
Experiences Teaching MapReduce in the Cloud

Ariel Rabkin, Charles Reiss, Randy Katz, David Patterson
{asrabkin,charles,randy,pattrsn}@cs.berkeley.edu
Electrical Engineering and Computer Science Department

University of California, Berkeley

ABSTRACT
We describe our experiences teaching MapReduce in a large
undergraduate lecture course using public cloud services.
Using the cloud, every student could carry out scalabil-
ity benchmarking assignments on realistic hardware, which
would have been impossible otherwise. Over two semesters,
over 500 students took our course. We believe this is the first
large-scale demonstration that it is feasible to use pay-as-
you-go billing in the Cloud for a large undergraduate course.
Modest instructor effort was sufficient to prevent students
from overspending. Average per-pupil expenses in the Cloud
were under $45, less than half our available grant funding.
Students were excited by the assignment: 90% said they
thought it should be retained in future course offerings.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education—Human Factors

General Terms
Economics, Management, Measurement

Keywords
Cloud computing, Education, MapReduce

1. INTRODUCTION
Cloud computing is a major and disruptive change in how

computing services are delivered. The term “cloud” has un-
fortunately been used for several different related concepts.
In this paper, we refer to what is sometimes called a “public
cloud” — a service that allows large quantities of computa-
tional resources to be allocated in a pay-as-you-go manner
with minimal prior arrangement [1]. This change is begin-
ning to percolate into the undergraduate curriculum. Many
universities are now offering courses that cover MapReduce
[5] and related distributed execution systems [9, 8, 2]. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02 ...$10.00.

courses prepare students for a world in which large-scale dis-
tributed “big data” processing is routine. In contrast, the
change in billing models caused by cloud computing has not
yet had overt impact on undergraduate instruction.

This paper describes an effort to integrate the cloud into
lower-division courses, allowing new kinds of assignments.
For the last year, we have used Amazon’s public Elastic
Compute Cloud, EC2, as a platform for the MapReduce
unit in our introductory machine organization course at UC
Berkeley. This course is ordinarily taken by students in their
third or fourth semester. The Fall term had 170 students;
the Spring had 320.

To make the course more relevant to current comput-
ing challenges, we made parallelism a central theme. We
wanted to emphasize parallelism at all levels, from the in-
herently parallel nature of hardware logic blocks through
multicore systems and all the way up to warehouse-sized
shared-nothing clusters. Data-flow frameworks like MapRe-
duce are the most successful parallel programming model
for commodity hardware clusters. These frameworks em-
body solutions to many of the fundamental challenges of
coarse-grain parallelism: handling failures, dividing up work
into independent chunks, handling inconsistent performance
across the cluster, and so on.

Clouds make the cost, and therefore the efficiency, of com-
puting explicit. For many instructors and pupils, this will
be a novel environment. For others, though, it will be seen
as a reversion to a pre-PC era, in which students were given
quotas for the computing resources available to them. There
is an important distinction, however: in the cloud, users
choose whether to consume resources sequentially or in par-
allel. This choice offers a tradeoff between efficiency and
time-to-completion, which was not generally visible in the
mainframe era but which is a significant aspect of parallel
computing, and an important lesson we sought to teach.

1.1 Instructional Goals
We were driven to use a public cloud by the conjunction

of several instructional goals. First, we thought the expe-
rience of using public cloud infrastructure and seeing the
actual dollar cost of compute resources would be a valuable
one for students. Second, we wanted students to experi-
ence running and debugging distributed MapReduce jobs
on a significantly-sized cluster. Given the size of our stu-
dent body, using purely university IT resources would have
imposed unacceptable infrastructure costs. Last, we wanted
students to evaluate the performance of MapReduce jobs
and see the speedup from parallelism. This requires isola-
tion from other students, which is difficult to achieve without

the public cloud. (Cloud providers such as Amazon Web
Services offer virtualized platforms with consistent perfor-
mance. This gives customers predictable value-for-money.
While the consistency is not perfect, it is good enough for
many practical purposes, including ours.)

