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ABSTRACT
The cellular industry is evaluating architectures to distribute
the signal processing in radio access networks. One of the
options is to process the signals of all base stations on a
shared pool of compute resources in a central location. In
this centralized architecture, the existing base stations will
be replaced with just the antennas and a few other active
RF components, and the remainder of the digital processing
including the physical layer will be carried out in a central
location. This model has potential benefits that include a
reduction in the cost of operating the network due to fewer
site visits, easy upgrades, and lower site lease costs, and an
improvement in the network performance with joint signal
processing techniques that span multiple base stations. Fur-
ther there is a potential to exploit variations in the processing
load across base stations, to pool the base stations into fewer
compute resources, thereby allowing the operator to either re-
duce energy consumption by turning the remaining processors
off or reducing costs by provisioning fewer compute resources.
We focus on this aspect in this paper.

Specifically, we make the following contributions in the pa-
per. Based on real-world data, we characterise the potential
savings if shared homogeneous compute resources are used to
process the signals from multiple base stations in the central-
ized architecture. We show that the centralized architecture
can potentially result in savings of at least 22% in compute
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resources by exploiting the variations in the processing load
across base stations. These savings are achievable with statis-
tical guarantees on successfully processing the base station’s
signals. We also design a framework that has two objectives:
(i) partitioning the set of base stations into groups that are
simultaneously processed on a shared homogeneous compute
platform for a given statistical guarantee, and (ii) scheduling
the set of base stations allocated to a platform in order to
meet their real-time processing requirements. This partition-
ing and scheduling framework saves up to 19% of the compute
resources for a probability of failure of one in 100 million. We
refer to this solution as CloudIQ. Finally we implement and
extensively evaluate the CloudIQ framework with a 3GPP
compliant implementation of 5 MHz LTE.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded sys-
tems,Signal processing systems

General Terms
Algorithms, Design

Keywords
Cellular, Virtualization, Cloud RAN

1. INTRODUCTION
The proliferation of devices like tablets and smart phones,

coupled with new types of applications, has resulted in a de-
mand for high data rates in wireless communication. There
are several innovative proposals to meet this demand for the
explosion in wireless capacity [1]. These proposals require
new architectures, protocols, and advanced signal processing
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techniques in a cellular base station. However, implement-
ing these proposals increases the cost of delivering data to
end users. Our approach is motivated by a proposal called
Cloud Radio Access Network (Cloud RAN) that proposes a
transition from distributed to centralized infrastructure for
baseband processing of cellular signals. This is under con-
sideration by NGMN [3]. Cloud RAN can potentially reduce
the cost of delivering data and also enable signal processing
techniques that improve network performance. Preliminary
studies by China Mobile show that Cloud RAN has the po-
tential to significantly reduce the total cost of operations [2].

In existing cellular networks, compute resources for per-
forming baseband processing are located at each cell site.
However, in the proposed centralized architecture, the com-
pute resources are located in a central location. The archi-
tecture is realized by transporting the cellular signals (also
known as IQ or In phase-Quadrature phase signals) over ded-
icated high speed fiber from the antennas at the cell site to
the central location. The cell sites are situated in a radius of
up to 20 km [3] from the central location. There are potential
benefits to this approach which include (i) a savings in the
operating expenses due to a reduction in the site visits for
upgrade and maintenance, and possibly lower site lease costs,
(ii) use of advanced coordinated signal processing techniques
by jointly processing signals from neighboring base stations
to significantly improve network performance [16], and (iii) a
potential reduction in energy expenditure by exploiting the
load variations and using only as many compute resources as
required to process the base stations. This would exploit the
variations in the processing load of base stations to multi-
plex multiple base stations on to a single compute resource.
Energy reduction is a key consideration for operators in Asia.
The operational expenditure from energy costs can be as high
as 50% of the total operational expenditure in these regions.
However the costs of transporting the IQ signals in the cen-
tralized architecture need to be factored in while evaluating
the advantages of centralized processing, but this economic
analysis is outside the scope of this paper. To address this,
the cellular industry is actively considering some split process-
ing alternatives, where some of the Layer 1 processing is done
at the cell site and only user related Layer 1 processing is sent
to the central location. This has the potential to significantly
reduce the backhaul requirements and make it proportional
to user load. Our goal in this paper is to evaluate the third
benefit of the centralized architecture, i.e., we study the ben-
efits of resource pooling across base stations and develop a
framework to multiplex multiple base stations on a platform
with a set of homogeneous compute resources. We refer to our
approach as CloudIQ. CloudIQ is further motivated by emerg-
ing trends towards a more programmable wireless infrastruc-
ture. For example, many equipment manufacturers are mi-
grating towards making the hardware more programmable
and flexible by combining multiple hardware, DSPs, and pro-
grammable processor cores into single die (System on a Chip),
while still maintaining the required cost/performance ratios.
Further there is evidence that implementing wireless infras-
tructure on a general purpose processor (GPP) based plat-
form is feasible for WiFi access points and LTE base stations
[21]. Although GPP-based systems do not meet the current
requirements in terms of performance-per-Watt, we evaluate
the CloudIQ architecture on a homogeneous GPP-based plat-
form since it provides a simple model to analyze the resource
management problem and has wider applicability to resource

sharing among a set of homogeneous compute resources (e.g.
FPGAs, DSPs, or ASICs).

1.1 Objectives and Contributions
There have been several reports of trials of the Cloud ra-

dio access network concept by various vendors, to the best
of our knolwedge, these demonstrations only backhaul the IQ
samples to a central location and the rest of the processing
is done as in existing cellular systems, i.e., each base sta-
tion is assigned a single base band processing unit and base
stations are not pooled on fewer baseband units to exploit
energy savings or reduce the number of processing resources.
Our paper is the first to do a systematic study of the gains
possible due to resource pooling gains and provide a frame-
work to precsiely achieve a trade-off between the statistical
guarantees against failure and the savings (energy/cost) pos-
sible due to the Cloud RAN architecture. We elaborate on
the contributions below.

1. Analyze the benefits of CloudIQ on general com-
pute platforms: In traditional cellular systems, the com-
pute resources are provisioned to handle the peak load at
a base station, while meeting the real-time deadlines. How-
ever, in a CloudIQ architecture, the variations in the process-
ing loads of base stations can be used to multiplex multiple
base stations on a single compute resource. The variations
in the load happen at small time scales (order of ms), but
it is not possible to change the assignment of base stations
to compute resources at such time scales. Hence, we allow
changes in assignment of base stations to compute resources
at larger time scales (order of minutes) and provide statisti-
cal guarantee on the base stations successfully meeting their
real-time deadlines. We analyze real-world WCDMA data to
study the feasibility and advantages of this approach. This
data contains PHY layer logs from 175 base stations in a
dense urban setting. We observe that, for realistic statisti-
cal guarantees, resource savings of at least 22% are possible
in the CloudIQ architecture. See Section 3 for the details.

