
Challenges and Opportunities for Managing Data Systems
Using Statistical Models

Yanpei Chen, Archana Ganapathi∗, Randy Katz
University of California, Berkeley, ∗Splunk

{ychen2,randy}@eecs.berkeley.edu, ∗aganapathi@splunk.com

Abstract

Modern data systems comprise of heterogeneous and distributed components, making them difficult
to manage piece-wise, let alone as a whole. Furthermore, the scale, complexity, and growth rate of these
systems render any heuristic and rule-based system management approaches insufficient. In response
to these challenges, statistics-based techniques for building gray or black box models of system perfor-
mance can better guide system management decisions. Although statistics-based approaches have been
successfully deployed, a single model is often inadequate to capture intricacies of a single workload on
a single system. The problem is exacerbated with multiple heterogeneous workloads super-positioned
on a consolidated system. An even greater challenge is to translate the behavioral correlations found by
statistics into insights and guidance for designing and managing even more complex data systems. In
this article, we reflect on recent work on using statistics for data system modeling and management, and
highlight areas awaiting further research.

1 Introduction

Large scale data systems are becoming ever more important. This is driven by increasingly economical access to
large scale storage and computation infrastructure [4, 3], ubiquitous ability to generate, collect, and archive data
about the physical world [11], and growing statistical literacy across many industries to consume, understand,
and derive value from large datasets [1, 7, 15, 14]. The increasing ability to generate, record, and understand
large scale data about the physical world is symbionic with the rising expertise to do the same for large scale
data systems. Innovations in one area pioneer and inspire mirror innovations in the other. Statistical models
have emerged as an essential tool for extracting knowledge about both physical and technology systems. This
continues the historical relevance of statistics to scientific knowledge creation, in terms of inference, experiment
design, hypothesis testing, and other ways to test and extend the limits of knowledge.

This technology context have led to the confluence of statistics and system design. In the past decade,
a body of work emerged from both researchers and practitioners to use statistical techniques to mine data,
model systems, understand systems, and manage systems [18, 9, 6, 13, 8, 12]. This effort is in response to the
increasing complexity of data systems and the workloads they service, both composed of heterogeneous and
often distributed components. Domain specific heuristics no longer scale, and no single domain expert can be

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

consulted for all system-related decisions. An effort to scientifically understand these systems brings rewards far
outweighing the costs of re-engineering and the penalties of mis-engineering. Using statistical models becomes
essential for designing and operating these systems.

There are a variety of commonly used statistical techniques, ranging from simple linear regression to more
complex high-dimensional analysis. These techniques vary greatly in the amount of system specific knowledge
they require and the system visibility they provide. A key challenge arises in identifying the boundaries of the
system being modeled, what specific technique to use, how to adapt the statistical technique to serve the specific
system management problem, how to evaluate the statistics-driven optimizations, and how to translate statistics
to new knowledge about the data systems.

This article discusses these challenges and how they have been partially addressed by recent research. We
focus on a few case studies to highlight in depth the challenges associated with defining system boundaries
(Section 2), building statistical models (Section 3), evaluating statistical optimizations (Section 4), and turning
statistics to new knowledge (Section 5). The case studies are mostly drawn from the authors’ own work, because
we are familiar with their limits. We highlight open problems and identify research opportunities that would
benefit the general data system management community.

2 Defining a System

A system is a conceptual unit to which we can feed input, modify configurations, and observe performance under
the given input and configuration. System input can be a single request, or a set of requests, often referred to
as workload. Various metrics can characterize individual requests or entire workloads, ranging from request
type, request size, to interarrival rate between requests, and others. The scale and mix of such requests often
control how much work a system must perform, what kind of work they perform, and which configurations are
the most appropriate. For example, in a relational database, queries serve as the input and sets of queries form a
workload. The number, type, and arrival pattern of queries dictate the work required of the database, which can
then be tuned for a particular workload.

System configuration often exposes tradeoffs to optimize system performance. For example, configuring a
machine to use a subset of its cores for a particular application versus all its cores for that application would allow
users to trade response time for resource sharing across different workloads. For another example, data systems
often have logical configuration parameters to control data layout. One can control the layout of data among
the nodes on a parallel relational database system, and different layout policies have an impact on resource
utilization and query execution time.

System performance is an umbrella term that can be used for any observed behavior that is a consequence
of running an input workload under a particular configuration. Some examples of performance metrics include
execution time, CPU utilization, cache hits/misses, disk I/Os and latency. These metrics may be collected
periodically, every minute for example, aggregated over a time window, such as average CPU utilization over
a one minute window, or aggregated for an entire workload, as in the case of a performance summary for a
database.

This simplistic definition of a system is extensible. A system composed of multiple subsystems has a set of
input and configuration parameters for the entire system, which divides into input and configuration parameters
for each subsystem. The performance of the entire system is a composition of the performance of each subsys-
tem. Although the definition is simplistic, modeling such complex multi-component systems is non-trivial.

