin
with a macrobenchmark that evaluates how the system
shares resources between four workloads, and go on to
present a series of smaller experiments designed to eval-
uate overhead, decentralized scheduling, our specialized
framework (Spark), scalability, and failure recovery.

6.1 Macrobenchmark

To evaluate the primary goal of Mesos, which is enabling
diverse frameworks to efficiently share a cluster, we ran a
macrobenchmark consisting of a mix of four workloads:
• A Hadoop instance running a mix of small and large

jobs based on the workload at Facebook.

• A Hadoop instance running a set of large batch jobs.

• Spark running a series of machine learning jobs.

• Torque running a series of MPI jobs.

Bin Job Type Map Tasks Reduce Tasks # Jobs Run
1 selection 1 NA 38
2 text search 2 NA 18
3 aggregation 10 2 14
4 selection 50 NA 12
5 aggregation 100 10 6
6 selection 200 NA 6
7 text search 400 NA 4
8 join 400 30 2

Table 2: Job types for each bin in our Facebook Hadoop mix.

We compared a scenario where the workloads ran as
four frameworks on a 96-node Mesos cluster using fair
sharing to a scenario where they were each given a static
partition of the cluster (24 nodes), and measured job re-
sponse times and resource utilization in both cases. We
used EC2 nodes with 4 CPU cores and 15 GB of RAM.

We begin by describing the four workloads in more
detail, and then present our results.

6.1.1 Macrobenchmark Workloads

Facebook Hadoop Mix Our Hadoop job mix was
based on the distribution of job sizes and inter-arrival
times at Facebook, reported in [44]. The workload con-
sists of 100 jobs submitted at fixed times over a 25-
minute period, with a mean inter-arrival time of 14s.
Most of the jobs are small (1-12 tasks), but there are also
large jobs of up to 400 tasks.5 The jobs themselves were
from the Hive benchmark [7], which contains four types
of queries: text search, a simple selection, an aggrega-
tion, and a join that gets translated into multiple MapRe-
duce steps. We grouped the jobs into eight bins of job
type and size (listed in Table 2) so that we could com-
pare performance in each bin. We also set the framework
scheduler to perform fair sharing between its jobs, as this
policy is used at Facebook.

Large Hadoop Mix To emulate batch workloads that
need to run continuously, such as web crawling, we had
a second instance of Hadoop run a series of IO-intensive
2400-task text search jobs. A script launched ten of these
jobs, submitting each one after the previous one finished.

Spark We ran five instances of an iterative machine
learning job on Spark. These were launched by a script
that waited 2 minutes after each job finished to submit
the next. The job we used was alternating least squares, a
collaborative filtering algorithm. This job is fairly CPU-
intensive but also benefits from caching its input data on
each node, and needs to broadcast updated parameters to
all nodes running its tasks on each iteration.

Torque / MPI Our Torque framework ran eight in-
stances of the tachyon raytracing job [39] that is part of
the SPEC MPI2007 benchmark. Six of the jobs ran small

5We scaled down the largest jobs in [44] to have the workload fit a
quarter of our cluster size.
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Figure 5: Comparison of cluster shares (fraction of CPUs) over time for each of the frameworks in the Mesos and static partitioning
macrobenchmark scenarios. On Mesos, frameworks can scale up when their demand is high and that of other frameworks is low, and
thus finish jobs faster. Note that the plots’ time axes are different (e.g., the large Hadoop mix takes 3200s with static partitioning).

Figure 6: Framework shares on Mesos during the macrobench-
mark. By pooling resources, Mesos lets each workload scale
up to fill gaps in the demand of others. In addition, fine-grained
sharing allows resources to be reallocated in tens of seconds.

problem sizes and two ran larg ones. Both types used 24
parallel tasks. We submitted these jobs at fixed times to
both clusters. The tachyon job is CPU-intensive.

6.1.2 Macrobenchmark Results

A successful result for Mesos would show two things:
that Mesos achieves higher utilization than static parti-
tioning, and that jobs finish at least as fast in the shared
cluster as they do in dedicated ones, and possibly faster
due to gaps in the demand of other frameworks. Our re-
sults show both effects, as detailed below.