1.2 Research Questions and Methods
The focus of this paper is on the opportunities and chal-

lenges offered by the cloud, rather than on teaching big data,
parallelism, or MapReduce. We answer three research ques-
tions: Can we effectively manage cloud costs in a large in-
troductory class, given current billing models? Can we use
rented cloud hardware to demonstrate principles of paral-
lelism using MapReduce? What difficulties do lower-division
students confront when using current industry-grade tools
like Hadoop on EC2?

We use instructional costs, student survey results, and
the average quality of graded student work to evaluate the
success of our course. As we will show, using the cloud
worked well. Costs were moderate; students were happy.
We made mistakes along the way, particularly in terms of
preparing students for“big data”programming. We describe
the lessons we learned and what we intend to do differently
going forward. We focus on the second offering of the course,
in the Spring, which was larger, better documented, and
benefited from the experience of the first offering.

During the Spring semester, we administered three sur-
veys to students: one over the Winter break before the
course, once in the middle of the semester, and once at the
end of the term. The first and last surveys are relevant
to this paper. At the time of the opening survey, we had
email addresses for two-thirds of the students who would ul-
timately enroll. Of these, 80% responded. The final survey
had responses from half the enrolled students.

2. RELATED WORK
Several schools are now teaching MapReduce as part of

their undergraduate curricula. Here, we summarize these
efforts and contrast them with our own.

In the Spring of 2007, the University of Washington taught
an experimental course covering Hadoop for upper-division
undergraduates [9]. (This course has since become a regu-
lar offering.) The emphasis was on the use of Hadoop (the
standard open-source MapReduce implementation) to solve
practical problems at large scale. Students spend several
weeks on a large project. In contrast, we are teaching lower-
division undergraduates, in a machine organization course
that includes MapReduce as just one unit.

Both Tufts and the University of Maryland have offered
“big data” courses with a strong focus on MapReduce and
related technologies [4, 10]. Maryland has made use of EC2
for this purpose. As with UW, this was in the context of a
small upper-division class, with MapReduce, not pricing or
parallelism, being the focus.

UC Berkeley has experimented with integrating Hadoop
MapReduce very early into the curriculum, covering it briefly
in the initial programming course. This course is taught in
Scheme, not Java, using a custom-written Scheme-to-Map-
Reduce glue library [8]. Performance tuning is a non-goal, as
is understanding the mechanisms behind parallel execution.

Even small schools have been able to cover Hadoop. St.
Olaf College has a Hadoop cluster, managed by student vol-
unteers and used in several courses [2]. The cited paper is

notable for the suggestion that schools should explore “ob-
taining ‘cloud’ resources on demand.” Our paper represents
a large-scale demonstration and evaluation of that possibil-
ity. Subsequent effort at St. Olaf has been directed towards
simplifying Hadoop, hiding the details from students [6].
As with Berkeley’s introductory class, considerable effort
was made to have students write MapReduce programs in
Scheme, hiding the Hadoop Java APIs and command-line
job submission. We took the opposite approach, exposing
students to the real industrial tools and documentation.

Harvard has experimented with using EC2 to provide com-
pute resources to their introductory CS course [11]. Stu-
dents, though, are completely insulated from provisioning
and billing. Effectively, the Cloud is used as a scalable re-
placement for local IT infrastructure, rather than to allow
assignments that could not have been taught otherwise.

3. COURSE DESIGN
We wanted students to understand the sort of data pro-

cessing that cloud computing makes available. Accordingly,
we designed our assignments to be sufficiently compute-inten-
sive that it would be obvious why one would want to rent
computing resources rather than use one’s own machines.
We choose data processing tasks (rather than, for example,
a web application use case) because the cost and time bene-
fits of parallelizing are more apparent here. Data processing
assignments give students a clear metric for efficiency: cost
per gigabyte of input.

