On the Consistency of Ranking Algorithms

John Duchi Lester Mackey Michael I. Jordan

University of California, Berkeley

BEARS 2012

Goal: Order set of inputs/results to best match the preferences of an individual or a population

- ▶ Web search: Return most relevant results for user queries
- Recommendation systems:
 - Suggest movies to watch based on user's past ratings
 - Suggest news articles to read based on past browsing history
- Advertising placement: Maximize profit and click-through

Supervised ranking setup

Observe: Sequence of training examples

- Query q: e.g., search term
- Set of results x to rank
 - Items $\{1, 2, 3, 4\}$
- Weighted DAG G representing preferences over results
 - \blacktriangleright Item 1 preferred to $\{2,3\}$ and item 3 to 4

Observe multiple preference graphs for the same query \boldsymbol{q} and results \boldsymbol{x}

Example G with $x = \{1, 2, 3, 4\}$

Supervised ranking setup

Learn: Scoring function f(x) to rank results x

 \blacktriangleright Real-valued score for result i

$$s_i := f_i(x)$$

- Result *i* ranked above *j* iff $f_i(x) > f_j(x)$
- Loss suffered when scores s disagree with preference graph G:

$$L(s,G) = \sum_{i,j} a_{ij} \mathbf{1}_{(s_i < s_j)}$$

Example G with $x = \{1, 2, 3, 4\}$

Example:

$$L(s,G) = a_{12}1_{(s_1 < s_2)} + a_{23}1_{(s_1 < s_3)} + a_{34}1_{(s_3 < s_4)}$$

Supervised ranking setup

Example: Scoring function f optimally ranks results in G

Detour to classification

Consider the simpler problem of classification

- Given: Input x, label $y \in \{-1, 1\}$
- Learn: Classification function f(x). Have margin s = yf(x)

Classification and surrogate consistency Question: Does minimizing expected ϕ loss minimize expected J

Question: Does minimizing expected ϕ -loss minimize expected L?

$$\begin{array}{rcl} \text{Minimize } \sum_{i=1}^{n} \phi(y_i f(x_i)) & \stackrel{n \to \infty}{\Rightarrow} & \text{Minimize } \mathbb{E}\phi(Yf(X)) \\ & \stackrel{?}{\longleftrightarrow} & \text{Minimize } \mathbb{E}L(Yf(X)) \end{array}$$

Theorem: If ϕ is convex, procedure based on minimizing ϕ is consistent if and only if $\phi'(0) < 0.^1$

¹Bartlett, Jordan, McAuliffe 2006

Duchi, Mackey, Jordan (UC Berkeley)

What about ranking consistency?

Minimization of true ranking loss is hard

▶ Replace ranking loss L(s,G) with tractable surrogate $\varphi(s,G)$

Question: When is surrogate minimization consistent for ranking?

Conditional losses

$$\ell(p,s) = \sum_{G} p(G|x,q) L(s,G)$$

$$\ell(p,s) = .5a_{21}1_{(s_2 < s_1)} + .5(a_{12} + a'_{12})1_{(s_1 < s_2)}$$

$$+ .5(a_{23} + a'_{23})1_{(s_1 < s_3)} + .5(a_{34} + a'_{34})1_{(s_3 < s_4)}$$

Optimal score vectors

$$A(p) = \operatorname*{argmin}_{s} \ell(p, s)$$

Consistency theorem

Theorem: Procedure minimizing φ is asymptotically consistent if and only if

$$\inf_{s} \left\{ \sum_{G} p(G)\varphi(s,G) \mid s \notin A(p) \right\} > \inf_{s} \left\{ \sum_{G} p(G)\varphi(s,G) \right\}$$

In other words, φ is consistent if and only if minimization gives correct order to the results

Goal: Find tractable φ so s that minimizes

$$\sum_{G} p(G)\varphi(s,G)$$

minimizes $\ell(p, s)$.

Consistent and Tractable?

Hard to get consistent and tractable φ

▶ In general, it is NP-hard even to *find* s minimizing

$$\sum_{G} p(G)L(s,G).$$

(reduction from feedback arc-set problem)

Some restrictions on the problem space necessary...

Low noise setting

Definition: Low noise if $a_{ij} - a_{ji} > 0$ and $a_{jk} - a_{kj} > 0$

implies
$$a_{ik} - a_{ki} \ge (a_{ij} - a_{ji}) + (a_{jk} - a_{kj})$$

- Intuition: weight on path reinforces local weights, local weights reinforce paths.
- Reverse triangle inequality
- True when DAG derived from user ratings

Trying to achieve consistency

Try ideas from classification: ϕ is convex, bounded below, $\phi'(0)<0.$ Common in ranking literature.²

$$\varphi(s,G) = \sum_{ij} a_{ij}\phi(s_i - s_j)$$

$$(1) \qquad (3)$$

$$a_{12} \qquad (4)$$

$$\varphi(s,G) = a_{12}\phi(s_1 - s_2) + a_{34}\phi(s_3 - s_4)$$

Theorem: φ is not consistent, even in low noise settings.