2. Resource management framework: In order to real-
ize the potential savings of compute resources, we need to
process multiple base stations in a single compute resource
and meet their individual real-time constraints. We refer to
this as virtualization of the base stations. There is a wealth
of literature on scheduling of real-time systems, which in-
cludes scheduling on multi-processor platforms. But most
of the existing work considers systems with implicit dead-
lines where the deadline coincides with the periodicity of the
tasks. As we see later, this is unlike cellular systems where
the deadline to process a task can exceed the periodicity of
the task. Furthermore, we adopt a separation principle in
the design of the system that adds to its simplicity and ro-
bustness. The separation principle decouples the problem of
partitioning the base stations into subsets to be scheduled
on each compute resource from the problem of designing al-
gorithms to schedule a subset of base stations on a compute
resource and meet their deadline constraints.

We design a resource management framework that adheres
to the separation principle and can schedule multiple base
stations on a homogeneous compute platform. Each homoge-
neous compute platform consists of multiple identical cores,
where each core is equally capable of executing a task. This
framework is simple to implement and the savings in the
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compute resources under the framework are close to those
obtained by analyzing the real-world data. See Section 4 for
the details of the framework.

3. System Design and Evaluation: We implement the
CloudIQ framework on an Intel Xeon six core processor,
where each core has a clock speed of 3.47GHz. We choose
Linux with PREEMPT RT patch as the operating system.
We choose an open source implementation of the LTE stan-
dard called OpenAir to implement and demonstrate the re-
source management framework. We evaluate our implemen-
tation and show that two 5 MHz LTE base stations at peak
load can be run on a single processor, while meeting their
individual real time requirements. Peak load refers to the
maximum load in processing the physical layer in 5 MHz
LTE. We can schedule a maximum of four base stations in
a single platform and meet their real-time requirements if
their individual loads are below the peak processing load.
See Section 5 for the details of the system implementation.

Section 2 contains a short primer on cellular systems and
describes the OpenAir project. We overview the related work
in Section 7 and outline some of the remaining challenges in
Section 8.

2. PRELIMINARIES
2.1 Primer on cellular systems

In a cellular system, spectrum is treated as a resource
that is shared among all the users. The spectrum is parti-
tioned into channel resources, which are spreading codes in
WCDMA or time-frequency resources referred to as physical
resource blocks (PRB) in LTE. In each scheduling interval,
the scheduler allocates certain number of channel resources
and specifies a modulation and coding scheme (MCS) for a
user to either receive or transmit data. As per LTE the small-
est granularity for scheduling decisions is 1 ms, while this is
much higher in WCDMA. In each scheduling decision epoch,
the scheduled users transmit (receive) data in fixed time in-
tervals called subframes. In LTE, a subframe has a duration
of 1 ms, while in WCDMA, a subframe lasts for 2 ms. Each
transmitted subframe is acknowledged (ACKed) in a subse-
quent subframe. In FDD-LTE, the ACK for subframe k is
sent in subframe k + 4. Since the subframes need to be de-
coded before an ACK is sent, the receiver in LTE has 3 ms
to decode the subframe, while the receiver in WCDMA has
more time to decode the subframes.

Observation 1. In cellular systems, physical layer pro-
cessing jobs arrive periodically every T units of time. The
deadline d for processing a job is typically larger than T .

2.2 OpenAir Project
We use an open source implementation of LTE called Ope-

nAir [5] to demonstrate the CloudIQ framework that virtual-
izes base stations. This was developed by the OpenAir project
and is a 3GPP compliant 5 MHz LTE implementation. We
choose an implementation of LTE over readily available im-
plementations of WiFi (for example, [21]) because our pri-
mary goal is to virtualize cellular systems. Also, cellular sys-
tems like LTE have a synchronous deterministic structure,
while WiFi is asynchronous and data packets can be trans-
mitted or received at arbitrary times.

2.2.1 Profiling of OpenAir
In this section, we want to compute the processing load

offered by every function in the LTE physical layer and char-
acterise the parameters that influence the load. A block dia-
gram of the physical layer in a LTE base station is shown in
Figure 1. We refer the interested reader to [1] for a detailed
description of the various blocks in the figure. The key ob-
servation from this figure is that the Fast Fourier transform
(FFT) and inverse FFT (IFFT) functions on the downlink
and uplink chains respectively are performed in each sub-
frame and are independent of the number of allocated PRBs
or MCS. These functions impose a constant base processing
load on the system. All the functions subsequent to the FFT
or the IFFT depend on PRBs and the MCS allocated to users
and the channel conditions.

Figure 1: LTE base station PHY processing blocks

We wish to profile the physical layer of LTE to under-
stand the relationship between the processing load and num-
ber of allocated PRBs and MCS. We study this relationship
by scheduling a single user for transmission or reception. As
we see later, the profiling results allow us to generalize the
observations to multiple users. We profile the physical layer
of the OpenAir implementation of LTE by varying the follow-
ing parameters: (i) the number of PRBs used, (ii) the MCS,
and (iii) the SINR for a given MCS value1. We also calculate
the time taken for execution by varying these parameters for
the downlink and the uplink scenarios.

Based on the profiling results in Figure 2, we make the
following observations.

1. The uplink dominates the downlink processing load and
is about 2.5 times the downlink processing load for a given
MCS, see Figure 2(a). As shown in Figure 2(c), the uplink
processing of a subframe is largely dominated by the turbo
decoder, while the remaining functions offer a constant load.
The turbo decoder is an iterative algorithm where every it-
eration improves the decoder’s estimate of the transmitted
codeword (see [8] for details). We can see from Figure 2(b)
that there is no function in the downlink that matches the
turbo decoder in processing complexity.

2. The processing load is well approximated as a linear func-
tion of the MCS and channel resources (PRBs), see Fig-
ures 2(b), 2(c), and 2(d). The load is divided into two parts;
a constant part (base load) that is independent of MCS, PRB,

1Processing time of the turbo decoder depends on the num-
ber of iterations, which is in turn a function of the channel
conditions. Hence, we choose the operating SINR for a MCS
so that turbo decoder converges within a bounded number
(7) of iterations.
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and SINR2, and a dynamic part that varies linearly with the
MCS and PRBs.

3. Since the dynamic load is linear (in fact, convex) in the
MCS and the PRBs, if multiple users are simultaneously
scheduled for transmission or reception, then the total pro-
cessing load is given by the sum of the individual loads and
cannot exceed the processing load of a single user who is al-
located all the PRBs at the highest MCS.

4. We can generalize the observations of the LTE profil-
ing results to other cellular standards which use different
channel resources but share other components of the phys-
ical layer. This applies to WCDMA where the channel re-
sources are spreading codes, but the MCS and the turbo en-
coding/decoding blocks are similar to those in LTE.

3. ANALYSIS OF REAL-WORLD DATA
In current cellular systems, the coverage area of an operator

consists of many cell sites and each cell site is further subdi-
vided into three equally sized sectors. Each sector is assigned
a set of carriers for transmission, where a carrier corresponds
to a band of frequencies in the spectrum assigned to the car-
rier. There is a limit on the number of users that can be
supported by a carrier and sectors that experience high load
are assigned multiple carriers. Therefore, a cell site can con-
sist of many sector-carriers. In the rest of the section, we
refer to a sector-carrier with the more commonly used term;
base station.