3 Modeling the System

The increasing complexity of data systems and the workloads they service create challenges for modeling system
behavior. We illustrate some challenges with three case studies. The first seeks to predict storage subsystem

2

(a) 15-dimensional description of storage system workloads in [18]

1. Average arrival rate 4. Percentage of sequential requests
2. Read ratio 5. Temporal and spatial burstiness
3. Average request size 6-15. Correlations between pairs of attributes

(b) 41-dimensional description of directory-level access patterns in [9]

1-3. Number of hours with 1, 2-3, or 4 file opens
4-6. Number of hours with 1-100KB, 100KB-1MB, or >1MB reads
7-9. Number of hours with 1-100KB, 100KB-1MB, or >1MB writes
10-12. Number of hours with 1, 2-3, or 4 metadata requests
13-15. Read request size - 25th, 50th, and 75th percentile of all requests
16-18. Write request size - 25th, 50th, and 75th percentile of all requests
19-21. Avg. time between IO requests - 25th, 50th, and 75th percentile of all request pairs
22-24. Read sequentiality - 25th, 50th, and 75th percentile of files in the subtree
25-27. Write sequentiality - 25th, 50th, and 75th percentile of files in the subtree
28-30. Read:write ratio - 25th, 50th, and 75th percentile of files
31-33. Repeated read ratio - 25th, 50th, and 75th percentile of files
34-36. Overwrite ratio - 25th, 50th, and 75th percentile of files
37. Read sequentiality - aggregated across all files
38. Write sequentiality - aggregated across all files
39. Read:write ratio - aggregated across all files
40. Repeated read ratio - aggregated across all files
41. Overwrite ratio - aggregated across all files

(c) 100,000-plus-dimensional description of datacenter state in [6]

1-100: Machine 1 CPU 25th, 50th, 75th percentiles, memory 25th, 50th, 75th percentiles, ... active threads, page swaps, ...
101-200: Machine 2 CPU 25th, 50th, 75th percentiles, memory 25th, 50th, 75th percentiles, ... active threads, page swaps, ...
...

Table 1: Model complexity for three studies. The number of dimensions corresponds to the complexity of the
systems and workloads being modeled

performance at the IO request level and aggregate workload level [18]. The second analyzes two enterprise
network storage traces to extract common access patterns, which facilitates identifying highly targeted system
optimizations [9]. The third constructs “fingerprints” of datacenter performance crises from historical traces,
and uses them to automatically classify future performance crises in real time [6].

The common challenge all these studies confronted is model multi-dimensionality. This challenge arises
from the simple fact that the systems and workloads being modeled are complex, and therefore need to be de-
scribed in multiple ways, i.e., multiple dimensions. In other words, the number of dimensions corresponds to
the complexity of the systems and workloads being modeled. For example, study [18] models block level stor-
age workloads on disks and disk arrays. The models there used 15 dimensions (Table 1(a)). Study [9] models
session, application, file, and directory level storage workloads on client-server network storage systems, an
increase in both system and workload complexity. The models there involved up to 41 dimensions (Table 1(b)).
Study [6] models general datacenter workloads on the entire datacenter, a further increase in system and work-
load complexity. The models there involved more than 100 dimensions for each machine, combined across
1000s of machines (Table 1(c)). Multi-dimensionality is inevitable for any rigorous attempts to model complex
systems and workloads.

Working in multiple dimensions creates a heavy cognitive load, and one instinct is to use as few dimensions
as possible, or even resort to heuristics. This approach carries great risk because it introduces designer bias,
another common challenge. Bias arises from the human system designer’s potentially incorrect assumptions

3

and mental models, built up by historical experience, but needs constant re-evaluation as systems and workloads
rapidly evolve. Any subjective choice of which dimensions to keep and what heuristical reasoning to apply
inevitably involves some assumptions about how systems and workloads behave. All three studies in [18, 9, 6]
consciously avoided this approach. They begin with a large number of dimensions, then perform dimension-
ality reduction through classification, clustering, regression, correlation analysis, and other rigorous statistics
techniques. Doing so controls the cognitive load in interpreting the models, while minimizing human designer
bias.

A further challenge is the necessity to deal with outlier behavior. Complex systems servicing complex
workloads are prone to introduce rare but regularly appearing outliers. These outliers cause “classical” statistical
models to be influenced by rare data. For example, a sudden spike in workload arrival patterns may cause a
single system query to take several orders of magnitude longer, causing the arithmetic average query duration
to double. For many use cases, this inflated kind of average is not appropriate. The solution is to use robust
statistics, an active field of statistical research that is gaining in prominence. Some examples of robust statistics
include quantiles (general case of percentiles, used in [6]), cluster medians (instead of arithmetic means, used
in [9]), and piece-wise models (instead of global models, used in [18]).

Generally speaking, most well-constructed statistical models can be shown to be effective for some highly
specific use cases, even if those models do not adequately address the challenges mentioned here. However, such
models create doubt regarding whether they generalize to other use cases, and remain useful as both systems
and workloads evolve. The challenges mentioned here require some effort to address, even though solutions to
them are more or less known. The rewards of addressing these challenges represent models that survive transient
behavior pathologies, are easier to understand and accept, and have a greater likelihood of keeping up with the
continuous growth in system and workload complexity.

4 Evaluating a Proposal

Once the system has been defined and a model chosen, there are two possible next steps. If the research con-
tribution is the system model itself, then the quality of the model needs to be evaluated. Alternately, if the
contribution is applying the model to improve system performance, then the evaluation needs to demonstrate
both the quality of the model and the improvement in system performance.

An example of evaluating statistical system models is in [13]. The work seeks to develop a multi-dimensional
system performance model for database queries. The key statistical tool used is kernel canonical correlation
analysis (KCCA). At a high level, KCCA finds dimensions of maximal correlation between an input dataset of
query descriptions and an output dataset of query behaviors [5]. Both the input and output datasets are multi-
dimensional. Evaluating the system model requires demonstrating that KCCA predicts system behavior that
approximates actual system behavior. System behavior traces originate from running an extension of the TPC-
DS decision support benchmark [16]. The trace then divides into training and testing datasets, a standard model
evaluation technique in statistics. Graphs of predicted versus actual behavior demonstrate the accuracy of the
models across multiple dimensions, including query time, message count, and records used (Figure 1).

