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Ranking

Goal: Order set of inputs/results to best match the preferences of an
individual or a population

I Web search: Return most relevant results for user queries

I Recommendation systems:
I Suggest movies to watch based on user’s past ratings
I Suggest news articles to read based on past browsing history

I Advertising placement: Maximize profit and click-through
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Supervised ranking setup

Observe: Sequence of training examples

I Query q: e.g., search term

I Set of results x to rank
I Items {1, 2, 3, 4}

I Weighted DAG G representing preferences
over results

I Item 1 preferred to {2, 3} and item 3 to 4

Observe multiple preference graphs for the same
query q and results x
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Example G with
x = {1, 2, 3, 4}
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Supervised ranking setup
Learn: Scoring function f(x) to rank results x

I Real-valued score for result i

si := fi(x)

I Result i ranked above j iff fi(x) > fj(x)

I Loss suffered when scores s disagree with
preference graph G:

L(s,G) =
∑
i,j

aij1(si<sj)
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Example G with
x = {1, 2, 3, 4}

Example:

L(s,G) = a121(s1<s2) + a231(s1<s3) + a341(s3<s4)
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Supervised ranking setup

Example: Scoring function f optimally ranks results in G

1
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G

f1(x) > f2(x)

f2(x) > f3(x)
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Detour to classification

Consider the simpler problem of classification

I Given: Input x, label y ∈ {−1, 1}
I Learn: Classification function f(x). Have margin s = yf(x)

Loss L(s) = 1(s≤0) Surrogate loss φ(s)

Hard Tractable

Duchi, Mackey, Jordan (UC Berkeley) Consistency of Ranking Algorithms BEARS 2012 6 / 24



Classification and surrogate consistency
Question: Does minimizing expected φ-loss minimize expected L?

Minimize
∑n

i=1φ(yif(xi))
n→∞⇒ Minimize Eφ(Y f(X))

?⇐⇒ Minimize EL(Y f(X))

Theorem: If φ is convex, procedure based on minimizing φ is
consistent if and only if φ′(0) < 0.1

1Bartlett, Jordan, McAuliffe 2006
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What about ranking consistency?

Minimization of true ranking loss is hard

I Replace ranking loss L(s,G) with tractable surrogate ϕ(s,G)

Question: When is surrogate minimization consistent for ranking?
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Conditional losses
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.5 a21

.5 a23+ .5 a23'

.5 a34+ .5 a34'

.5 a12

p(G1) = .5 p(G2) = .5 Aggregate

I `(p, s) =
∑

G p(G|x, q)L(s,G)
I `(p, s) = .5a211(s2<s1) + .5(a12 + a′12)1(s1<s2)

+ .5(a23 + a′23)1(s1<s3) + .5(a34 + a′34)1(s3<s4)
I Optimal score vectors

A(p) = argmin
s

`(p, s)
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Consistency theorem

Theorem: Procedure minimizing ϕ is asymptotically consistent if
and only if

inf
s

{∑
G

p(G)ϕ(s,G)

∣∣∣∣ s 6∈ A(p)
}
> inf

s

{∑
G

p(G)ϕ(s,G)

}

In other words, ϕ is consistent if and only if minimization gives
correct order to the results
Goal: Find tractable ϕ so s that minimizes∑

G

p(G)ϕ(s,G)

minimizes `(p, s).
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Consistent and Tractable?

Hard to get consistent and tractable ϕ

I In general, it is NP-hard even to find s minimizing∑
G

p(G)L(s,G).

(reduction from feedback arc-set problem)

Some restrictions on the problem space necessary...
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Low noise setting

Definition: Low noise if aij − aji > 0 and ajk − akj > 0

implies aik − aki ≥ (aij − aji) + (ajk − akj)

2 3

1

a12
a13

a31

a23

a13−a31 ≥ a12+a23

I Intuition: weight on path reinforces local
weights, local weights reinforce paths.

I Reverse triangle inequality

I True when DAG derived from user ratings
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Trying to achieve consistency

Try ideas from classification: φ is convex, bounded below, φ′(0) < 0.
Common in ranking literature.2

ϕ(s,G) =
∑
ij

aijφ(si − sj)

1

2

3

4

a12 a34 ϕ(s,G) = a12φ(s1 − s2) + a34φ(s3 − s4)

Theorem: ϕ is not consistent, even in low noise settings.