In the traditional setup, each base station is provided with
computing resources for performing the signal processing op-
erations in cellular communications. This critical infrastruc-
ture is called the baseband processing unit (BBU). A cell site
with multiple base stations has a separate BBU dedicated to
each base station. The BBU is provisioned to handle the peak
load in a base station. Our goal in this paper is to break
away from this model and study the advantages of pooling
computing resources across base stations. We allow sharing
of a common pool of homogeneous compute resources across
base stations and facilitate multiple base stations to perform
their signal processing operations in a single computing re-
source. Since CloudIQ differs from the traditional approach,
we do not refer to the compute resource as a BBU to avoid
confusion. In this section, we use logs of real-world traffic
to characterise the processing load distribution at a base sta-
tion. Then, we study the potential savings in the number of
compute resources in the CloudIQ architecture as a function
of the processing load distributions.

3.1 Real-world cellular traffic
We obtained detailed logs of traffic in a WCDMA network

from a cellular operator across 21 cell sites in a dense urban
setting. We choose WCDMA over LTE, because WCDMA
is widely deployed while LTE adoption is still in its infancy.
Hence WCDMA logs are more likely to reflect true traffic
patterns. We use these logs to estimate processing loads at
base stations and the effect of resource pooling across different
base stations. We analyze only processing time distributions
for downlink traffic, i.e., transmissions from the base station
to the mobile user. The logs had insufficient information on
the traffic in the uplink direction.

2Independence of the base load from SNR is not shown in the
plots in Figure 2 due to lack of space.

Each of the 21 cell sites has 4 to 12 sector-carriers (base
stations). In total, we have 175 base stations spread over the
cell sites. A carrier in WCDMA corresponds to a bandwidth
of 5 MHz. The data is aggregated across 15 minute intervals.
This is the minimum granularity at which we obtained logs.
In WCDMA, there are 450000 sub-frames in a 15 minute in-
terval and there are a total of 15 spreading codes which are
shared between voice and data traffic. A spreading code can-
not be simultaneously used for voice and data. The logs are
solely based on mobile data usage and not voice.

The logs give us the following three pieces of information
for each 15 minute interval:

• Total downlink data sent from the base station to the mobile
users, in bits.

• Number of sub-frames in which each QAM modulation (QPSK,
16-QAM, or 64-QAM) is used in downlink.

• The number of spreading codes available for data traffic in
each scheduling interval. Note that all the available codes
need not be used for data transmission.

We face a challenge in using this aggregate logs at each base
station to estimate the processing load distribution in a sub-
frame. This distribution can be potentially different across
time intervals (e.g., peak hours in the morning vs. late in the
night). Our goal is to obtain a conservative estimate of the
processing load distribution and avoid overstating benefits of
the CloudIQ framework. In order to derive these estimates,
we use the following steps:

1. We use the logs available on QAMs to estimate the prob-
ability that a particular QAM is used in a subframe.

2. Similarly, we use the logs on spreading codes available to
estimate the probability that a certain number of codes are
available in a subframe.

3. Next, we use the observation in Section 2 that the pro-
cessing load is linear in the MCS and channel resources to
estimate the distribution on the processing load. From the
previous step, we know that this estimate is in fact an over-
estimate of the processing load since all the available codes
need not be used for transmission.

4. In order to fix the issue of overestimating the processing
load, we use the logs on the total traffic in the downlink di-
rection in a 15 minute interval. Now, with the computed
distributions of QAMs and available codes, we estimate the
total traffic in the same 15 minute interval. We compare the
estimated traffic with the actual traffic and use the difference
between them to scale down the distribution on the codes
available per subframe in the 15 minute interval. This further
leads to a scaling down of the processing load distribution.

The details of this are outlined in Section 3.2.
In the steps outlined above, we make a crucial assump-

tion that the distributions of QAMs and channel resources
used in 5 MHz WCDMA is same as that in 5 MHz LTE. Al-
though there are a few salient differences between WCDMA
and LTE in terms of the sub-frame durations and the chan-
nel resources, our assumption is justified for the following
reasons. The distribution of QAM modulations is a function
of the relative location of the users with respect to the base
station. Users close to the base station experience a good
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Figure 2: Results of profiling OpenAir code.

channel and observe high signal-to-noise-ratio (SNR), and are
assigned higher order QAM modulations. Users experience
signal degradation as they move away from the base station
and will experience a reduction in the SNR. Consequently,
they will be assigned lower order QAM modulations by the
scheduler. Furthermore, the distribution of the user locations
in LTE will be similar to the distribution for WCDMA as long
as the cell sites and coverage areas remain the same. Hence,
the same probability distribution of QAM modulations ap-
plies to both WCDMA and LTE. Similarly, the distribution
of the codes across a 15 minute interval is a function of the
data requirements of the users and their geographical loca-
tions. The data requirements of users may increase in LTE,
but the distribution of the PRBs assigned to users in LTE
will resemble the distribution of codes in WCDMA (although
the absolute numbers might be higher in the next generation
technology). This is because the objective of the scheduler in
the base station in both the technologies is to ensure propor-
tional fairness in the allocation of channel resources to users.

3.2 Distribution on the QAMs and codes
Since we are given the number of subframes in which each

QAM modulation is used in a 15 minute interval, and there
are 450000 subframes in a 15 minute interval, it is easy to
compute the probability that a particular QAM is used in
a subframe. Note that there are empty sub-frames where
no QAM modulation scheme is used (and hence, no data
was transmitted). We denote the distribution of QAMs as
(pno-QAM, pQPSK, p16-QAM, p64-QAM). The distribution of QAMs
is skewed in favor of QPSK (roughly 90%), with 16-QAM
(roughly 9.9%) used less often, and 64-QAM used rarely (0.1%).
Therefore the distribution of QAMs is already indicative of
the fact that the typical processing load is far less than the
peak processing load.

Similarly we can determine the distribution of the spread-
ing codes available for data traffic and denote it by
(pcodes0, pcodes1, . . . , pcodes15). Recall that the log contains the
codes available in each scheduling interval and can be a sig-
nificant overestimate of the actual distribution of spreading
codes used for transmission.

3.3 Computing distribution of processing load
In Section 2, we observed that the processing load can be

split into two components: base processing load and dynamic
processing load. The dynamic processing load is a function of
the actual number of channel resources used in a sub-frame
and MCS assigned to each channel resource. We assume that
for each modulation, the highest coding rate is used in order
to maximize the processing load for that modulation scheme.
This also allows us to make a conservative estimate on pro-

cessing loads. The corresponding MCS values for QPSK, 16-
QAM and 64 QAM are 9, 16, and 27.

The number of bits transmitted per channel use under these
three modulations is 2, 4, and 6 bits respectively. We trans-
late these to workloads by assuming that 16-QAM (MCS =
16) takes twice as much dynamic processing load as QPSK
(MCS = 9), and 64-QAM (MCS = 27) takes thrice as much
effort as QPSK. This observation is also validated in Fig-
ure 2(b), where we can compare the processing loads for the
dynamic part corresponding to turbo encoding.