It was important to us that, as much as practical, students
used the same tools that professionals use. One reason was
permitting more direct application of the assignment to stu-
dent’s own processing tasks. Another is that we did not want
students to form the impression that performance anomalies
and debugging challenges were the consequence of us provid-
ing only a“student-quality” framework. We wanted students
to understand that these are pervasive issues when dealing
with real distributed systems. Further, using standard tools
will reduce the maintenance burden on future course staff.

Originally, our MapReduce assignments used C to match
other assignments in the course. This relied on Hadoop’s
language-neutral “streaming” mode1, which executes an ex-
ternal program for each Map and Reduce task. This caused
several problems; as we discuss below, debugging in this en-
vironment was a significant challenge. While not a formal
prerequisite, most students taking our course had some ex-
perience in Java or a C-like language. Hence, we switched
from C to Java for the Spring offering of the course. This
permitted our assignments to use Hadoop’s better-supported
Java API.

Our course had four two-week project assignments, a two-
hour lab and three hours of lecture per week. Projects had
an intermediate milestone deadline to help students start
early. We assigned short problem sets for homework and
had two written exams. Students were assessed primarily
on their projects and the exams. Most labs served as tutori-
als for the project assignments. For the MapReduce project
we had one (Fall semester) or two (Spring) such labs for the
MapReduce and cloud computing unit. For the labs, stu-
dents were permitted partners, but the projects were done
individually.

1http://hadoop.apache.org/common/docs/r0.20.0/
streaming.html

Sem. Lines of Code Description Dataset Size (bytes) Corpus
FS 0 Lab: performance measurement, introduc-

tion to EC2 tools
20,000 MB (F); 8,000 MB (S) Wikipedia (F);

Usenet (S)
F ∼ 50 Project: PageRank [12] in C, using Hadoop

Streaming locally and then on EC2
650 MB Web graph

S ∼ 10 Lab: writing MapReduce programs in Java,
running locally

34 MB Usenet

S ∼ 50 Project: computing a text-comparison metric
locally and then on EC2

8,000 MB Usenet

Table 1: Assignments used. F= Fall, S=Spring, FS = both

We designed our MapReduce unit around a set of related
text-processing assignments, characterized by simple algo-
rithms to be executed on big data. We strove for assignments
that would be slightly more complex than the usual “word
count”-style examples for MapReduce, but that would not
overly tax students’ nascent Java programming skills. Table
1 summarizes these assignments.2

In both semesters, our assignments culminated with a
project. This required students to write a small data pro-
cessing program and run it on a large data set. We had
students run their program in the cloud, vary the number
of (virtual) machines used, and measure the scale-up. The
data set their programs ran across was chosen to be as large
as practical while requiring less than a half-hour of time
waiting for programs to complete.

In the Fall semester, the text corpus was the link graph
(pairs of source and destination web pages) from a circa 1999
crawl of CS department webpages, derived from the Stanford
WebBase project [7]. In the Spring, we used subsets of the
Westbury lab corpus of Usenet messages [13]. In both cases,
we pre-loaded a copy of the data in the cloud where it could
be quickly accessed.

All assignments, both lab and project, came with concep-
tual questions as well as coding. We asked students, for
instance, to compute how much money they had spent, and
what price this was per unit of work. This was intended to
draw students’ attention to the economic aspects of cloud
computing. Since cloud computing costs scale linearly with
computational resources, increased cost per unit work makes
it clear when students are seeing less than ideal speedup.

In the Spring, we added a lab where students developed
some small MapReduce programs (using the Hadoop Java
API) and ran them locally using Hadoop MapReduce’s single-
process mode. We provided students with a complete word
count implementation and instructed them to use it as a
template for the two MapReduce programs assigned in the
lab: counting the number of documents containing each
word (instead of the number of times each word appears)
and constructing an inverted index from the source text.
We supplied a subset of the Usenet corpus for both cases.

