On the Consistency of Ranking Algorithms

John Duchi Lester Mackey Michael I. Jordan

University of California, Berkeley

BEARS 2012
Ranking

Goal: Order set of inputs/results to best match the preferences of an individual or a population

- Web search: Return most relevant results for user queries
- Recommendation systems:
 - Suggest movies to watch based on user’s past ratings
 - Suggest news articles to read based on past browsing history
- Advertising placement: Maximize profit and click-through
Supervised ranking setup

Observe: Sequence of training examples

- **Query** q: e.g., search term
- **Set of results** x to rank
 - Items $\{1, 2, 3, 4\}$
- **Weighted DAG** G representing preferences over results
 - Item 1 preferred to $\{2, 3\}$ and item 3 to 4

Observe multiple preference graphs for the same query q and results x
Supervised ranking setup

Learn: Scoring function $f(x)$ to rank results x

- Real-valued score for result i
 \[s_i := f_i(x) \]
- Result i ranked above j iff $f_i(x) > f_j(x)$
- Loss suffered when scores s disagree with preference graph G:
 \[L(s, G) = \sum_{i,j} a_{ij} 1(s_i < s_j) \]

Example:

\[L(s, G) = a_{12} 1(s_1 < s_2) + a_{23} 1(s_1 < s_3) + a_{34} 1(s_3 < s_4) \]
Supervised ranking setup

Example: Scoring function f optimally ranks results in G

$$f_1(x) > f_2(x)$$

$$f_2(x) > f_3(x)$$
Detour to classification

Consider the simpler problem of classification

- Given: Input x, label $y \in \{-1, 1\}$
- Learn: Classification function $f(x)$. Have margin $s = yf(x)$

Loss $L(s) = 1_{(s \leq 0)}$

Surrogate loss $\phi(s)$

Hard

Tractable
Classification and surrogate consistency

Question: Does minimizing expected ϕ-loss minimize expected L?

Minimize $\sum_{i=1}^{n} \phi(y_{i}f(x_{i})) \xrightarrow{n \to \infty} \text{Minimize } \mathbb{E}\phi(Yf(X))$

$\Leftarrow \Rightarrow \text{Minimize } \mathbb{E}L(Yf(X))$

Theorem: If ϕ is convex, procedure based on minimizing ϕ is consistent if and only if $\phi'(0) < 0$.\(^1\)

\(^1\)Bartlett, Jordan, McAuliffe 2006
What about ranking consistency?

Minimization of true ranking loss is hard

- Replace ranking loss $L(s, G)$ with tractable surrogate $\phi(s, G)$

Question: When is surrogate minimization consistent for ranking?
Conditional losses

\[p(G_1) = 0.5 \quad p(G_2) = 0.5 \]

\[\ell(p, s) = \sum_G p(G|x, q)L(s, G) \]

\[\ell(p, s) = 0.5a_{21}1_{(s_2 < s_1)} + 0.5(a_{12} + a'_{12})1_{(s_1 < s_2)} + 0.5(a_{23} + a'_{23})1_{(s_1 < s_3)} + 0.5(a_{34} + a'_{34})1_{(s_3 < s_4)} \]

Optimal score vectors

\[A(p) = \arg\min_s \ell(p, s) \]
Consistency theorem

Theorem: Procedure minimizing φ is asymptotically consistent if and only if

$$\inf_s \left\{ \sum_{G} p(G) \varphi(s, G) \mid s \notin A(p) \right\} > \inf_s \left\{ \sum_{G} p(G) \varphi(s, G) \right\}$$

In other words, φ is consistent if and only if minimization gives correct order to the results.

Goal: Find tractable φ so s that minimizes

$$\sum_{G} p(G) \varphi(s, G)$$

minimizes $\ell(p, s)$.

Duchi, Mackey, Jordan (UC Berkeley)
Consistent and Tractable?

Hard to get consistent and tractable \(\varphi \)

- In general, it is NP-hard even to find \(s \) minimizing

\[
\sum_{G} p(G)L(s, G).
\]

(reduction from feedback arc-set problem)

Some restrictions on the problem space necessary...
Low noise setting

Definition: Low noise if $a_{ij} - a_{ji} > 0$ and $a_{jk} - a_{kj} > 0$

implies $a_{ik} - a_{ki} \geq (a_{ij} - a_{ji}) + (a_{jk} - a_{kj})$

- Intuition: weight on path reinforces local weights, local weights reinforce paths.

- Reverse triangle inequality

- True when DAG derived from user ratings

\[
a_{13} - a_{31} \geq a_{12} + a_{23}
\]
Trying to achieve consistency

Try ideas from classification: \(\phi \) is convex, bounded below, \(\phi'(0) < 0 \). Common in ranking literature.\(^2\)

\[
\phi(s, G) = \sum_{ij} a_{ij} \phi(s_i - s_j)
\]

Theorem: \(\phi \) is not consistent, even in low noise settings.

\(^2\)Herbrich et al., 2000; Freund et al., 2003; Dekel et al., 2004, etc.
What is the problem?