We assume that QPSK modulation transmitted over one
channel resource consumes 1 unit of dynamic processing load.
Now, we can easily derive the processing load in any scenario.
For example, 16-QAM with 4 codes will consume 2 × 4 = 8
units of dynamic load, while 64-QAM with 7 codes will con-
sume 3× 7 = 21 units of dynamic load. In order to compute
the base processing load, we refer back to Figure 2(b) and
observe that the intercept of the total load on the y axis
corresponds to dynamic load at MCS = 16. By the earlier
arguments, the base processing load will then equal the load
of 16-QAM with 15 codes, i.e., 2 × 15 = 30 units. The to-
tal load for any allocation of QAMs and codes is determined
by adding the base and the dynamic components and can be
described by a simple formula:

Total load =
(log2 QAM)

2
×Number of codes︸ ︷︷ ︸
dynamic

+ 30︸︷︷︸
base

, (1)

where QAM can take the value 4, 16, or 64 depending on
whether QPSK, 16-QAM or 64-QAM was chosen. With the
above formula, we can compute a distribution on the esti-
mated processing load as a function of the distribution of
QAMs and available codes by assuming that the choice of
QAM modulations is independent of the number of codes.
Since there are 3 choices for QAM modulations and 15 choices
of codes, we have 45 combinations of MCS and channel re-
sources used, with an extra option when no data is transmit-
ted. We denote the tuple of 46 values as (pest(0), . . . , pest(45)).

3.4 Scaling down the processing load
We first estimate the total data traffic in a 15 minute inter-

val with the distributions on the QAMs and codes available
and show that this exceeds the actual downlink traffic. Pick
a 15-minute interval for a base station. With the distribu-
tion on the QAMs, we can compute the average number of
bits/sub-frame/channel use, denoted by Q̄, as

Q̄ := 2× pQPSK + 4× p16-QAM + 6× p64-QAM. (2)

Here, we use the fact that QPSK, 16-QAM, and 64-QAM can
send 2, 4, and 6 bits of data per channel use respectively. Next
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we need to determine the number of channel uses from the
distribution on the codes. First calculate the average number
of codes in a sub-frame as

C̄ := 0× pcodes0 + 1× pcodes1 + . . . + 15× pcodes15. (3)

We assume that each of the 15 spreading codes occupies an
equal portion of the available bandwidth, implying that each
code corresponds to 5/15 MHz. A sub-frame lasts for a du-
ration of 2 ms and the number of channel uses (s-Hz) corre-
sponding to one spreading code in a sub-frame is

U := (2× 10−3)× (5/15) 106 (s-Hz). (4)

Hence, from (3) and (4), the average number of channel uses
in a sub-frame in the given 15 minute interval is

C̄ × U. (5)

From the above equation and (2), the average number of bits
per sub-frame in the given interval is

Q̄× C̄ × U (bits / sub-frame). (6)

In a 15 minute interval, there are 450000 sub-frames, and the
total number of bits transmitted in the interval is given by

D := Q̄× C̄ × U × 450000 bits. (7)

Hence D is the estimated downlink traffic in the chosen in-
terval. The actual downlink traffic in the same interval is
available as part of the aggregate logs and we compare it
with D in figure 3. As we can see, the estimated downlink
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Figure 3: Comparing estimated with actual data.

traffic exceeds the actual downlink traffic. We compute the
ratio κ := D

Downlink traffic
to capture the extent to which the

estimate exceeds the actual data. The ratio κ is unique to
a particular interval for a base station. We repeat this pro-
cedure across all the base stations, across all the 15 minute
intervals, to compute the corresponding ratios. Clearly, we
can use this information to get a better estimate of the pro-
cessing load distribution. However the choice of how scaling
should be done is not so straightforward.

For each 15 minute interval, κ is the scaling factor for the
average processing load or the first moment of the processing
load. However to compute the true processing load distribu-
tion, we will require to know the scaling factor for all the mo-
ments of the distribution. The scaling factor for the remaining
moments is however impossible to compute with the available
data. Hence there are an infinite number of processing load
distributions whose average coincides with the scaled average
computed earlier. Next we make a conservative estimate on
the distribution. Note that the expected estimated processing

Table 1: Reduction in aggregate computing load.
Prob. of failure (PF ) utilization (%) savings (%)

10−2 59.99 40.01
10−4 73.76 26.24
10−6 76.74 23.26
10−8 77.56 22.44

load is given by Eest =
∑45
j=0 jpest(j). We can scale {pest(j)}

in two natural ways to ensure that the new average process-
ing load is Eest

κ
. We could either scale each value of j by κ or

we could scale each value of pest(j) by κ. Clearly scaling each
processing load value j by κ will imply that the processing
load never exceed 75

κ
, where 75 is the maximum processing

load. This results in an optimistic estimate of the resource
pooling gains. Instead, to obtain a conservative estimate, we

scale the probabilities as pnew(j) = pest(j)
κ

, j = 1, . . . , 45 and

set pnew(0) = 1−
∑45
j=1 pnew(j) to ensure that we get a valid

probability distribution.

3.5 Gains from resource pooling
Next, we use the distribution on the processing load to cal-

culate the aggregate computing load for base stations and
check if there is a reduction in the aggregate load due to
variability of the traffic across base stations. We focus on the
busy hours in a day, which are from 0800 hours to 2200 hours.
As mentioned before, in the traditional setup, the computing
resource assigned to a base station is provisioned to handle
a peak load when 64-QAM is the chosen modulation scheme
and 15 codes are used for downlink transmission. This trans-
lates to a total load of 75 units. Hence, the resource can
handle a peak load of 75 units in every sub-frame. As a base-
line for comparison, we consider the peak load for 175 base
stations, which is a total of 175 × 75 = 13125 units. Next,
we fix a target probability of failure PF and consider the dis-
tribution of processing loads for the base stations computed
in the previous section. For each base station b, for each 15
minute interval t, we pick the maximum processing load Lb(t)
such that the processing load is guaranteed to be less than
Lb(t) for the chosen interval with probability at least 1−PF .
We calculate the aggregate processing load for the interval t
as the sum of Lb(t) for all base stations. We compute the ra-
tio of this aggregate load with the peak load of 13125 units to
compute the percentage utilization of resources when we per-
mit statistical guarantees. We compute this ratio for different
values of PF and present the results in Table 1. We also com-
pute percentage savings from resource pooling by subtracting
the percentage consumption from 100.

We also plot the percentage utilization as a function of 15
minute intervals for the busy hours in a particular day in fig-
ure 4. As we can see from Table 1, the percentage savings
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monotonically increase with the probability of failure. Even
with a very low probability of failure of 10−8, we are obtain
potential savings of 22.44 %. Our observations motivate us
to investigate the design of virtualization mechanisms that
allow multiple base stations to be pooled onto a single com-
pute platform. Since we have made conservative estimates in
calculating the processing load, we could potentially observe
larger gains in practical systems.

Remark 1. We are modeling the cellular traffic with a
probability distribution that we computed earlier, but we can-
not validate this distribution based on the available real-world
data. We have observed periodic patterns while computing the
averages of various parameters in the available data, but ex-
tending this observation to higher order moments and to the
distribution needs more fine grained data.