4. EVALUATION
This section evaluates our experience in several dimen-

sions. We emphasize cost management, not because it is
the most important goal, but because it is tied directly to
our core goal of using the cloud for lower-division instruc-
tion. When using the public cloud, the cost per student

2These can be obtained via http://www-inst.eecs.
berkeley.edu/~cs61c/archives.html

becomes visible to both instructors and pupils in a way that
is not currently common in computer science. We also eval-
uate the quality of student work and reported student sat-
isfaction. These demonstrate that using the cloud provided
sufficiently consistent performance to allow students to see
parallel speedup.

In both semesters, we provided students with scripts to
launch a Hadoop MapReduce cluster on Amazon’s Elas-
tic Compute Cloud (EC2) and run programs on it. These
scripts were responsible for the necessary accounting, ac-
cess control, and billing. They were based on Cloudera’s
Hadoop scripts [3], modified to access our shared account
and integrated with the local user account structure in our
environment for accounting.

4.1 Payment Models
Amazon and other Infrastructure-as-a-service cloud prov-

iders use a post-paid billing model. Users supply a credit
card number when they create their accounts. Users then
use the provider’s API, command line tools, or web interface
to request resources, which are then made available. At the
end of every month, users’ credit cards are billed for the
previous month’s usage. There is no way for users to impose
a cutoff beyond which further requests will be denied. The
Cloud unit of our course was funded by an education grant
from Amazon Web Services. Even so, Amazon requires a
payment card for each account, which will be billed if usage
exceeds the amount of the grant.

Our grant was for $100 per student per semester, the stan-
dard size offered by Amazon. From our research experience,
we knew that cloud usage could easily exceed expectation.
We anticipated that most of our usage would occur shortly
before the deadline. We wanted to have enough slack in
our budget to ensure that we would not exhaust the budget
in this pre-deadline peak. We also wanted to reserve some
funds so that students who made mistakes and needed extra
resources could still complete the assignment.

One approach would have been to have a separate Amazon
grant allocation per student. Doing this would have required
students to supply their own credit card, if they exceeded
the grant. We thought this was inappropriate. Students
agreed: In the Fall semester, we surveyed the students on
whether they would be comfortable signing up for an EC2
account with their credit card for backup billing.

The full wording of the question was as follows: Amazon
Web Services is set up for companies rather than for stu-
dents, so the way you get an account is to get an activation
key (which we have) and then supply a credit card number as
a backup in case you exceed your initial allocation. We think
you’ll only use 20% of your allocation for both your lab and

0
10

0
30

0
50

0

time

V
M

s
ac

tiv
e

Sat Tue Fri Mon Thu Sun

Figure 1: Number of active virtual machines on our
course account in the Spring semester over time.
The peak (over 500 virtual machines) occurs during
the day the lab assignment was given. The second
peak is the project due date.

your project, so we think no one will get close to exhausting
their allocation.

Approximately a third of students responded; half of these
said they would not be willing to risk their own money. Con-
sequently, we chose to have a single Amazon account for the
class, with subaccounts for each student. This decision re-
quired us to create our own wrapper scripts for all the tools
we expected students to need.

4.2 Provisioning
Obtaining the computing resources for our course was not

simply a matter of signing up online as cloud computing
is traditionally imagined. All our usage went through one
account with Amazon. Amazon requires approval for an ac-
count to run more than twenty virtual machines, and these
approvals are usually granted as a matter of course. Ama-
zon is much more reluctant to approve large requests over
a thousand machines, especially without strong evidence of
an ability to pay for sustained usage at that scale.

The potential peak for our assignment was approximately
3000 virtual machines (9 VMs per student and 320 students).
We worried that if most of the class worked on the assign-
ment simultaneously near the deadline, we might actually
hit the limit. We asked Amazon to increase our limit, but
we only received capacity for about a third of our maximum
usage. So we crossed our fingers, hoped that a sufficient
number of students who do the assignment early, and ac-
cepted the thousand-instance limit. Happily, this posed no
problem in practice, as Figure 1 shows.

