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Motivation

Concentration Inequalities

Matrix concentration
P{|X ~EX| >t} <6
P{i\nax(X —EX) >t} <0

@ Non-asymptotic control of random matrices with complex
distributions

Applications

@ Matrix estimation from sparse random measurements
(Gross, 2011; Recht, 2009; Mackey, Talwalkar, and Jordan, 2011)

@ Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011b)

@ Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

@ Random graph analysis (Christofides and Markstrm, 2008; Oliveira, 2009)
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Motivation

Concentration Inequalities

Matrix concentration
P{i\nax(X —EX) >t} <0

Difficulty: Matrix multiplication is not commutative

Past approaches (Oliveira, 2009; Tropp, 2011; Hsu, Kakade, and Zhang, 2011a)
@ Deep results from matrix analysis
@ Sums of independent matrices and matrix martingales

This work
@ Stein’'s method of exchangeable pairs (1972), as advanced by
Chatterjee (2007) for scalar concentration
= Improved exponential tail inequalities (Hoeffding, Bernstein)
= Polynomial moment inequalities (Khintchine, Rosenthal)
= Dependent sums and more general matrix functionals
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Motivation
Roadmap

@ Motivation

@ Stein’s Method Background and Notation
© Exponential Tail Inequalities

e Polynomial Moment Inequalities

© Extensions

Mackey (UC Berkeley) Stein's Method BEARS 2012 4/20



Background
Notation

Hermitian matrices: H? = {A € C™?: A = A*}
o All matrices in this talk are Hermitian.

Maximum eigenvalue: \,..(-)
Trace: tr B, the sum of the diagonal entries of B

Spectral norm: ||B||, the maximum singular value of B

Schatten p-norm: ||B||, := (tr|B|p)1/p for p > 1
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Background
Matrix Stein Pair

Definition (Exchangeable Pair)

(Z,Z") is an exchangeable pair if (Z,7') & (Z', 7).

Definition (Matrix Stein Pair)
Let (Z,Z') be an auxiliary exchangeable pair, and let ¥ : Z — H¢
be a measurable function. Define the random matrices
X =¥(Z) and X' :=9(Z).
(X, X') is a matrix Stein pair with scale factor o € (0, 1] if
EX'|Z]=(1-a)X.

@ Matrix Stein pairs are exchangeable pairs
@ Matrix Stein pairs always have zero mean

Mackey (UC Berkeley) Stein's Method BEARS 2012 6 /20



Background
The Conditional Variance

Definition (Conditional Variance)

Suppose that (X, X'’) is a matrix Stein pair with scale factor «,
constructed from the exchangeable pair (Z, Z'). The conditional
variance is the random matrix

Ax = Ax(Z) = 5B (X - X')*|Z].

1

@ Ax is a stochastic estimate for the variance, E X?

@ Control over Ax yields control over Ay.x(X)
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Exponential Tail Inequalities

Exponential Concentration for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (X, X’) be a matrix Stein pair with X € H“. Suppose that
Ax < cX +vI almost surely for ¢, v > 0.

Then, for all ¢ > 0,

P{Amax(X) >t} < d-exp{i}.

2v + 2ct

@ Control over the conditional variance Ax yields
o Gaussian tail for A\pax(X) for small ¢, Poisson tail for large t

@ When d = 1, reduces to scalar result of Chatterjee (2007)
@ The dimensional factor d cannot be removed
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Exponential Tail Inequalities

Application: Matrix Hoeffding Inequality

CoroIIary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)
Let (Yz)x>1 be independent matrices in H¢ satisfying
EY,=0 and Y?< A}

for deterministic matrices (Ay)x>1. Define the variance parameter
1
2. 2 : 2 2
Then, for all ¢t > 0,

IP’{)\maX (Zk Yk) > t} <d-e P12

@ Improves upon the matrix Hoeffding inequality of Tropp (2011)

@ Optimal constant 1/2 in the exponent
o Variance parameter o smaller than the bound sz A%H

@ Tighter than classical Hoeffding inequality (1963) when d = 1

BEARS 2012 9 /20

Mackey (UC Berkeley) Stein's Method



Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

1. Matrix Laplace transform method (Ahlswede & Winter, 2002)
@ Relate tail probability to the trace of the mgf of X
P{\nax(X) >t} < éng e . m(0)
>

where m(0) := EtrefX
How to bound the trace mgf?
@ Past approaches: Golden-Thompson, Lieb's concavity theorem

@ Chatterjee's strategy for scalar concentration
@ Control mgf growth by bounding derivative

m'(0) = Etr Xe?X  for 6 € R.