4. CLOUDIQ FRAMEWORK
In this section we design the CloudIQ framework that al-

lows pooling of compute resources across multiple base sta-
tions. Each compute resource consists of a set of identical
cores. We do not assume the availability of specialized hard-
ware as part of the platform like accelerators for comput-
ing FFT or for performing turbo decoding. In the previous
section, we obtained bounds on the potential savings in the
compute resources that can be obtained if we allow for sta-
tistical guarantees for the processing at base stations. In this
section, our goal is two-fold: (i) partitioning the set of base
stations into groups that are simultaneously processed on a
single platform for a given statistical guarantee PF , and (ii)
scheduling the set of base stations allocated to a platform in
order to meet their real-time constraints.

There is a wealth of literature on scheduling of real-time
systems, which includes scheduling on multi-core platforms,
see Section 7 for related work. But most of the work considers
systems with implicit deadline where the deadline coincides
with the periodicity of the process. This is unlike cellular
systems where the deadline to process a subframe (3 ms for
LTE) exceeds the periodicity (1 ms for LTE) of the subframe.
Furthermore, we adopt a separation principle in the design
of the system. We initially provision the system to handle
the extreme scenario where every base station has the max-
imum processing load (Lmax) 3. As we see later, this design
leads to a simple solution of the above-mentioned partition-
ing problem with statistical guarantees. We use a standard
bin-packing algorithm to pack base stations into bins of size
Lmax. As a consequence of this design, the real-time process-
ing requirements of the base stations are automatically guar-
anteed in the framework. This separation of the partitioning
and scheduling problems is a robust and simple framework
for critical real-time systems. To the best of our knowledge,
such a separation is not possible under any of the existing
solutions for real-time systems.

As a result of adopting the separation principle, we make
the following design choices:

1. One subframe one compute resource: We assume
that a subframe of a base station is completely processed

3Note that the time budget for processing is a function of the
transmission delay in the network. In a fiber network, the
typical transmission delay is 5µs per Km. Since the total time
budget is 3 ms, the actual processing time is 3 - transmission
delay ms

on a single compute resource and meets its processing dead-
line requirement even at peak load. Different subframes of
the same base station can be potentially scheduled to differ-
ent compute resources. A compute resource is a logical en-
tity and can consist of multiple physical compute resources.
For example, since functions such as turbo decoding are ex-
tremely compute intensive, they may be parallelized to run
across multiple physical cores.

2. Offline schedule: In order to adhere to the separation
principle, under statistical guarantees, we allocate a certain
set of base stations to a platform based on their individual
processing loads. Once allocated to a platform, an offline al-
gorithm determines the schedule of processing the subframes
of the base stations and does not further optimize based on
variations in the processing loads.

Remark 2. In this paper we do not explicitly consider sig-
nal processing techniques such as coordinated multi point schedul-
ing (CoMP) which requires joint processing across multiple
base stations. Typically however CoMP is performed across
adjacent base stations and the techniques we describe here can
be easily generalized to these scenarios also by constructing
suitable ”virtual base stations” comprising multiple physical
base stations.

4.1 Resource Management Algorithm
We develop a resource management framework that solves

the partitioning and the scheduling problems mentioned above.
First, we develop an algorithm to schedule base stations at
peak load on a platform. This provides us with a natural
framework to apply the separation principle to solve the par-
titioning problem. Next, under this framework, we develop
an algorithm to schedule base stations with statistical guar-
antees. This is a standard bin packing algorithm that ensures
that the base stations meet their processing deadlines.

4.1.1 A cyclic schedule
We develop a strategy that cyclically schedules base sta-

tions on a multi-core compute platform. Consider a com-
pute platform with N cores, where the cores are ordered
as 1, . . . , N . Consider a set of M base stations ordered as
{B1, B2, . . . , BM}. The subframes at a base station arrive
with a known periodicity and need to be processed within
a deadline. Assume that the base stations are operating at
peak load and the subframes take the maximum load Lmax to
complete processing. For the sake of exposition, let us assume
that the periodicity is 1 unit while Lmax can exceed 1. Let us
view the subframes arriving for processing at a base stations
as jobs and denote the j-th base station’s job that arrives at
time instant t as Bj(t). The cyclic schedule is simple: at time
t, assign the job from the j-th base station, i.e., Bj(t), to core
(tM + j) mod (N) + 1.

There are two questions that immediately arise: how do we
guarantee that the deadline requirements of the base stations
are met and what is the maximum number of base stations
that can be scheduled on a single processor. We will an-
swer the questions next, but first we illustrate some of the
properties of the cyclic schedule with an example. In the ex-
ample in Figure 5, we consider a system with N = 4 cores
which has to process M = 3 base stations. The subframes for
each base station arrive at a periodicity of 1 unit and have
a peak processing load of Lmax = 4/3 units. The resulting
cyclic schedule for these parameters is shown in Figure 5. In
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Figure 5: Example with 3 base stations and 4 cores

the figure, the horizontal axis indexes the four cores and the
vertical axis indexes the time. We denote subframes by rect-
angles where the height of a rectangle denotes the processing
load of the corresponding subframe (4/3 units).

In this example, observe the following:

• The order of the jobs processed by core 0 repeats every 4
units, it is always subframes of base station B1 followed by
B2 followed by B3.

• After an initial transient phase, the same schedule repeats
at each core, i.e., each core sees jobs from base stations in
the order B1 followed by B2 followed by B3. Moreover, the
jobs of a base station experience the same queuing delay for
every subframe irrespective of the core they are scheduled on.
In this example, the delays are 0, 1/3, and 2/3 ms for base
stations B1, B2, and B3 respectively.

The first property holds because N = 3 and M = 4 are
coprime in the above example. If the number of cores M and
the number of processors N are not coprime, it is easy to
see that the sets of cores and base stations get partitioned so
that each subset of cores processes a distinct subset of base
stations. Let us assume that M and N are coprime for the
sake of exposition. In this case, the multi-core scheduling
problem essentially becomes a single core scheduling problem
since the same schedule repeats across all the cores.

So far we have not dealt with the issue of synchronization
between base stations at subframe boundaries. But we saw
with the cyclic schedule that every base station experiences
the same queuing delay for all the subframes, and this prop-
erty can be used to our advantage when all the base stations
are not synchronized among themselves. The subframes of
different base stations need not arrive at the same time and
might be delayed in relation to each other. We can handle
this by closely matching the delay in receiving the subframe
of a base station with the queuing delay it sees in the cyclic
schedule. Revisiting the example in Figure 5, let us suppose
that we have three base stations A1, A2, and A3 which are
not synchronized among themselves. Let us take the sub-
frame boundaries of A1 be the reference and assign A1 to B1

in the example. Then, either of A2 or A3 can be matched to
B2 or B3 as long as their subframes see a relative delay of
less than 1/3 and 2/3 units respectively. In the general case,
the challenge is to order the base stations so that the offset
in the arrival times of subframes is matched with the queuing
delays and the deadline requirement of every base station is
met, in other words we need to find the right permutation of
base stations4. Also, as we later see, we can always ensure
that M and N are coprime without much loss in optimality.
4Since the duration of each subframe is 1 ms, the relative