An example of demonstrating improved system performance is in [8]. The work introduces realistic work-
load suites for MapReduce [10], and uses them to compare the performance of the default MapReduce FIFO
task scheduler versus the MapReduce fair scheduler [19]. A fixed workload is replayed under each MapReduce
scheduler, and the system performance behavior is observed and compared. In this case, the statistical model
is about the input workload, not on the system, and the research contribution is on accurately capturing system
behavior subject to realistic workload variations. Such variations complicate performance comparison, in that
some conditions favor one system setting, while some other conditions favor other settings. This is true even
for simple performance metrics such as job completion time. Figure 2 shows the fair scheduler gives lower
job completion time than the FIFO scheduler under some workload arrival patterns, and vice versa under other

4

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

KCCA predicted elapsed time

a
c
tu

a
l

e
la

p
s

e
d

 t
im

e Under-estimated

records accessed

disk i/o

estimate

too high

1 hour

1 second

1 minute

1 second 1 hour1 minute

Perfect

prediction

A
c

tu
a

l
E

la
p

s
e

d
 T

im
e

KCCA Predicted Elapsed Time

Fig. 10. Experiment 1: KCCA-predicted vs. actual elapsed times for 61
test queries. We use a log-log scale to accommodate the wide range of query
execution times from milliseconds to hours. The predictive risk value for our
prediction was 0.55 due to the presence of a few outliers (as marked in the
graph). Removing the furthest outlier increased the predictive risk value to
0.61.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 10
0

10
00

10
00

0

10
00

00

10
00

000

10
00

000
0

10
00

00
00

0

KCCA predicted records used

a
c

tu
a

l
re

c
o

rd
s

 u
s

e
d

Perfect Prediction

Under-estimated

records accessed

A
c

tu
a

l
R

e
c

o
rd

s
 U

s
e

d

KCCA Predicted Records Used

Fig. 11. Experiment 1: KCCA-predicted vs. actual records used. The
predictive risk value for our prediction was 0.98. (Predictive risk value close
to 1 implies near-perfect prediction).

Figure 10 compares our predictions to actual elapsed times

for a range of queries. As illustrated by the closeness of

nearly all of the points to the diagonal line (perfect prediction),

our predictions were quite accurate. Our original test set had

only three bowling balls. When we decided to add more, the

operating system of our Neoview system had already been

upgraded. Not surprisingly, the accuracy of our predictions for

the six bowling balls we then ran and added was not as good.

When the two circled outliers and the more recent bowling

balls were eliminated, then the predictive risk value jumped

to 0.95.

We show similar graphs for records used in Figure 11 and

message counts in Figure 12 (other metrics are omitted for

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

KCCA predicted message count

a
c
tu

a
l

m
e
s
s
a
g

e
 c

o
u

n
t

Perfect prediction

A
c

tu
a

l
M

e
s

s
a

g
e

 C
o

u
n

t

KCCA Predicted Message Count

Fig. 12. Experiment 1: KCCA-predicted vs. actual message count. The
predictive risk value for our prediction was 0.35 due to visible outliers.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

KCCA predicted elapsed time

a
c
tu

a
l
e

la
p

s
e
d

 t
im

e

1 hour

1 second

1 minute

1 second 1 hour1 minute

Perfect

prediction

A
c

tu
a

l
E

la
p

s
e

d
 T

im
e

KCCA Predicted Elapsed Time

Fig. 13. Experiment 2: KCCA-predicted vs. actual elapsed times of 61 test
queries, predicted using a training set of only 30 queries of each type.

space reasons). The simultaneous predictability of multiple

performance metrics using our approach enabled us to bet-

ter understand inaccurate predictions. For example, for one

prediction where elapsed time was much too high, we had

greatly overpredicted the disk IOs. This error is likely due

to our parallel database’s methods of cardinality estimation.

When we underpredicted elapsed time by a factor of two, it

was due to under-predicting the number of records accessed

by a factor of three.

2) Experiment 2: Train model with 30 queries of each type:

For our second experiment, to balance the training set with

equal numbers of feathers, golf balls and bowling balls, we

randomly sampled 30 golf balls and 30 feathers to include in

the training set and predicted performance of the same set of

61 test set queries as in Experiment 1. Figure 13 compares the

predicted and actual elapsed times for this experiments. We see

that our predictions were not as accurate as in our previous

experiment (which included a larger number, 1027, of queries

in the training set). As is the case with most machine learning

(a) Query elapsed time

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

KCCA predicted elapsed time

a
c
tu

a
l

e
la

p
s

e
d

 t
im

e Under-estimated

records accessed

disk i/o

estimate

too high

1 hour

1 second

1 minute

1 second 1 hour1 minute

Perfect

prediction

A
c

tu
a

l
E

la
p

s
e

d
 T

im
e

KCCA Predicted Elapsed Time

Fig. 10. Experiment 1: KCCA-predicted vs. actual elapsed times for 61
test queries. We use a log-log scale to accommodate the wide range of query
execution times from milliseconds to hours. The predictive risk value for our
prediction was 0.55 due to the presence of a few outliers (as marked in the
graph). Removing the furthest outlier increased the predictive risk value to
0.61.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 10
0

10
00

10
00

0

10
00

00

10
00

000

10
00

000
0

10
00

00
00

0

KCCA predicted records used

a
c

tu
a

l
re

c
o

rd
s

 u
s

e
d

Perfect Prediction

Under-estimated

records accessed

A
c

tu
a

l
R

e
c

o
rd

s
 U

s
e

d

KCCA Predicted Records Used

Fig. 11. Experiment 1: KCCA-predicted vs. actual records used. The
predictive risk value for our prediction was 0.98. (Predictive risk value close
to 1 implies near-perfect prediction).