We show the fraction of CPU cores allocated to each
framework by Mesos over time in Figure 6. We see that
Mesos enables each framework to scale up during peri-
ods when other frameworks have low demands, and thus
keeps cluster nodes busier. For example, at time 350,
when both Spark and the Facebook Hadoop framework
have no running jobs and Torque is using 1/8 of the clus-
ter, the large-job Hadoop framework scales up to 7/8 of

 0
 20
 40
 60
 80

 100

 0  200  400  600  800  1000  1200  1400  1600C
PU

 U
til

iz
at

io
n 

(%
)

Time (s)

Mesos Static

 0
 10
 20
 30
 40
 50

 0  200  400  600  800  1000  1200  1400  1600M
em

or
y 

U
til

iz
at

io
n 

(%
)

Time (s)

Mesos Static

Figure 7: Average CPU and memory utilization over time
across all nodes in the Mesos cluster vs. static partitioning.

the cluster. In addition, we see that resources are reallo-
cated rapidly (e.g. when a Facebook Hadoop job starts
around time 360) due to the fine-grained nature of tasks.
Finally, higher allocation of nodes also translates into
higher CPU and memory utilization as show in Figure
7. The shared Mesos cluster has on average 10% higher
CPU utilization and 18% higher memory utilization than
the statically partitioned cluster.

A second question is how much better jobs perform
under Mesos than on dedicated clusters. We present this
data in two ways. First, Figure 5 compares the resource
allocation over time of each framework in the shared
and dedicated clusters. Shaded areas show the alloca-
tion in the dedicated cluster, while solid lines show the
share on Mesos. We see that the fine-grained frame-
works (Hadoop and Spark) take advantage of Mesos to
scale up beyond 1/4 of the cluster when global demand
allows this, and consequently finish bursts of submit-
ted jobs faster in Mesos. At the same time, Torque
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Framework 
Sum of Exec Times on 
Dedicated Cluster (s) 

Sum of Exec Times 
on Mesos (s) 

Speedup 

Facebook 
Hadoop Mix 

7235 6319 1.14 

Large Hadoop 
Mix 

3143 1494 2.10 

Spark 1684 1338 1.26 

Torque / MPI 3210 3352 0.96 

Table 3: Aggregate performance of each framework in the mac-
robenchmark (sum of running times of all the jobs in the frame-
work). The speedup column shows the relative gain on Mesos.

achieves roughly similar allocations and job durations
under Mesos (with some differences explained later).

Second, Tables 3 and 4 show a breakdown of job per-
formance for each framework. In Table 3, we compare
the aggregate performance of each framework, defined
as the sum of job running times, in the static partitioning
and Mesos scenarios. We see the Hadoop and Spark jobs
as a whole are finishing faster on Mesos, while Torque is
slightly slower. The framework that gains the most is the
large-job Hadoop mix, which almost always has tasks to
run and fills in the gaps in demand of the other frame-
works; this framework performs 2x better on Mesos.

Table 4 breaks down the results further by job type.
We observe two notable trends. First, in the Facebook
Hadoop mix, the smaller jobs perform worse on Mesos.
This is due to an interaction between the fair sharing
performed by the Hadoop framework (among its jobs)
and the fair sharing performed by Mesos (among frame-
works): During periods of time when Hadoop has more
than 1/4 of the cluster, if any jobs are submitted to the
other frameworks, there is a delay before Hadoop gets a
new resource offer (because any freed up resources go
to the framework farthest below its share), so any small
job submitted during this time is delayed for a long time
relative to its length. In contrast, when running alone,
Hadoop can assign resources to the new job as soon as
any of its tasks finishes. This problem with hierarchical
fair sharing is also seen in networks [38], and could be
mitigated either by running the small jobs on a separate
framework or changing the allocation policy in Mesos
(e.g. to use lottery scheduling instead of always offering
resources to the framework farthest below its share).

Lastly, Torque is the only framework that performed
worse, on average, on Mesos. The large tachyon jobs
took on average 2 minutes longer, while the small ones
took 20s longer. Some of this delay is due to Torque
having to wait to launch 24 tasks on Mesos before start-
ing each job, but the average time this takes is 12s. We
believe that the rest of the delay may be due to strag-
glers (slow nodes). In our standalone Torque run, we
noticed two jobs each took about 60s longer to run than
the others (Figure 5d). We discovered that both of these
jobs were using a node that performed slower on single-

Framework Job Type 
Time on Dedicated 

Cluster (s) 
Avg. Speedup 

on Mesos 
Facebook Hadoop 

Mix 
selection (1) 24 0.84 

text search (2) 31 0.90 
aggregation (3) 82 0.94 

selection (4) 65 1.40 
aggregation (5) 192 1.26 

selection (6) 136 1.71 
text search (7) 137 2.14 

join (8) 662 1.35 
Large Hadoop Mix text search 314 2.21 

Spark ALS 337 1.36 
Torque / MPI small tachyon 261 0.91 

large tachyon 822 0.88 

Table 4: Performance of each job type in the macrobenchmark.
Bins for the Facebook Hadoop mix are in parentheses.
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Figure 8: Data locality and average job durations for 16
Hadoop instances running on a 93-node cluster using static par-
titioning, Mesos, or Mesos with delay scheduling.

node benchmarks than the others (in fact, Linux reported
a 40% lower bogomips value on this node). Because
tachyon hands out equal amounts of work to each node,
it runs as slowly as the slowest node. Unfortunately,
when we ran the shared cluster scenario, we did not col-
lect the data necessary to check for stragglers.