In the Spring, peak instantaneous usage was around 500
8-core virtual machines: we instructed students to time their
programs on two cluster sizes, 5 and 9 machines, and com-
pare the timings. Obtaining and managing a similarly capa-
ble physical cluster would have been much more expensive.

We conclude that using a cloud computing provider was

speedup (times faster)

st
ud

en
ts

0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

2 2
19

89

129

71

7 1 0 1 2 0 0 0

Figure 2: Speedups observed by students. Most stu-
dents saw a substantial but sub-linear speedup, as
desired.

effective in supplying students with large compute resources
for short periods. Even though we had many hundreds of
students and most students did their work close to deadlines,
no one ran out of machines. The cost was relatively modest,
around $45 per student in the Spring and around $25 per
student in the Fall. In the Fall, with limited experience,
we opted for medium-size instances, with 2 cores each. In
the Spring, we decided that it was worth the expense to
give students experience with modern datacenter-standard
hardware, and used 8-core machines.

4.3 Experiencing Parallelism and Big Data
Figure 2 plots the reported parallel speedups observed by

students. Most students saw more than a 1.5 speedup when
they increased their cluster sizes by a factor of 1.8; few saw
more than 2. Seeing this speedup was a good result. Most
students saw a sizable but sublinear speedup, the right ex-
pectation to have for parallelism in general. That some stu-
dents saw anomalous speedup is also useful pedagogically.
Performance variation in clouds (or other distributed sys-
tems) is an important and inevitable fact. Students benefit
from seeing that it happened to them or their classmates at
least some of the time.

The overall quality of student work impressed us. In the
Spring, 75% of student projects passed all our test cases;
many more failed only due to minor bugs that could have
been caught with more testing. This shows that students
were able to cope with the MapReduce programming model.

4.4 Student Satisfaction
We now turn to quantitative evaluation of how well our

course ran in terms of student satisfaction. At the end of
the Spring semester, we administered a survey to our class.
We asked students to rank the four class projects in terms of
value. The four projects were MapReduce, writing a MIPS
emulator in C, writing an optimized matrix-multiply pro-
gram, and designing a pipelined processor at the logic-gate

level. The second and fourth of these are routine and well-
debugged class projects, with the last of these usually being
very popular.

Thirty percent of students thought MapReduce was the
most valuable, and another thirty percent listed it as second-
most-valuable. The MapReduce assignment came in second,
overall. We conclude that students are enthusiastic about
the assignment, even given its rough edges and challenges.

We asked students explicitly whether they would advocate
keeping or replacing the project. 45% of students suggested
keeping unequivocally, and another 47% marked “There are
pros and cons, but better to keep it.” Only 8% marked
“better to drop” or “definitely drop.”

Several students thought that the project was valuable
to them professionally. One student commented “Too many
employers are looking at Cloud Computing for it to be dropped
from the curriculum - it’s good to give students at least an
intro to the subject.” Another noted that “employers at job
fairs really seemed to like it!”

The students who were dissatisfied primarily focused on
programming language issues. A minority of students strug-
gled because they had only minimal Java proficiency coming
in. This was not a universal problem; many students had
comments like “I didn’t know Java, and though I missed
points for a few small things, the project was overall defi-
nitely still worth it.”

5. LESSONS LEARNED
On the whole, our experiment with using the public cloud

for undergraduate core courses worked well. Even so, we
learned several negative lessons. This section describes those
lessons and what we intend to do differently in future offer-
ings of the course.

5.1 Debugging
One of our pedagogic goals was to have students experi-

ence real-world big data programming and debugging. In the
Fall 2010, using C, several students received a very pointed
lesson in the importance of local testing and defensive pro-
gramming. Buggy C programs often fail with segmentation
faults. Locally, these can be diagnosed with a debugger such
as GDB. But when the C program is run inside Hadoop,
there is no opportunity to do so. Hadoop Streaming provides
poor diagnostics for programs that fail without outputting
an error message. Hence, troubleshooting can be difficult,
even for experienced course staff.