Figure 10 compares our predictions to actual elapsed times

for a range of queries. As illustrated by the closeness of

nearly all of the points to the diagonal line (perfect prediction),

our predictions were quite accurate. Our original test set had

only three bowling balls. When we decided to add more, the

operating system of our Neoview system had already been

upgraded. Not surprisingly, the accuracy of our predictions for

the six bowling balls we then ran and added was not as good.

When the two circled outliers and the more recent bowling

balls were eliminated, then the predictive risk value jumped

to 0.95.

We show similar graphs for records used in Figure 11 and

message counts in Figure 12 (other metrics are omitted for

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

KCCA predicted message count

a
c
tu

a
l

m
e
s
s
a
g

e
 c

o
u

n
t

Perfect prediction

A
c

tu
a

l
M

e
s

s
a

g
e

 C
o

u
n

t

KCCA Predicted Message Count

Fig. 12. Experiment 1: KCCA-predicted vs. actual message count. The
predictive risk value for our prediction was 0.35 due to visible outliers.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

KCCA predicted elapsed time

a
c
tu

a
l
e

la
p

s
e
d

 t
im

e

1 hour

1 second

1 minute

1 second 1 hour1 minute

Perfect

prediction

A
c

tu
a

l
E

la
p

s
e

d
 T

im
e

KCCA Predicted Elapsed Time

Fig. 13. Experiment 2: KCCA-predicted vs. actual elapsed times of 61 test
queries, predicted using a training set of only 30 queries of each type.

space reasons). The simultaneous predictability of multiple

performance metrics using our approach enabled us to bet-

ter understand inaccurate predictions. For example, for one

prediction where elapsed time was much too high, we had

greatly overpredicted the disk IOs. This error is likely due

to our parallel database’s methods of cardinality estimation.

When we underpredicted elapsed time by a factor of two, it

was due to under-predicting the number of records accessed

by a factor of three.

2) Experiment 2: Train model with 30 queries of each type:

For our second experiment, to balance the training set with

equal numbers of feathers, golf balls and bowling balls, we

randomly sampled 30 golf balls and 30 feathers to include in

the training set and predicted performance of the same set of

61 test set queries as in Experiment 1. Figure 13 compares the

predicted and actual elapsed times for this experiments. We see

that our predictions were not as accurate as in our previous

experiment (which included a larger number, 1027, of queries

in the training set). As is the case with most machine learning

(b) Message count

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

KCCA predicted elapsed time

a
c
tu

a
l

e
la

p
s

e
d

 t
im

e Under-estimated

records accessed

disk i/o

estimate

too high

1 hour

1 second

1 minute

1 second 1 hour1 minute

Perfect

prediction

A
c

tu
a

l
E

la
p

s
e

d
 T

im
e

KCCA Predicted Elapsed Time

Fig. 10. Experiment 1: KCCA-predicted vs. actual elapsed times for 61
test queries. We use a log-log scale to accommodate the wide range of query
execution times from milliseconds to hours. The predictive risk value for our
prediction was 0.55 due to the presence of a few outliers (as marked in the
graph). Removing the furthest outlier increased the predictive risk value to
0.61.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 10
0

10
00

10
00

0

10
00

00

10
00

000

10
00

000
0

10
00

00
00

0

KCCA predicted records used

a
c

tu
a

l
re

c
o

rd
s

 u
s

e
d

Perfect Prediction

Under-estimated

records accessed

A
c

tu
a

l
R

e
c

o
rd

s
 U

s
e

d

KCCA Predicted Records Used

Fig. 11. Experiment 1: KCCA-predicted vs. actual records used. The
predictive risk value for our prediction was 0.98. (Predictive risk value close
to 1 implies near-perfect prediction).

Figure 10 compares our predictions to actual elapsed times

for a range of queries. As illustrated by the closeness of

nearly all of the points to the diagonal line (perfect prediction),

our predictions were quite accurate. Our original test set had

only three bowling balls. When we decided to add more, the

operating system of our Neoview system had already been

upgraded. Not surprisingly, the accuracy of our predictions for

the six bowling balls we then ran and added was not as good.

When the two circled outliers and the more recent bowling

balls were eliminated, then the predictive risk value jumped

to 0.95.

We show similar graphs for records used in Figure 11 and

message counts in Figure 12 (other metrics are omitted for

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

KCCA predicted message count

a
c
tu

a
l

m
e
s
s
a
g

e
 c

o
u

n
t

Perfect prediction

A
c

tu
a

l
M

e
s

s
a

g
e

 C
o

u
n

t

KCCA Predicted Message Count

Fig. 12. Experiment 1: KCCA-predicted vs. actual message count. The
predictive risk value for our prediction was 0.35 due to visible outliers.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

KCCA predicted elapsed time

a
c
tu

a
l
e

la
p

s
e
d

 t
im

e

1 hour

1 second

1 minute

1 second 1 hour1 minute

Perfect

prediction

A
c

tu
a

l
E

la
p

s
e

d
 T

im
e

KCCA Predicted Elapsed Time

Fig. 13. Experiment 2: KCCA-predicted vs. actual elapsed times of 61 test
queries, predicted using a training set of only 30 queries of each type.

space reasons). The simultaneous predictability of multiple

performance metrics using our approach enabled us to bet-

ter understand inaccurate predictions. For example, for one

prediction where elapsed time was much too high, we had

greatly overpredicted the disk IOs. This error is likely due

to our parallel database’s methods of cardinality estimation.