4.1.2 Maximizing the number of base stations
Our goal is to find the maximum number of base stations

that can be scheduled on N cores, subject to the constraints
that every subframe has the maximum load Lmax and must
be processed within a deadline d > Lmax. If a platform with
N cores can schedule M base stations with load Lmax, then
MLmax ≤ N since in each unit of time the total load due to
all the base stations is MLmax. We obtain the upper bound
M ≤ b N

Lmax
c on the number of base stations. We can obtain

a lower bound on M with a greedy provisioning of cores for
each base station. We can assign dLmaxe cores to each base
station and one-by-one send subframes from the base station
to each of the dLmaxe cores. Clearly the deadline constraint
of every base station is met with this assignment. Hence, we
obtain the lower bound M ≥ d N

dLmaxee.
As mentioned before, if M and N are coprime, it is suf-

ficient to analyze the schedule on a single core. We solve
the scheduling problem by focusing on core 0. Let tk denote
the arrival time of the subframe for the k-th base station at
core 0 and let sk denote the delay it experiences before get-
ting processed. As seen in the above recursion, the delay
experienced by the k-th base station’s subframe is 0 if the
previous subframe corresponding to the k− 1-th base station
was processed by tk. Otherwise, the delay induced due to the
previous job is given by the difference between the time when
the k − 1-th job finishes and tk. With a recursive computa-
tion, the k − 1-th job finishes by tk−1 + sk−1 + Lmax. Hence
the delay experienced by the k-th base station is:

sk = max (0, sk−1 + Lmax − (tk − tk−1)), (8)

k = 1, . . . ,M − 1

s0 = 0. (9)

The constraints that have to be satisfied at each core under
our framework can be written as follows:

Maximize M

subject to sk + Lmax ≤ d,

sM−1 + Lmax ≤ tM − tM−1,

d
N

dLmaxe
e ≤M ≤ b

N

Lmax
c,

where tk = b
kN

M
c,M ∈ Z

where the fist constraint ensures that the deadline constraint
is met for every base station. The second constraint ensures
that the last base station BM completes processing before the
first base station B1 in the the next cycle arrives. The last
constraints are the previously obtained bounds on M .

It is easy to solve this optimization. We choose M to equal
the upper bound on the number of base stations. We check
if the constraints are satisfied for this choice, else we reduce
M by 1 and repeat the check. We stop at the first case when
all constraints are met and declare it to be the maximum
number of base stations that can be accommodated. If the
choice of M is not coprime with N , then we further reduce M
till the result is coprime with N . The probability that both
M and M − 1 are not coprime with N is less than 2% for
M,N ≤ 1000, hence the loss in optimality is very low. Hence
we can always ensure that M and N are coprime.

delay between the arrival of subframes of two base stations is
bounded by 0.5 ms.
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4.1.3 Resource Pooling
Recall that in order to enable a centralized RAN, we have

a two-fold goal of partitioning and scheduling base stations
with statistical guarantees. In Section 4.1.1, we developed a
framework to schedule base stations on a multi-core platform
and computed the maximum number M of base stations that
a platform with N cores can support. In this section, we solve
the problem of partitioning the base stations into subsets,
each of which can be scheduled on an N core platform. Each
subset can contain more than M base stations. We will see
that the cyclic schedule allows us to apply the separation
principle and deadlines for all the base stations can be met
with no additional effort.

We assume that the CDF of the processing load for base
station Bi at time t is known and denoted by Fi,t(x). Let
PF be the chosen statistical guarantee or the probability of
failure. We compute the processing load Li,t(PF ) such that
the probability that the base station’s actual load exceeds
Li,t(PF ) is less than PF :

Li,t(PF ) := sup
x:x≤PF

{F−1
i,t (x)}, ∀ i, t. (10)

Next, we need to partition this set of {Li,t}i for a given t,
into smaller sets that can be scheduled on a GPP platform.
Since each of the subsets is scheduled on a separate plat-
form, we want to minimize the number of subsets that we
create. We adopt the following approach for it: recall that in
Section 4.1.2, we determined the maximum number of base
stations with a processing load Lmax that can be scheduled
on a GPP platform. Conversely, we can determine the max-
imum feasible processing load Lmax(M) for a given choice of
M . Now we have a set of tuples for an N core platform

{(M1, Lmax(M1)), (M2, Lmax(M2)), . . . , (MK , Lmax(MK))},
(11)

where Mk is the maximum number of base stations that can
be scheduled on a single GPP platform and Lmax(Mk) is the
corresponding maximum processing load.

Now consider a maximum processing load of Lmax(Mk).
We say a subset J of base stations {Bj}j∈J is feasible for
this load if the sum of the individual base station loads corre-
sponding to a statistical guarantee PF is less than Lmax(Mk),
i.e.,

∑
j∈J Lj,t(PF ) ≤ Lmax(Mk). These base stations can

be combined together to create a super base station whose
processing load is bounded by Lmax(Mk). Now, we can sched-
ule Mk super base stations on the GPP platform.

Our goal is to minimize the total number of platforms for
scheduling the base stations. Instead, we partition the base
stations into the minimum number of subsets, where each sub-
set can be viewed as a super base station corresponding to a
processing load Lmax(Mk) for some k. Then, we group Mk

of the super base stations corresponding to processing load
Lmax(Mk) into a single platform. We perform cyclic schedul-
ing over the super base stations in order to process their sub-
frames. If a super base station is scheduled for processing,
then the subframes of the individual base stations constitut-
ing the super base station are processed in order. If the pro-
cessing time of the subframe of base station Bj exceeds the
allocated time Lj,t(PF ), then the subframe is dropped from
the queue. This approach represents the separation princi-
ple and the delay guarantees for each base station is met by
virtue of the cyclic scheduling framework.

To compute the minimum number of super base stations,
we note that each choice of processing load Lmax(Mk) for

some k can be viewed as a bin of size Lmax(Mk). Hence,
we have a variable size bin packing problem where the set of
base stations with loads {Li,t(PF )}i have to be filled into min-
imum number of bins, where the size of the bins is from the
set {Lmax(Mk)}Kk=1. For certain mild assumptions satisfied
here, the iterative first fit decreasing algorithm guarantees a
3
2

approximation to the bin packing problem [17]. Since we
group Mk of the bins (or super base stations) corresponding
to Lmax(Mk) into a platform, we might further step away
from optimality if the number of bins of size Lmax(Mk) is
not a multiple of Mk. Firstly, this loss is bounded by K,
which is the number of choices for bin size. Secondly, this
loss can be further reduced by carrying out a second round
of optimization on the platforms that are not fully occupied.

4.2 Simulation results
In Section 3, we evaluated the possible gains in resource

pooling by analysing real-world data. We use the same data
to evaluate the performance of our architecture. We consider
two scenarios. First, we study the gains from resource pooling
at each cell site by calculating the total number of compute
resources required to provide a certain statistical guarantee.
We compare this against the base case where each cell site is
provisioned to ensure that all base stations with peak load are
processed successfully. The second case is when the resource
pooling for all base stations is done at a central location for
a certain statistical guarantee. We compare this against the
case where the central site is provisioned to process all the
base stations at peak load. We study both these scenarios
for the busy hours of the day which range from 0800 hours
to 2200 hours. Clearly the gains of resource pooling will be
higher in the second case than in the first case. But this
comparison will allow cellular operators to analyse the cost-
benefit trade-off of resource pooling at a central cloud versus
performing it at the cell sites.