²Herbrich et al., 2000; Freund et al., 2003; Dekel et al., 2004, etc.

Duchi, Mackey, Jordan (UC Berkeley)

Consistency of Ranking Algorithms

What is the problem?

Surrogate loss $\varphi(s,G) = \sum_{ij} a_{ij} \phi(s_i - s_j)$

$$\sum_{G} p(G)\varphi(s,G) = \frac{1}{2}\varphi(s,G_1) + \frac{1}{2}\varphi(s,G_2)$$

$$\propto a_{12}\phi(s_1 - s_2) + a_{13}\phi(s_1 - s_3) + a_{23}\phi(s_2 - s_3) + a_{31}\phi(s_3 - s_1)$$

What is the problem?

 $a_{12}\phi(s_1 - s_2) + a_{13}\phi(s_1 - s_3) + a_{23}\phi(s_2 - s_3) + a_{31}\phi(s_3 - s_1)$

More bang for your \$\$ by increasing to 0 from left: $s_1 \downarrow$. Result:

$$s^* = \underset{s}{\operatorname{argmin}} \sum_{ij} a_{ij} \phi(s_i - s_j)$$

can have $s_2^* > s_1^*$, even if $a_{13} - a_{31} > a_{12} + a_{23}$.

Trying to achieve consistency, II Idea: Use margin-based penalty³

$$\varphi(s,G) = \sum_{ij} \phi(s_i - s_j - a_{ij})$$

Inconsistent: Take $a_{ij} \equiv c$; can reduce to previous case

³Shashua and Levin 2002

Duchi, Mackey, Jordan (UC Berkeley)

Ranking is challenging

- Inconsistent in general
- Low noise settings
 - Inconsistent for edge-based convex losses

$$\varphi(s,G) = \sum_{ij} a_{ij}\phi(s_i - s_j)$$

Inconsistent for margin-based convex losses

$$\varphi(s,G) = \sum_{ij} \phi(s_i - s_j - a_{ij})$$

Question: Do tractable consistent losses exist?

Yes.

A solution in the low noise setting

Recall reverse triangle inequality

- Idea 1: make loss reduction proportional to weight difference a_{ij} - a_{ji}
- Idea 2: regularize to keep loss well-behaved

Theorem: For r strongly convex, following loss is consistent:

$$\varphi(s,G) = \sum_{ij} a_{ij}(s_j - s_i) + \sum_j r(s_j)$$

Consistency proof sketch

Write surrogate, take derivatives:

$$\sum_{G} p(G)\varphi(s,G) = \sum_{ij} a_{ij}(s_j - s_i) + \sum_{j} r(s_j)$$
$$\frac{\partial}{\partial s_i} = \sum_{j} (a_{ij} - a_{ji}) + r'(s_i) = 0$$

Simply note that r' is strictly increasing, see that

$$s_i > s_k \quad \Leftrightarrow \quad \sum_j a_{ij} - a_{ji} > \sum_j a_{kj} - a_{jk}$$

Last holds by low-noise assumption.

Experimental results

- MovieLens dataset:⁴ 100,000 ratings for 1682 movies by 943 users
- Query is user u, results $X = \{1, \dots, 1682\}$ are movies
- Scoring function: $f_i(x, u) = w^T \psi(x_i, u)$
- ψ maps from movie x_i and user u to features
- Per-user pair weight a^u_{ij} is difference of user's ratings for movies x_i, x_j

⁴GroupLens Lab, 2008

Duchi, Mackey, Jordan (UC Berkeley)

Surrogate risks

Losses based on pairwise comparisons

$$\begin{array}{ll} \text{Ours} & \sum_{i,j,u} a^u_{ij} w^T (\psi(x_j,u) - \psi(x_i,u)) + \theta \sum_{i,u} (w^T \psi(x_i,u))^2 \\ \text{Hinge} & \sum_{i,j,u} a^u_{ij} \left[1 - w^T (\psi(x_j,u) - \psi(x_i,u)) \right]_+ \\ \text{Logistic} & \sum_{i,j,u} a^u_{ij} \log \left(1 + e^{w^T (\psi(x_j,u) - \psi(x_i,u))} \right) \end{array}$$

Experimental results

Test losses for each surrogate (standard error in parenthesis)

Num training pairs	Hinge	Logistic	Ours
20000	.478 (.008)	.479 (.010)	.465 (.006)
40000	.477 (.008)	.478 (.010)	.464 (.006)
80000	.480 (.007)	.478 (.009)	.462 (.005)
120000	.477 (.008)	.477 (.009)	.463 (.006)
160000	.474 (.007)	.474 (.007)	.461 (.004)

Conclusions

- General theorem for consistency of ranking algorithms
- General inconsistency results as well as inconsistency results for several natural and commonly used losses, even in low noise settings
- Consistent loss for low noise settings

Open questions

- What are appropriate ranking losses? Click-based loss, ratings-based losses?
- Other consistent losses?
- Convergence rates?