Surrogate loss $\phi(s, G) = \sum_{ij} a_{ij} \phi(s_i - s_j)$

$p(G_1) = .5$

$p(G_2) = .5$

Aggregate

$$\sum_G p(G) \phi(s, G) = \frac{1}{2} \phi(s, G_1) + \frac{1}{2} \phi(s, G_2)$$

$\propto a_{12} \phi(s_1 - s_2) + a_{13} \phi(s_1 - s_3) + a_{23} \phi(s_2 - s_3) + a_{31} \phi(s_3 - s_1)$
What is the problem?

\[a_{12}\phi(s_1 - s_2) + a_{13}\phi(s_1 - s_3) + a_{23}\phi(s_2 - s_3) + a_{31}\phi(s_3 - s_1) \]

More bang for your $$ by increasing to 0 from left: \ s_1 \downarrow. \ Result:

\[s^* = \arg\min_s \sum_{ij} a_{ij}\phi(s_i - s_j) \]

\[\text{can have } s_2^* > s_1^*, \text{ even if } a_{13} - a_{31} > a_{12} + a_{23}. \]
Trying to achieve consistency, II

Idea: Use margin-based penalty\(^3\)

\[
\varphi(s, G) = \sum_{ij} \phi(s_i - s_j - a_{ij})
\]

Inconsistent: Take \(a_{ij} \equiv c\); can reduce to previous case

\(^3\)Shashua and Levin 2002
Ranking is challenging

- Inconsistent in general
- Low noise settings
 - Inconsistent for edge-based convex losses
 \[
 \varphi(s, G) = \sum_{ij} a_{ij} \phi(s_i - s_j)
 \]
 - Inconsistent for margin-based convex losses
 \[
 \varphi(s, G) = \sum_{ij} \phi(s_i - s_j - a_{ij})
 \]
- Question: Do tractable consistent losses exist?
 Yes.
A solution in the low noise setting

Recall reverse triangle inequality

<table>
<thead>
<tr>
<th>1</th>
<th>a_{12}</th>
<th>a_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>a_{23}</td>
<td>a_{31}</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Idea 1: make loss reduction proportional to weight difference $a_{ij} - a_{ji}$
- Idea 2: regularize to keep loss well-behaved

Theorem: For r strongly convex, following loss is consistent:

$$\varphi(s, G) = \sum_{ij} a_{ij}(s_j - s_i) + \sum_j r(s_j)$$
Consistency proof sketch

Write surrogate, take derivatives:

$$\sum_{G} p(G) \varphi(s, G) = \sum_{ij} a_{ij} (s_j - s_i) + \sum_{j} r(s_j)$$

$$\frac{\partial}{\partial s_i} = \sum_{j} (a_{ij} - a_{ji}) + r'(s_i) = 0$$

Simply note that r' is strictly increasing, see that

$$s_i > s_k \iff \sum_{j} a_{ij} - a_{ji} > \sum_{j} a_{kj} - a_{jk}$$

Last holds by low-noise assumption.
Experimental results

- MovieLens dataset: 4 100,000 ratings for 1682 movies by 943 users
- Query is user u, results $X = \{1, \ldots, 1682\}$ are movies
- Scoring function: $f_i(x, u) = w^T \psi(x_i, u)$
- ψ maps from movie x_i and user u to features
- Per-user pair weight a_{ij}^u is difference of user’s ratings for movies x_i, x_j

4 GroupLens Lab, 2008
Surrogate risks

Losses based on pairwise comparisons

\[
\text{Ours} \quad \sum_{i,j,u} a_{ij}^u w^T (\psi(x_j, u) - \psi(x_i, u)) + \theta \sum_{i,u} (w^T \psi(x_i, u))^2
\]

\[
\text{Hinge} \quad \sum_{i,j,u} a_{ij}^u \left[1 - w^T (\psi(x_j, u) - \psi(x_i, u)) \right] +
\]

\[
\text{Logistic} \quad \sum_{i,j,u} a_{ij}^u \log \left(1 + e^{w^T \psi(x_j, u) - \psi(x_i, u)} \right)
\]
Experimental results

Test losses for each surrogate (standard error in parenthesis)

<table>
<thead>
<tr>
<th>Num training pairs</th>
<th>Hinge</th>
<th>Logistic</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>.478 (.008)</td>
<td>.479 (.010)</td>
<td>.465 (.006)</td>
</tr>
<tr>
<td>40000</td>
<td>.477 (.008)</td>
<td>.478 (.010)</td>
<td>.464 (.006)</td>
</tr>
<tr>
<td>80000</td>
<td>.480 (.007)</td>
<td>.478 (.009)</td>
<td>.462 (.005)</td>
</tr>
<tr>
<td>120000</td>
<td>.477 (.008)</td>
<td>.477 (.009)</td>
<td>.463 (.006)</td>
</tr>
<tr>
<td>160000</td>
<td>.474 (.007)</td>
<td>.474 (.007)</td>
<td>.461 (.004)</td>
</tr>
</tbody>
</table>
Conclusions

- General theorem for consistency of ranking algorithms
- General inconsistency results as well as inconsistency results for several natural and commonly used losses, even in low noise settings
- Consistent loss for low noise settings
Open questions

- What are appropriate ranking losses? Click-based loss, ratings-based losses?
- Other consistent losses?
- Convergence rates?