We report results based on provisioning for a five core plat-
form. The choice of a five core platform is motivated by the
Intel processor on which we implement our design and this
will explained in detail in Section 5. The five cores can be
provisioned to handle 2, 3, 4, 5 or 6 base stations5. The corre-
sponding Lmax for each of these choices is given by 5/Mi, i.e.,
if we provision 4 base stations, then Lmax(4) = 5/4 = 1.25.
We assume that each base station has a peak load of 5/3 =
1.66 ms, which means that for providing hard guarantees, we
can provision 3 base stations in a single platform. We made
this choice for two reasons: firstly, three base stations cor-
respond to three sectors in a cell site. Secondly, we ensure
that the utilization of all the cores in the platform is 100%
for the base case with peak load. This gives us conservative
estimates of the pooling gains from bin packing for the case
with statistical guarantees.

In this setup, for the base case of scheduling 175 base sta-
tions at peak load, we require 63 platforms at the cell site and
59 platforms at the central location. Note that more compute
resources are required at the cell site since one of the plat-
forms at a cell site can be over provisioned, i.e., it processes
fewer than the number of base stations it is provisioned for.
The results for resource pooling gains under statistical guar-

5We limit the maximum number of base stations that can be
scheduled on a compute resource since we do not factor all the
overheads associated with scheduling multiple base stations
like limits of the network interfaces which might constrain our
options.
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Table 2: Reduction in load at the cell site vs. central
location. The baseline for comparison is 59 platforms
for central location and 63 for the cell site.

Prob. of Number of Proc. Number of Proc.
failure (PF ) at Cell Site at Central Location

(%Savings) (% Savings)
10−4 45.39 (27.95%) 44.51 (24.55%)
10−6 49.03 (22.17%) 46.86 (20.57%)
10−8 52.41 (16.8%) 47.49 (19.5%)

antees are reported in table 2. We obtain them by computing
the number of processors required in each 15 minute interval
and average the results. We observe from table 2 that most of
the gains under resource pooling are obtained at the cell site
itself. However, there might be other benefits to perform re-
source pooling at a central location like substantial savings in
operations and management and capacity gains via advanced
signal processing techniques involving cooperative transmis-
sions/receptions from neighboring cell sites. Further we plot
the number of total processors required as a function of time
for a statistical probability of failure of 10−8 in figure 6.
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Figure 6: Number of processors required for aggre-
gation at cell site or cloud at 15 minute intervals.

5. SYSTEM DESIGN
In this section we summarize our design exercise for imple-

menting a multi-threaded LTE base-station. As mentioned
earlier in Section 1, the basic building blocks of an LTE base
station in our framework are ported from OpenAirInterface
project [5]. The OpenAir project has developed a 3GPP
compliant 5 MHz LTE implementation.The implementation
executes each subframe in a single threaded fashion, i.e., it
does not separate the user processing onto different threads
as mentioned earlier. Furthermore it also runs the entire base
station as a single thread and does not execute different sub-
frames on different cores.

We implement our solution on an Intel Xeon W3690, with
6 physical cores and each core running at 3.47 GHz, 12 MB
shared L3 cache and 256 KB L2 cache. Our platform uses
Linux kernel 2.6.31 [9] with RT preemption patch (PRE-
EMPT RT) [4] whose default scheduling mechanism is Round-
Robin [12]. But for better time predictability the threads can
also be launched with FIFO scheduling option [12] and same
real-time priority to prevent any preemption. We now de-
scribe some of the implementation challenges we faced and
some design choices we made to overcome these issues.

Resident threads on cores: As explained in Section 4,
our resource management framework dispatches different sub-
frames of a single base station to different cores. Furthermore
since LTE subframes arrive every 1 ms and the processing

time for a subframe can exceed 1 ms, a base station can
be concurrently processing multiple subframes. This implies
that we require a multi threaded implementation for each base
station that ensures that subframes can be processed concur-
rently without any conflicts. The central idea is to leverage
the thread level parallelism (i.e. task parallelism) on a multi-
core general purpose processing platform to manage parallel
processing modules of an LTE base station. There can be two
approaches to this problem. First approach is to create a new
thread for each subframe that has to be processed and assign
this thread to a core according to the resource management
algorithm (see Section 4. Although simple in design, this
framework of transient threads has stability issues due to con-
straints of the underlying Linux kernel. We verified through
experiments that creation and deletion of multiple threads
at timescales of milliseconds overloads the system within a
short span of 100 milliseconds. This is because the kernel is
not able to free up resources at such timescales. Hence, we
adopt the second approach of making each thread resident to
a processor core and notifying the thread dynamically when
a subframe needs to be processed.

Figure 7 explains our framework by showing how subframe
processing jobs are launched in our system. For simplicity, we
show only three cores out of which core 0 is always running the
resource management algorithm (denoted by RM) and core
1 and 2 are dedicated for running LTE subframe processing.
We assume that we are managing only two base-stations i.e.
the RM process will launch two subframe processing jobs ev-
ery millisecond. We also assume that with current processing
loads, subframe processing for the first base-station (denoted
by BTS1) will finish within a millisecond but the subframe
processing for second base-station (denoted by BTS2) will
not. Figure 7(a) shows that before time instance (t = 0)
the threads running on core 1 and 2 are idle. In Figure 7(b)
at time instance (t = 0), RM launches 2 subframe processing
jobs to each of these core (denoted by solid arrow) and signals
the idle threads to resume processing. In Figure 7(c) at time
instance (t = 1), core 1 has finished the subframe processing
of BTS1 but core 2 is still running the subframe processing
of BTS2 and RM launches the next set of subframe process-
ing jobs to these cores. At core 1, the new job is started
immediately but at core 2 the job is enqueued (denoted by
dashed arrow) after the previous job. Every resident thread
maintains a job-queue where new jobs are enqueued by the
RM. If the queue gets empty, the corresponding thread goes
to sleep and the RM needs to wake-up the thread when a new
job is dispatched to this thread.

FIFO order execution: Recall that the default schedul-
ing mechanism of our Linux kernel is Round-Robin on each
core. If two or more tasks are dispatched to a core and they
are scheduled in Round-Robin fashion, it is difficult to pre-
dict their turn around times even if the individual processing
loads are known. Therefore, we decided to incorporate FIFO
order execution of multiple tasks on the same core. As men-
tioned earlier, this FIFO scheduling is implemented using an
job-queue for each thread where new tasks are enqueued by
RM. The thread goes to idle state if the queue is empty and
needs to be signaled by RM after a new job is enqueued.

Circular shared buffers: To avoid conflicts between con-
current running processes, several shared buffers in OpenAir
need to be duplicated (e.g. the IQ sample buffer for base sta-
tion Rx processing modules). The degree of duplication how-
ever can be limited by the maximum number of concurrent
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(a) Before Time t = 0 (b) At Time t = 0 (c) At Time t = 1

Figure 7: Resident Thread Framework and Signaling

Table 3: Average uplink subframe processing times.
Single BTS and Dual BTS modes refer to one and two
base stations scheduled on the processor respectively.
Super base station mode refers to two base stations
scheduled as a super base station. In Super BTS
mode, processing time is the total time to process
both the subframes.