When we underpredicted elapsed time by a factor of two, it

was due to under-predicting the number of records accessed

by a factor of three.

2) Experiment 2: Train model with 30 queries of each type:

For our second experiment, to balance the training set with

equal numbers of feathers, golf balls and bowling balls, we

randomly sampled 30 golf balls and 30 feathers to include in

the training set and predicted performance of the same set of

61 test set queries as in Experiment 1. Figure 13 compares the

predicted and actual elapsed times for this experiments. We see

that our predictions were not as accurate as in our previous

experiment (which included a larger number, 1027, of queries

in the training set). As is the case with most machine learning

(c) Records used

Figure 1: Evaluating system model - predicted vs. actual behavior. Graphs reproduced from [13].

of jobs that are starved of reduce slots. The Hadoop fair

scheduler was designed specifically to address this issue [19].

Thus, we are not surprised that the fair schedule came out of

a direct collaboration with Facebook.

As a natural follow-up, we investigate how much the fair

scheduler actually benefits this workload.

D. New Capability 2 - Select Workload-Specific Schedulers

Briefly, MapReduce task schedulers work as follows. Each

job breaks down into many map and reduce tasks, with each

task operating on a partition of the data. These tasks execute

in parallel on different machines. Each machine has a fixed

number of task slots, by default 2 map and 2 reduce slots. The

task scheduler receives job submission requests and assigns

tasks to worker machines. The FIFO scheduler assigns task

slots to jobs in FIFO order, while the fair scheduler gives each

job a concurrent fair share of the task slots. A big performance

difference occurs when the job stream contains many small

jobs following a large job. Under the FIFO scheduler, the large

job takes up all the task slots, with the small jobs enqueued

until the large job completes. Under the fair scheduler, the jobs

share the task slots equally, with the large jobs taking longer,

but small jobs being able to run immediately.

We run the day-long Facebook-like workload on the cluster

of 200 m1.large EC2 instances. We compare the behavior

when the cluster runs Hadoop 0.18.2, which has the FIFO

scheduler, with Hadoop 0.20.2, which has the fair scheduler.

We observed three illustrative kinds of behavior. We analyze

each, and then combine the observations to discuss why the

choice of schedulers should depend on the workload.

Disk “bottleneck”

Figure 9 captures a snapshot of 100 consecutive jobs in our

day-long workload of roughly 6000 jobs. The horizontal axis

indicates the job indices in submission order, i.e., the first job

in the workload has index 0. There are several bursts of large

jobs that cause many jobs to fail for the FIFO scheduler. These

failed jobs have no completion time, leaving a missing marker

in the graph. We know there are bursts of large jobs because

the jobs take longer to complete under the fair scheduler. We

see two such bursts - Jobs 4570-4580, 4610-4650. This is the

failure mode we discussed in Section V-C. The fair scheduler

is clearly superior, due to the higher job completion rate.

Small jobs after large jobs, no failures

This is the precise job arrival sequence for which the

fair scheduler was designed. Figure 10 captures another 100

consecutive jobs in the day-long workload. Here, when both

the FIFO and fair schedulers exhibit no job failures, the fair

scheduler is still far superior. Several very large jobs arrive

in succession (high completion times around Job 4820 and

just beyond Job 4845). Each arrival brings a large jump in

the FIFO scheduler completion time of subsequent jobs. This

is again due to FIFO head-of-queue blocking. Once the large

job completes, all subsequent small jobs complete in rapid

succession, leading to the horizontal row of markers. The

fair scheduler, in contrast, shows small jobs with unaffected

10

1000

100000

4570 4590 4610 4630 4650 4670

C
o
m
p
le
ti
o
n
 t
im
e
 (
s
)

Job index

Fair scheduler

FIFO scheduler

Fig. 9. A snapshot of 100 jobs in a day-long Facebook-like workload,
showing job failures in FIFO scheduler (missing markers, i.e., jobs
without a completion time).

10

1000

100000

4800 4820 4840 4860 4880 4900C
o
m
p
le
ti
o
n
 t
im
e
 (
s
)

Job index

Fair scheduler

FIFO scheduler

Fig. 10. Job submit pattern of small jobs after large jobs from a
snapshot of 100 jobs in a day-long Facebook-like workload. The fair
scheduler gives lower completion times and is also superior.

10

100

1000

0 20 40 60 80 100

C
o
m
p
le
ti
o
n
 t
im
e
(s
)

Job index

Fair scheduler

FIFO scheduler

Fig. 11. Long sequence of small jobs from a snapshot of 100 jobs in
a day-long Facebook-like workload. The FIFO scheduler gives lower
completion times and is superior.

running times, sometimes orders of magnitude faster than their

FIFO counterpart. Such improvements agree with the best-case

improvement reported in the original fair scheduler study [19],

but far higher than the average improvement reported there.

Long sequence of small jobs

Figure 11 captures 100 consecutive jobs that are all small

jobs with fast running times. For this job submission pattern,

Hadoop 0.20.2 is slower than Hadoop 0.18.2, unsurprising

given the many added features since 0.18.2. The fair sched-

uler brings little benefit. Small jobs dominate this workload

(Table I). The vast improvements for small jobs after large

jobs would be amortized across performance penalties for long

sequences of small jobs.