In the Spring, using Java, debugging was easier. Typically,
when Map or Reduce tasks fail, a stack trace is recorded in
the logs. This meant that staff, at least, could work out
where student programs had gone awry. Students had diffi-
culties, though. Reading and understanding stack traces is
not a skill that is emphasized or taught in our introductory
programming courses. Nor did students previously have to
cope with test cycles measured in minutes, rather than sec-
onds. Forcing students into a more demanding (and realis-
tic) debugging scenario thus exposed a gap in their previous
CS education that we tried to remedy as best we could.

This problem was exacerbated by the linguistic fragmen-
tation of the early undergraduate curriculum in our school:
there is no imperative language that students were required
to know, coming in to the class. This meant that students
were challenged by both the cloud program and unfamiliar
programming languages. As of Fall 2011, our introductory

course has switched to Python, which we could reasonably
use for this assignment. This switch would also reduce the
confusion caused by Hadoop’s sometimes-idiosyncratic and
unevenly-documented Java APIs. We expect the difficulty
of Python debugging to be comparable to Java.

5.2 Efficiency
In both semesters, the staff coded and tested a simple

implementation before releasing the assignment to students.
We used this to estimate performance, both in choosing the
data set size to assign students as well as to announce the
performance they should expect. In the Spring, many stu-
dents produced solutions that were more than a factor of two
slower. Although our reference implementation was not spe-
cially optimized, the simple MapReduce programs we had
the students write are sensitive to overheads from object
creation, autoboxing (Java’s automatic wrapping of prim-
itive values in objects), string parsing, and string/number
conversions. Students whose programs did more of these
than our reference implementation (for example, keeping a
counter in an Integer instead of an int or splitting a string in
an inner loop) were correct but much slower. A small num-
ber of students made poor data-structure choices, resulting
in run-times quadratic in the number of words in an input
record (representing a Usenet message). Since we were tar-
geting a run time of around 15 minutes, the financial effect
of students’ programs running even two or three times slower
than our reference implementation was substantial.

Here again, a large-scale assignment in the cloud showed
both us and the students a previously unsuspected gap in
their prior experience. After we became aware of the slow
program problem, we supplied a non-trivial local test dataset
and told students what run time they should expect on it.
We also gave a brief list of ways to make programs faster
for students who were interested in doing so: avoiding ob-
ject creation, reducing the number of generated map output
keys, and so on.

In future offerings, we will spend more time advising stu-
dents on how to debug in distributed contexts and how to
program in a performance-conscious manner. Performance
issues fit naturally into a computer organization course, so
this strikes us as a good use of class time.

5.3 Waste
Inefficiency was not the major driver of costs; waste was.

Some students accidentally left virtual machines running
idle. We had mitigated the risk of this by configuring our
scripts to automatically shutdown virtual machines after a
time delay, though initially, we did not always enable this
feature. Early versions of the staff-supplied wrapper scripts
had a bug and would occasionally fail to terminate virtual
machines when students requested it.

A much larger problem was that some students would re-
run their entire experiment after any technical glitch or mis-
take. This repetition was responsible for the outliers seen in
Figure 3. Our management scripts were only available on
the campus hosts, so students seeking to use the cloud from
home would log into campus, rather than running directly
from home. These students were generally not aware of tools
like GNU Screen that would let them maintain their session
on the instructional machines after a network failure. Also,
students assumed incorrectly that they could not continue
using their existing EC2 session when they reconnected.

cost

st
ud

en
ts

0
20

40
60

80
10

0

4

24

7874
62

35

1918
8 7 5 4 1

$0 $30 $60 $90 $120

Figure 3: Histogram of estimated Spring semester
EC2 usage per student.