2Herbrich et al., 2000; Freund et al., 2003; Dekel et al., 2004, etc.
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What is the problem?

Surrogate loss ϕ(s,G) =
∑

ij aijφ(si − sj)

2 3

1

a12 a13

a23 2 3

1

a31

2 3

1

a12
a13

a31

a23

p(G1) = .5 p(G2) = .5 Aggregate

∑
G

p(G)ϕ(s,G) =
1

2
ϕ(s,G1) +

1

2
ϕ(s,G2)

∝ a12φ(s1 − s2) + a13φ(s1 − s3) + a23φ(s2 − s3) + a31φ(s3 − s1)
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What is the problem?
a12φ(s1 − s2) + a13φ(s1 − s3) + a23φ(s2 − s3) + a31φ(s3 − s1)

a31φ(α3 - α1)

a13φ(α1 - α3)
2 3

1

a12
a13

a31

a23

More bang for your $$ by increasing to 0 from left: s1 ↓. Result:

s∗ = argmin
s

∑
ij

aijφ(si − sj)

can have s∗2 > s∗1, even if a13 − a31 > a12 + a23.
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Trying to achieve consistency, II
Idea: Use margin-based penalty3

ϕ(s,G) =
∑
ij

φ(si − sj − aij)

Inconsistent: Take aij ≡ c; can reduce to previous case

2 3

1

a12
a13

a31

a23

3Shashua and Levin 2002
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Ranking is challenging

I Inconsistent in general

I Low noise settings
I Inconsistent for edge-based convex losses

ϕ(s,G) =
∑
ij

aijφ(si − sj)

I Inconsistent for margin-based convex losses

ϕ(s,G) =
∑
ij

φ(si − sj − aij)

I Question: Do tractable consistent losses exist?

Yes.
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A solution in the low noise setting

Recall reverse triangle inequality

2 3

1

a12
a13

a31

a23

I Idea 1: make loss reduction proportional to
weight difference aij − aji

I Idea 2: regularize to keep loss well-behaved

Theorem: For r strongly convex, following loss is consistent:

ϕ(s,G) =
∑
ij

aij(sj − si) +
∑
j

r(sj)
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Consistency proof sketch

Write surrogate, take derivatives:∑
G

p(G)ϕ(s,G) =
∑
ij

aij(sj − si) +
∑
j

r(sj)

∂

∂si
=
∑
j

(aij − aji) + r′(si) = 0

Simply note that r′ is strictly increasing, see that

si > sk ⇔
∑
j

aij − aji >
∑
j

akj − ajk

Last holds by low-noise assumption.

Duchi, Mackey, Jordan (UC Berkeley) Consistency of Ranking Algorithms BEARS 2012 19 / 24



Experimental results

I MovieLens dataset:4 100,000 ratings for 1682 movies by 943
users

I Query is user u, results X = {1, . . . , 1682} are movies

I Scoring function: fi(x, u) = wTψ(xi, u)

I ψ maps from movie xi and user u to features

I Per-user pair weight auij is difference of user’s ratings for movies
xi, xj

4GroupLens Lab, 2008
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Surrogate risks

Losses based on pairwise comparisons

Ours
∑
i,j,u

auijw
T (ψ(xj, u)− ψ(xi, u)) + θ

∑
i,u

(wTψ(xi, u))
2

Hinge
∑
i,j,u

auij
[
1− wT (ψ(xj, u)− ψ(xi, u))

]
+

Logistic
∑
i,j,u

auij log
(
1 + ew

T (ψ(xj ,u)−ψ(xi,u))
)
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Experimental results

Test losses for each surrogate (standard error in parenthesis)
Num training pairs Hinge Logistic Ours

20000 .478 (.008) .479 (.010) .465 (.006)
40000 .477 (.008) .478 (.010) .464 (.006)
80000 .480 (.007) .478 (.009) .462 (.005)

120000 .477 (.008) .477 (.009) .463 (.006)
160000 .474 (.007) .474 (.007) .461 (.004)
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Conclusions

I General theorem for consistency of ranking algorithms

I General inconsistency results as well as inconsistency results for
several natural and commonly used losses, even in low noise
settings

I Consistent loss for low noise settings
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Open questions

I What are appropriate ranking losses? Click-based loss,
ratings-based losses?

I Other consistent losses?

I Convergence rates?
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