Workload-specific choice of schedulers

Our experiments show that the choice of schedulers depends

on both the performance metric and the workload. The fair

scheduler would be a clear winner if the metric is the worst-

case job running time or the variance in job running time.

However, if average job running time is the metric, then the

FIFO scheduler would be preferred if long sequences of small

jobs dominate the workload. Thus, even though cluster users

benefit from the fairness guarantees of the fair scheduler,

cluster operators may find that fairness guarantees are rarely

needed, and adopt the FIFO scheduler instead.

398398398

(a) Fair scheduler has lower job completion time.

of jobs that are starved of reduce slots. The Hadoop fair

scheduler was designed specifically to address this issue [19].

Thus, we are not surprised that the fair schedule came out of

a direct collaboration with Facebook.

As a natural follow-up, we investigate how much the fair

scheduler actually benefits this workload.

D. New Capability 2 - Select Workload-Specific Schedulers

Briefly, MapReduce task schedulers work as follows. Each

job breaks down into many map and reduce tasks, with each

task operating on a partition of the data. These tasks execute

in parallel on different machines. Each machine has a fixed

number of task slots, by default 2 map and 2 reduce slots. The

task scheduler receives job submission requests and assigns

tasks to worker machines. The FIFO scheduler assigns task

slots to jobs in FIFO order, while the fair scheduler gives each

job a concurrent fair share of the task slots. A big performance

difference occurs when the job stream contains many small

jobs following a large job. Under the FIFO scheduler, the large

job takes up all the task slots, with the small jobs enqueued

until the large job completes. Under the fair scheduler, the jobs

share the task slots equally, with the large jobs taking longer,

but small jobs being able to run immediately.

We run the day-long Facebook-like workload on the cluster

of 200 m1.large EC2 instances. We compare the behavior

when the cluster runs Hadoop 0.18.2, which has the FIFO

scheduler, with Hadoop 0.20.2, which has the fair scheduler.

We observed three illustrative kinds of behavior. We analyze

each, and then combine the observations to discuss why the

choice of schedulers should depend on the workload.

Disk “bottleneck”

Figure 9 captures a snapshot of 100 consecutive jobs in our

day-long workload of roughly 6000 jobs. The horizontal axis

indicates the job indices in submission order, i.e., the first job

in the workload has index 0. There are several bursts of large

jobs that cause many jobs to fail for the FIFO scheduler. These

failed jobs have no completion time, leaving a missing marker

in the graph. We know there are bursts of large jobs because

the jobs take longer to complete under the fair scheduler. We

see two such bursts - Jobs 4570-4580, 4610-4650. This is the

failure mode we discussed in Section V-C. The fair scheduler

is clearly superior, due to the higher job completion rate.

Small jobs after large jobs, no failures

This is the precise job arrival sequence for which the

fair scheduler was designed. Figure 10 captures another 100

consecutive jobs in the day-long workload. Here, when both

the FIFO and fair schedulers exhibit no job failures, the fair

scheduler is still far superior. Several very large jobs arrive

in succession (high completion times around Job 4820 and

just beyond Job 4845). Each arrival brings a large jump in

the FIFO scheduler completion time of subsequent jobs. This

is again due to FIFO head-of-queue blocking. Once the large

job completes, all subsequent small jobs complete in rapid

succession, leading to the horizontal row of markers. The

fair scheduler, in contrast, shows small jobs with unaffected

10

1000

100000

4570 4590 4610 4630 4650 4670

C
o
m
p
le
ti
o
n
 t
im
e
 (
s
)

Job index

Fair scheduler

FIFO scheduler

Fig. 9. A snapshot of 100 jobs in a day-long Facebook-like workload,
showing job failures in FIFO scheduler (missing markers, i.e., jobs
without a completion time).

10

1000

100000

4800 4820 4840 4860 4880 4900C
o
m
p
le
ti
o
n
 t
im
e
 (
s
)

Job index

Fair scheduler

FIFO scheduler

Fig. 10. Job submit pattern of small jobs after large jobs from a
snapshot of 100 jobs in a day-long Facebook-like workload. The fair
scheduler gives lower completion times and is also superior.

10

100

1000

0 20 40 60 80 100

C
o
m
p
le
ti
o
n
 t
im
e
(s
)

Job index

Fair scheduler

FIFO scheduler

Fig. 11. Long sequence of small jobs from a snapshot of 100 jobs in
a day-long Facebook-like workload. The FIFO scheduler gives lower
completion times and is superior.

running times, sometimes orders of magnitude faster than their

FIFO counterpart. Such improvements agree with the best-case

improvement reported in the original fair scheduler study [19],

but far higher than the average improvement reported there.

Long sequence of small jobs

Figure 11 captures 100 consecutive jobs that are all small

jobs with fast running times. For this job submission pattern,

Hadoop 0.20.2 is slower than Hadoop 0.18.2, unsurprising

given the many added features since 0.18.2. The fair sched-

uler brings little benefit. Small jobs dominate this workload

(Table I). The vast improvements for small jobs after large

jobs would be amortized across performance penalties for long

sequences of small jobs.

Workload-specific choice of schedulers

Our experiments show that the choice of schedulers depends

on both the performance metric and the workload. The fair

scheduler would be a clear winner if the metric is the worst-

case job running time or the variance in job running time.

However, if average job running time is the metric, then the

FIFO scheduler would be preferred if long sequences of small

jobs dominate the workload. Thus, even though cluster users

benefit from the fairness guarantees of the fair scheduler,

cluster operators may find that fairness guarantees are rarely

needed, and adopt the FIFO scheduler instead.

398398398

(b) FIFO scheduler has lower job completion time.