6.2 Overhead

To measure the overhead Mesos imposes when a single
framework uses the cluster, we ran two benchmarks us-
ing MPI and Hadoop on an EC2 cluster with 50 nodes,
each with 2 CPU cores and 6.5 GB RAM. We used the
High-Performance LINPACK [19] benchmark for MPI
and a WordCount job for Hadoop, and ran each job three
times. The MPI job took on average 50.9s without Mesos
and 51.8s with Mesos, while the Hadoop job took 160s
without Mesos and 166s with Mesos. In both cases, the
overhead of using Mesos was less than 4%.

6.3 Data Locality through Fine-Grained Sharing
and Resource Offers

In this experiment, we evaluated how Mesos’ resource
offer mechanism enables frameworks to control their
tasks’ placement, and in particular, data locality. We
ran 16 instances of Hadoop using 93 EC2 nodes, each
with 4 CPU cores and 15 GB RAM. Each node ran a
map-only scan job that searched a 100 GB file spread
throughout the cluster on a shared HDFS file system and
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outputted 1% of the records. We tested four scenarios:
giving each Hadoop instance its own 5-6 node static par-
tition of the cluster (to emulate organizations that use
coarse-grained cluster sharing systems), and running all
instances on Mesos using either no delay scheduling, 1s
delay scheduling or 5s delay scheduling.

Figure 8 shows averaged measurements from the 16
Hadoop instances across three runs of each scenario. Us-
ing static partitioning yields very low data locality (18%)
because the Hadoop instances are forced to fetch data
from nodes outside their partition. In contrast, running
the Hadoop instances on Mesos improves data locality,
even without delay scheduling, because each Hadoop in-
stance has tasks on more nodes of the cluster (there are
4 tasks per node), and can therefore access more blocks
locally. Adding a 1-second delay brings locality above
90%, and a 5-second delay achieves 95% locality, which
is competitive with running one Hadoop instance alone
on the whole cluster. As expected, job performance im-
proves with data locality: jobs run 1.7x faster in the 5s
delay scenario than with static partitioning.

6.4 Spark Framework

We evaluated the benefit of running iterative jobs using
the specialized Spark framework we developed on top
of Mesos (Section 5.3) over the general-purpose Hadoop
framework. We used a logistic regression job imple-
mented in Hadoop by machine learning researchers in
our lab, and wrote a second version of the job using
Spark. We ran each version separately on 20 EC2 nodes,
each with 4 CPU cores and 15 GB RAM. Each exper-
iment used a 29 GB data file and varied the number of
logistic regression iterations from 1 to 30 (see Figure 9).

With Hadoop, each iteration takes 127s on average,
because it runs as a separate MapReduce job. In contrast,
with Spark, the first iteration takes 174s, but subsequent
iterations only take about 6 seconds, leading to a speedup
of up to 10x for 30 iterations. This happens because the
cost of reading the data from disk and parsing it is much
higher than the cost of evaluating the gradient function
computed by the job on each iteration. Hadoop incurs the
read/parsing cost on each iteration, while Spark reuses
cached blocks of parsed data and only incurs this cost
once. The longer time for the first iteration in Spark is
due to the use of slower text parsing routines.

6.5 Mesos Scalability

To evaluate Mesos’ scalability, we emulated large clus-
ters by running up to 50,000 slave daemons on 99 Ama-
zon EC2 nodes, each with 8 CPU cores and 6 GB RAM.
We used one EC2 node for the master and the rest of the
nodes to run slaves. During the experiment, each of 200
frameworks running throughout the cluster continuously
launches tasks, starting one task on each slave that it re-
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Figure 9: Hadoop and Spark logistic regression running times.
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Figure 10: Mesos master’s scalability versus number of slaves.

ceives a resource offer for. Each task sleeps for a period
of time based on a normal distribution with a mean of
30 seconds and standard deviation of 10s, and then ends.
Each slave runs up to two tasks at a time.

Once the cluster reached steady-state (i.e., the 200
frameworks achieve their fair shares and all resources
were allocated), we launched a test framework that runs a
single 10 second task and measured how long this frame-
work took to finish. This allowed us to calculate the extra
delay incurred over 10s due to having to register with the
master, wait for a resource offer, accept it, wait for the
master to process the response and launch the task on a
slave, and wait for Mesos to report the task as finished.