@ Rewrite using exchangeable pairs
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Exponential Tail Inequalities
Method of Exchangeable Pairs

Lemma

Suppose that (X, X’) is a matrix Stein pair with scale factor a. Let
F :HY — H? be a measurable function satisfying

E[(X — X')F(X)]|| < o0.
Then

E[X F(X)]Z%E[(X—X')(F(X)—F(X’))]' (1)

Intuition

@ Can characterize the distribution of a random matrix by
integrating it against a class of test functions F'

@ Eq. 1 allows us to estimate this integral using the smoothness
properties of F' and the discrepancy X — X'
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

2. Method of Exchangeable Pairs

@ Rewrite the derivative of the trace mgf

m'(0) = Etr XX = %Etr (X — X") (X — eexf”'

Goal: Use the smoothness of F(X) = e’X to bound the derivative
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Exponential Tail Inequalities
Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Suppose that g : R — R is a weakly increasing function and that
h: R — R is a function whose derivative i’ is convex. For all
matrices A, B € H? it holds that

tr{(9(A) = g(B)) - (h(A) = h(B))] <
%tr[(g(A) —9(B))- (A - B)-(I(A) + h(B))].

@ Standard matrix functions: If g : R — R, then
g9(M) Al
9(A) =Q Q" when A:=Q Q"
9(Aa) Ad
@ Inequality does not hold without the trace
@ For exponential concentration we let g(A) = A and h(B) = e’B
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality
@ Bound the derivative of the trace mgf

m/(e) _ %Etl‘ [(X _ X/)(QGX . e@X’):|
S %Etl‘ [(X—X,)2' (e0X+e0X’)]
=0-Etr [AxeX].

4. Conditional Variance Bound: Ax <c¢X +vl
@ Yields differential inequality
m/(0) < ch-m'(0) + vf - m(0).
@ Solve to bound m(#) and thereby bound P{\..(X) > t}
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Polynomial Moment Inequalities

Polynomial Moments for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let p =1 or p > 1.5. Suppose that (X, X’) is a matrix Stein pair
where IEHXng < 00. Then

(EIX12)"* < /2p—1- (E|Ax|?)™.

@ Moral: The conditional variance controls the moments of X

@ Generalizes Chatterjee's version (2007) of the scalar
Burkholder-Davis-Gundy inequality (Burkholder, 1973)

o See also Pisier & Xu (1997); Junge & Xu (2003, 2008)
@ Proof techniques mirror those for exponential concentration

@ Also holds for infinite dimensional Schatten-class operators
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Polynomial Moment Inequalities

Application: Matrix Khintchine Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)
Let (ex)k>1 be an independent sequence of Rademacher random
variables and (Ay)r>1 be a deterministic sequence of Hermitian
matrices. Then if p =1 or p > 1.5,

(.= (5.4

@ Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard
and Pisier, 1991) is @ dominant tool in applied matrix analysis

@ e.g., Used in analysis of column sampling and projection for
approximate SVD (Rudelson and Vershynin, 2007)

@ Stein’'s method offers an unusually concise proof
@ The constant /2p — 1 is within /e of optimal

Stein's Method

1/2

2p
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Extensions
Extensions

Refined Exponential Concentration
@ Relate trace mgf of conditional variance to trace mgf of X
@ Yields matrix generalization of classical Bernstein inequality
@ Offers tool for unbounded random matrices

General Complex Matrices

@ Map any matrix B € C%*% to a Hermitian matrix via dilation
o 0 B d1+d2
2(B) = [B* 0] e H :
@ Preserves spectral information: A\p.x(Z(B)) = || B]|

Dependent Sequences
@ Sums of conditionally zero-mean random matrices
@ Combinatorial matrix statistics (e.g., sampling w/o replacement)
@ Matrix-valued functions satisfying a self-reproducing property
@ Yields a dependent bounded differences inequality for matrices
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Extensions

Thanks!
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