Figure 2: Evaluating system performance under two settings - MapReduce FIFO scheduler vs. fair scheduler for
two different job sequences. Graphs reproduced from [8].

arrival patterns. Thus, the choice of scheduler depends on a rigorous understanding of the workload.
Both of the above studies confront similar challenges. First is the challenge of workload representativeness.

If the evaluation covers workloads that do not represent real life use cases, then there would be little guidance
on how evaluation results translate to real life systems. This challenge is especially relevant for the study
in [8], where the choice of the optimal MapReduce scheduler depends on the particular mix of certain arrival
patterns. For the study in [13], the standard TPC-DS benchmark is augmented with additional queries that are
informed by real life decision support use cases. Such knowledge about real life use cases arises from either
empirical analysis of system traces, or from system operator expertise. As data management systems become
more complex and more rapidly evolving, it is likely that operator expertise alone would become insufficient,
and good system monitoring becomes pre-requisite for good system design.

Another challenge is the need for continuous model re-training. In [13], both the training and testing datasets
come from the trace. This setup does not translate to a real life deployment, in which only the training dataset is
available and the test set is generated in real time as queries are submitted to the system. For example, the query
prediction model is trained once per configuration and the system takes some action based on the predicted
resource requirements for a new query. However, the resulting behavior of the system’s response to the new
query is not accounted for when the model is static. The concept of a “test dataset” is ad hoc and should be
constantly updated by subsequent queries. This is an inherent shortcoming of system behavior models, well-
studied in the Internet measurement literature [17]. Consequently, it is desirable to have statistical models that
can constantly re-train parameter values or even discover new parameters.

A third challenge is imposed by the limitations of system replay. Replay here implies executing a workload
on a real system, with the system making control actions using statistical models. The study in [8] demonstrates
this approach. Replay allows designers to explore the interaction between model re-training and system actions
that affect the model. However, as data management systems grow in size, replaying long workloads at full
scale and full duration becomes a logistical limit. For example, the experiments in [8] required using a 200-

5

machine cluster for several days. Preparing the experiment required additional days of debugging at scale. Even
then, the replay is not at the full scale of the original system that was traced. There is a spectrum of replay
fidelity, from comparison experiments on the actual front-line, customer-facing systems, using production-scale
data and covering long durations, to scaled-down experiments using artificial data and covering short durations.
Ultimately, the system designer needs to judiciously select the appropriate replay fidelity, balancing the need
for quality insights, logistical feasibility, potential for improvements, and risk of negative system impact.

5 Statistics to Knowledge
The discussion so far has covered the challenges associated with modeling systems and evaluating those models.
There is a deeper issue that must be confronted - how to distill knowledge from statistical analysis. Fundamen-
tally, statistical analysis only leads to correlations between workloads, system behavior and performance char-
acteristics. This fact is true even for rigorous hypothesis testing experiments. Statistics help us understand how
systems behave. There is an inevitable methodological and scientific “leap of faith” to translate from system
behavior statistics to some deeper insights about why systems behave thus.

To illustrate, consider the study in [12]. This is a follow-up study to [13], and applies the KCCA prediction
technique to predict ad-hoc queries running on MapReduce extensions, an increasingly popular complement to
traditional databases. The difference in the nature of systems considered in [12] and [13] requires two different
model formulations, in that the same KCCA technique need to be applied on two different kinds of system de-
scriptions. While the KCCA technique helps draw statistical correlations between multi-dimensional workload
and performance vectors, there is considerable pre-requisite knowledge involved with how to formulate the mod-
eling problem, where to draw the system boundaries, and what actions to take based on the KCCA prediction
outputs. Such insights are not supplied by statistical models directly, rather by human designers interpreting the
significance of statistical models.

It is non-trivial to interpret the significance of statistical models, especially as systems increase in complex-
ity, and the dimensions of the statistical models likewise grows. Standard dimensionality reduction techniques
help somewhat, but ultimately shift the problem from interpreting multiple dimensions to interpreting the di-
mensionality reduction process.

To illustrate, consider the study in [9], introduced earlier in Section 3. Recall that the study analyzes two
enterprise network storage traces to extract common access patterns, which facilitates identifying highly targeted
system optimizations. One analysis computes multi-dimensional descriptions of files accessed, and uses k-
means clustering [2] to identify the most common types of files. The output of k-means clustering is a set
of multi-dimensional cluster centers, as in Table 2. Even though k-means reduced a multi-dimensional space
to just six common access patterns, human expertise is needed to interpret the significance of these clusters.
Deriving the human applied labels in the lowest row in Table 2 required both examining the numerical values of
cluster centers, and computing additional information, such as file types and file co-location within the directory
structure. This interpretation step is far more cognitively demanding than applying the k-means algorithm, and
arguably represents a transition from a scientific description (statistics) to a scientific taxonomy (knowledge) of
system behavior.

More generally speaking, it is desirable to leave multiple opportunities for human intervention, both while
building statistical models of systems and while using these models to control systems. Human intervention is
especially important when multiple performance metrics are involved, and multiple human users have different
metrics. The goal of statistical models and statistically managed systems would be more to help mediate poten-
tially conflicting requirements from human users, rather than optimizing for some abstract multi-dimensional
performance metric to which the human users cannot relate. Human intervention also offers additional oppor-
tunities to detect “black swan” phenomena, which are rare system events that have large performance impact,
yet are difficult to statistically identify. A balanced approach would augment statistical methods with human
expertise, and vice versa.