We plot this extra delay in Figure 10, showing aver-
ages of 5 runs. We observe that the overhead remains
small (less than one second) even at 50,000 nodes. In
particular, this overhead is much smaller than the aver-
age task and job lengths in data center workloads (see
Section 2). Because Mesos was also keeping the clus-
ter fully allocated, this indicates that the master kept up
with the load placed on it. Unfortunately, the EC2 vir-
tualized environment limited scalability beyond 50,000
slaves, because at 50,000 slaves the master was process-
ing 100,000 packets per second (in+out), which has been
shown to be the current achievable limit on EC2 [15].

6.6 Failure Recovery

To evaluate recovery from master failures, we conducted
an experiment similar to the scalability experiment, run-
ning 200 to 4000 slave daemons on 62 EC2 nodes with
4 cores and 15 GB RAM. We ran 200 frameworks that
each launched 20-second tasks, and two Mesos masters
connected to a 5-node ZooKeeper quorum using a de-
fault tick interval of 2 seconds. We synchronized the two
masters’ clocks using NTP and measured the mean time
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to recovery (MTTR) after killing the active master. The
MTTR is the time for all of the slaves and frameworks
to connect to the second master. In all cases, the MTTR
was between 4 and 8 seconds, with 95% confidence in-
tervals of up to 3s on either side. Due to lack of space,
we refer the reader to [29] for a graph of the results.

7 Related Work
HPC and Grid schedulers. The high performance
computing (HPC) community has long been managing
clusters [37, 47, 26, 20]. Their target environment typ-
ically consists of specialized hardware, such as Infini-
band, SANs, and parallel filesystems. Thus jobs do not
need to be scheduled local to their data. Furthermore,
each job is tightly coupled, often using barriers or mes-
sage passing. Thus, each job is monolithic, rather than
composed of smaller fine-grained tasks. Consequently,
a job does not dynamically grow or shrink its resource
demands across machines during its lifetime. Moreover,
fault-tolerance is achieved through checkpointing, rather
than recomputing fine-grained tasks. For these reasons,
HPC schedulers use centralized scheduling, and require
jobs to declare the required resources at job submission
time. Jobs are then allocated course-grained allocations
of the cluster. Unlike the Mesos approach, this does
not allow frameworks to locally access data distributed
over the cluster. Furthermore, jobs cannot grow and
shrink dynamically as their allocations change. In ad-
dition to supporting fine-grained sharing, Mesos can run
HPC schedulers, such as Torque, as frameworks, which
can then schedule HPC workloads appropriately.

Grid computing has mostly focused on the problem
of making diverse virtual organizations share geograph-
ically distributed and separately administered resources
in a secure and interoperable way. Mesos could well
be used within a virtual organization, which is part of
a larger grid that, for example, runs Globus Toolkit.

Public and Private Clouds. Virtual machine clouds,
such as Amazon EC2 [1] and Eucalyptus [35] share
common goals with Mesos, such as isolating frame-
works while providing a low-level abstraction (VMs).
However, they differ from Mesos in several important
ways. First, their relatively course grained VM alloca-
tion model leads to less efficient resource utilization and
data sharing than in Mesos. Second, these systems gen-
erally do not let applications specify placement needs be-
yond the size of virtual machine they require. In contrast,
Mesos allows frameworks to be highly selective about
which resources they acquire through resource offers.

Quincy. Quincy [31] is a fair scheduler for Dryad. It
uses a centralized scheduling algorithm and provides a
directed acyclic graph based programming model. In
contrast, Mesos provides the low level, more flexible ab-

straction of resource offers and aims to support multiple
cluster computing frameworks which in turn offer higher
level programming abstractions.

Condor. Condor, a centralized cluster manager, uses
the ClassAds language [36] to match node properties
to job needs. Using such a resource specification lan-
guage is not as flexible for frameworks as resource offers
(i.e. not all framework requirements may be expressible).
Also, porting existing frameworks, which have their own
sophisticated schedulers, to Condor would be more dif-
ficult than porting them to Mesos, where existing sched-
ulers fit naturally into the two level scheduling model.

8 Conclusion
We have presented Mesos, a thin management layer that
allows diverse cluster computing frameworks to effi-
ciently share resources. Mesos is built around two design
elements: a fine-grained resource sharing model at the
level of tasks within a job, and a decentralized scheduling
mechanism called resource offers that lets applications
choose which resources to use. Together, these elements
let Mesos achieve high utilization, respond rapidly to
workload changes, and cater to frameworks with diverse
needs, while remaining simple and scalable. We have
shown that existing frameworks can effectively share re-
sources with Mesos, that new specialized frameworks,
such as Spark, can provide major performance gains, and
that Mesos’s simple architecture allows the system to be
fault tolerant and to scale to 50,000 (emulated) nodes.

We have recently open-sourced Mesos and started
working with two companies (Twitter and Facebook) to
test Mesos in their clusters.6 We have also begun using
Mesos to manage a 40-node cluster in our lab. Future
work will report on lessons from these deployments.
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