Consequently, many students would start a fresh set of
virtual machines (killing the old ones) each time they expe-
rienced a problem. Since EC2 charges for at least an hour
each time a virtual machine is started, this could get expen-
sive quickly. Some students who did not experience these
glitches made different errors that lead them to restart ma-
chines unnecessarily — for example, assuming that each run
of their program required a fresh cluster.

6. CONCLUSIONS
Today’s cloud billing options are not ideally adapted to

academic needs. Ideally, each student would have a balance
of cloud credits issued by staff, and their accounts would be
suspended if the limit is exceeded. Students should be un-
able to view each others’ work or terminate virtual machines
belonging to other students. Course staff should be able to
use standard industry tools, without needing to modify them
to prevent abuse. We understand that vendors, particularly
Amazon, are working to introduce new billing models more
appropriate for classroom use. This issue may therefore be
resolved soon.

Even so, our experience was a success overall. Though
current cloud billing models posed some difficulties, per-
pupil costs were not a problem. In the Spring version of
our course, we only spent $45 per student on average, less
than half the standard grant, or $15000 total. This is small
compared to the overall instructional cost of the course. The
per-pupil cost is comparable to a textbook.

The vast majority of students were conscientious about
costs. They were generally careful to not waste computing
resources. The ones who were careless were usually quick
to respond when notified that they had accidentally kept
instances running. Cost management was a small fraction
of the staff time for the assignment.

The course also succeeded in pedagogic terms. Students
had the opportunity to exercise their programming and de-
bugging skills in a new and challenging environment. They

were able to experience parallel performance at a scale that
would have been unthinkable without the cloud. And they
were able to experience cutting-edge tools that helped them
grow professionally.

Our course let every student in a large course run their
programs on comparatively large clusters of modern hard-
ware, without scheduling or resource contention. This expe-
rience would have been infeasible without the public cloud.
Students enjoyed the ability to run at a “real” scale with real
tools. Student evaluation was very positive of using Hadoop,
even despite rough edges and difficulty.

Acknowledgements
Our course was funded by an Amazon Web Services instruc-
tional grant.

7. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, et al.
Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report 2009-28, UC Berkeley,
2009.

[2] R. A. Brown. Hadoop at home: large-scale computing
at a small college. In SIGCSE, 2009.

[3] Cloudera, inc. Configuring and Running CDH Cloud
Scripts. Retrieved August 31, 2011 from
https://ccp.cloudera.com/display/CDH2DOC/

Configuring+and+Running+CDH+Cloud+Scripts, 2011.

[4] A. Couch. Comp150 CPA. Retrieved August 21, 2011
from http://www.cs.tufts.edu/comp/150CPA/, 2011.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM,
Volume 51(Issue 1):107–113, 2008.

[6] P. Garrity, T. Yates, R. Brown, and E. Shoop.
WebMapReduce: an accessible and adaptable tool for
teaching map-reduce computing. In SIGCSE, 2011.

[7] J. Hirai, S. Raghavan, H. Garcia-Molina, and
H. Paepcke. WebBase: A repository of web pages. In
WWW, May 2000.

[8] M. Johnson, R. H. Liao, A. Rasmussen, R. Sridharan,
D. D. Garcia, and B. Harvey. Infusing Parallelism into
Introductory Computer Science Curriculum using
MapReduce. Technical Report EECS-2008-34, UC
Berkeley, 2008.

[9] A. Kimball, S. Michels-Slettvet, and C. Bisciglia.
Cluster computing for web-scale data processing. In
SIGCSE, 2008.

[10] J. Lin. Data-Intensive Information Processing
Applications. Retrieved August 21, 2011 from
http://www.umiacs.umd.edu/~jimmylin/

cloud-2010-Spring/info.html, 2011.

[11] D. J. Malan. Moving cs50 into the cloud. J. Comput.
Small Coll., 25:111–120, June 2010.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[13] C. Shaoul and C. Westbury. A usenet corpus.
Retrieved August 21, 2011 from
http://www.psych.ualberta.ca/~westburylab/

downloads/usenetcorpus.download.html, May 2011.