Configuration TBS Uplink proc. time (ms)
PRB MCS (Bytes) Single Dual Super

BTS BTS BTS
12 4 680 0.701 0.700 1.383
12 8 1480 0.794 0.788 1.557
12 12 2408 0.989 0.999 1.966
16 4 904 0.793 0.793 1.568
16 8 1928 0.899 0.911 1.786
16 12 3240 1.209 1.209 2.409
20 4 1160 0.883 0.885 1.756
20 8 2472 1.022 1.038 2.051
20 12 4008 1.526 1.525 3.035

threads in our system. We maintain a circular list of shared
buffers and while launching a new task assign the next free
block to it and advance in the queue in circular fashion. This
helps us to keep the allocated memory to our system as low
as possible.

6. EXPERIMENTS
We now present a subset of the experiments we conducted

to evaluate our system. We study the effects of sharing the
compute resources between multiple base stations and verify
that there is negligible deterioration in average processing
time of each base station. We also observe that the worst
case processing time for a base station can increase if multiple
base stations share the compute resource. This effect can be
accounted for in the resource management algorithm.

The details of LTE are presented in Section 2 and Fig-
ure 2 shows the time taken to process uplink and downlink
subframes under different configurations (allocated PRB and
MCS). Since the uplink processing is more intensive than
downlink (see Figure 2), we focus on the performance of the
uplink (base station Rx) processing. All our experiments are
done with a single UE per base station and a 2 × 1 MIMO
configuration. Each UE gets connected to a base station and
thereafter remains static and does not cause any hand-over
or disconnection. After the connection is established, the
UE always has a full buffer and all available PRBs in every
subframe are used for data transfer. For simplicity and pre-
dictability, we override the CQI based MCS calculation in the
scheduler and instead choose a pre-defined MCS.

Table 3 compares the uplink processing times for a single
base station when either one or two base stations are sched-

uled on the processor. The total number of data bytes to be
transmitted in a subframe is called the transport block size
(TBS) and is specified by LTE as a function of the allocated
PRB and MCS (as shown in Table 3). The average subframe
processing times are calculated over 18000 LTE subframes.
Note that the average processing time for a subframe remains
almost unchanged irrespective of whether we schedule one or
two base stations on the processor. Recall that for providing
statistical guarantees, we can combine multiple base stations
to form a super base station. Table 3 also includes the pro-
cessing time for a super base station comprising of two base
stations. This is roughly double than that of a single base
station. Although, average processing times remain same
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for multiple base stations running in parallel, we observed
a steady increase in the maximum subframe processing time
as we increase the number of base stations in the system.
Figure 8(a) shows the average and maximum subframe (up-
link) processing times for multiple base stations. All uplink
subframes correspond to 16 PRBs and MCS 4. The aver-
age processing time stays almost constant around 0.8 ms but
the maximum (worst-case) processing time observed among
all active base stations increases from 0.81 ms to 1.04 ms as
we increase the number of base stations running in the sys-
tem simultaneously. We found by further investigations that
increased number of shared cache misses are the primary rea-
son behind this increase in maximum processing time. Fig-
ure 8(b) shows the percentage of L3 cache misses with increas-
ing number of base stations running in parallel. Note that,
with original OpenAir code this effect of shared cache misses
on worst-case execution time of a base station was more se-
vere and we were unable to schedule more than two base
stations on 5 cores (same configuration). But with careful
analysis of cache misses and restructuring of large data struc-
tures, we managed to avoid obvious cache-misses in few of the
computation-heavy functions (e.g. turbo decoding) which en-
abled us to schedule as many as 5 base stations. Making all
the data structures in OpenAir code cache-conscious [10] or
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tuning each of the functions to avoid cache misses [13, 14] is
beyond the scope of this work but we strongly believe that
such exercises will further decrease the gap between average
and maximum processing time of multiple base stations.

7. RELATED WORK
We briefly review the literature in the area of real-time sys-

tems. Most of the literature in traditional real-time systems
considers tasks with an implicit deadline equal to their pe-
riod [19]. Furthermore, tasks are assigned priorities for com-
pletion. For the case of scheduling such tasks on a single pro-
cessing core (uniprocessor), the Earliest Deadline First (EDF)
scheduler is known to be optimal [11]. On multi-core (or mul-
tiprocessor) systems, however, more complex schedulers such
as the Proportionally Fair scheduler are needed for optimal
scheduling [15]. In the tasks of interest to us, the deadline
for completion can exceed the time-period. Such systems are
called arbitrary-deadline cases and have been studied in the
literature [7] [6] [18]. We are interested in scheduling such
tasks with arbitrary deadlines on a multi-core system, while
ensuring the separation principle. To the best of our knowl-
edge, there are no algorithms in existing real-time literature
that satisfy our requirements.

The cellular industry is currently evaluating proposals to
transition towards a centralized architecture for baseband
processing of the signals, see [2, 3]. Similar ideas for a cen-
tralized compute resource were evaluated for distributed an-
tenna systems (DAS) [20], though DAS considered the design
of large cells with distributed antennas to provide coverage.

8. REFLECTIONS
This paper is the first attempt at providing a rigorous re-

source management framework that allows a cellular operator
to trade-off between the quaility of the network and the cost
of operating the network (in terms of either the energy or the
cost of baseband compute resources). However, there are sev-
eral research issues that must be addressed to engineer such
a system. Some of them are outlined below.
Reducing Backhaul Costs: The cost of fiber to backhaul the
IQ samples to a central location can be prohibitive. For ex-
ample, a 20 MHz LTE system requires around 1 Gbps of
bandwidth per antenna to backhaul the samples. Hence, 3
sectors with each having a 4 × 4 MIMO system might re-
quire up to 12 Gbps of bandwidth. The cost of laying fiber
with such high capacity can be prohibitive. As an alterna-
tive, the industry is considering architectures where some of
the PHY processing is done at the base station, while the
user specific samples are transported to the central site for
processing. This has the potential to significantly reduce the
backhaul requirements, while still permitting advanced signal
processing techniques like CoMP and availing other benefits
of the CloudIQ architecture.
Network and Switching Backplane at Data Center: We have
primarily addressed the question of how to pool compute
resources to minimize the number of required compute re-
sources. We have not addressed the issues of network back-
haul and the topology of the data center.
Resource Pooling Time Scales: In this paper, we have naively
assumed that the resource pooling time scale is of the order of
several minutes. Further we have assumed that the process-
ing load distributions are predictable. An alternate approach
would be to see if these decisions can be made at finer time
scales and understand the predictability of the processing load
distributions at those time scales.

Heterogeneous Systems: We have designed a resource man-
agement framework for homogeneous systems. However, cur-
rently deployed systems use heterogeneous components like
accelerators for compute intensive functions like turbo decod-
ing and GPP’s for less intensive signal processing functions.
As part of the ongoing work, we are extending the CloudIQ
framework to heterogeneous systems.
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