6

File access patterns Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6
% of all files 59% 4.0% 4.1% 4.7% 19% 9.2%

hrs with opens 2hrs 1hr 1hr 1hr 1hr 1hr
Opens per hr 1 open 2-3 opens 2-3 opens 2-3 opens 1 open 1 open

hrs with reads 0 0 1hr 0 1hr 1hr
Reads per hr - - 100KB-1MB - 1-100KB 1-100KB

hrs with writes 0 1hr 0 1hr 0 0
Writes per hr - 100KB-1MB - 1-100KB - -

Read request size - - 4-32KB - 2KB 32KB
Write request size - 60KB - 4-22KB - -
Read sequentiality - - 70% - 0% 0%
Write sequentiality - 80% - 0% - -

Read:write ratio 0:0 0:1 1:0 0:1 1:0 1:0
Human applied labels Metadata Sequential Sequential Small Smallest Small

only write read random random random
write read read

Table 2: Multi-dimensional descriptions of enterprise storage file access patterns from [9].

6 Challenges and Opportunities

Managing data systems using statistical models is becoming an increasingly important topic. The sheer size
and complexity of data systems today necessitates some sort of statistical technique to help design and operate
such systems. Also, as data systems support essential day-to-day services, it becomes increasingly important
to develop accurate behavior and performance models. We believe the broad effort to manage data systems
using statistical models remains very much in a nascent stage. We highlight below some opportunities for future
research.

One current logistical challenge is the limited availability of large-scale system traces. As discussed in
Section 4, the ground truth of constructing and evaluating statistical models arises from monitoring the relevant
data systems. However, there are few publicly available traces of large scale, consumer facing systems. This
challenge also offers an opportunity, especially for practitioners in industry. The lack of publicly available
traces means that organizations who publish their traces stand to influence the direction of the field. Conversely,
researchers should keep in mind that the availability of certain kinds of traces does not indicate that those systems
are representative. As system tracing capabilities improve and data anonymization tools become prevalent, this
challenge can gradually subside.

Another opportunity arises in accelerating the statistically informed data system design loop. Better sta-
tistical models lead to better designs and better insights, which in turn lead to better models. As discussed in
Section 5, it is non-trivial to make the cognitive advance from each step to the next. One solution would be
to identify a small set of robust, scalable, general-purpose statistical tools, with some best-practices and good-
defaults on how to apply them, while leaving ample opportunities for human intervention. Another solution
would be to devise intuitive visualizations of the modeled statistical behavior. When such visualizations are
possible (Figure 2), the human cognitive load vastly decreases. Conversely, it becomes burdensome to interpret
multi-dimensional data in a purely numerical fashion (Table 2).

Managing data systems using statistical models requires collaboration between computer system designers
and statisticians. An additional challenge lies in the various research incentives for each field. Traditionally
speaking, computer system designers get rewarded for building better systems, while statisticians get rewarded
for discovering new algorithms or new modeling techniques. The overlap between the two fields is increasing,
and both communities are broadening their research agenda. Some examples covered in this paper merely seek
to develop a statistical understanding of existing systems instead of constructing new systems. Others merely
apply well-known, relatively straightforward statistical methods to assist system design instead of developing
new statistical techniques. Practitioners of both fields have much to learn from one another. We are hopeful
that the emerging body of work on managing data systems using statistical models helps highlight the growing
necessity and rewards for bridging the two fields.

7

The scale and heterogeneity of today’s data systems and the workloads they service complicate system
design and operation. As more people are required to build and maintain these systems, statistical techniques
have served the systems community well in quantifying the intricacies of data systems. This article discusses
some challenges and opportunities that hopefully help inform and guide future studies in the area. We are
confident that the confluence of systems and statistics research provides a launching pad for moving the art of
system design towards becoming a science.

References
[1] Hadoop World 2011 Speakers. http://www.hadoopworld.com/speakers/.

[2] E. Alpaydin. Introduction to Machine Learning. MIT Press, Cambridge, Massachusetts, 2004.

[3] Amazon Web Services. Amazon Elastic Computing Cloud. http://aws.amazon.com/ec2/.

[4] Apache. Apache Hadoop. http://hadoop.apache.org/.

[5] F. R. Bach and M. I. Jordan. Kernel independent component analysis. J. Mach. Learn. Res., 3:1–48, March 2003.

[6] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen. Fingerprinting the datacenter: automated classification of
performance crises. In EuroSys 2010.

[7] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon,
S. Rash, R. Schmidt, and A. Aiyer. Apache Hadoop goes realtime at Facebook. In SIGMOD 2011.

[8] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for Evaluating MapReduce Performance Using Workload Suites. In
MASCOTS 2011.

[9] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz. Design implications for enterprise storage systems via multi-dimensional trace
analysis. In SOSP 2011.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commun. ACM, 51:107–113, January 2008.

[11] EMC and IDC iView. Digital Universe. http://www.emc.com/leadership/programs/digital-universe.htm.

[12] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson. Statistics-driven workload modeling for the cloud. In ICDE Workshops
2010.

[13] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson. Predicting multiple metrics for queries:
Better decisions enabled by machine learning. In ICDE 2009.

[14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy: fair scheduling for distributed computing
clusters. In SOSP 2009.

[15] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel: interactive analysis of
web-scale datasets. In VLDB 2010.

[16] R. O. Nambiar and M. Poess. The making of TPC-DS. In VLDB 2006.

[17] V. Paxson and S. Floyd. Why we don’t know how to simulate the internet. In WSC 1997.

[18] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R. Ganger. Storage device performance prediction with cart
models. In MASCOTS 2004.

[19] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling. In EuroSys 2010.

8

