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Abstract
It is cumbersome to write machine learning and graph al-
gorithms in data-parallel models such as MapReduce and
Dryad. We observe that these algorithms are based on matrix
computations and, hence, are inefficient to implement with
the restrictive programming and communication interface of
such frameworks.

In this paper we show that array-based languages such
as R [2] are suitable for implementing complex algorithms
and can outperform current data parallel solutions. Since R
is single threaded and does not scale to large datasets, we
have built Pronto, a distributed system that extends R and
addresses many of its limitations. Pronto efficiently shares
sparse structured data, can leverage multi-cores, and dynam-
ically partitions data to mitigate load imbalance. Our results
show the promise of this approach: many important machine
learning and graph algorithms can be expressed in a single
framework and are substantially faster than those in Hadoop
and Spark.

1. A matrix based approach
Many real-world applications require sophisticated analysis
on massive datasets. Most of these applications use machine
learning, graph algorithms, and statistical analyses that are
easily expressed as matrix operations.

For example, PageRank corresponds to the dominant
eigenvector of a matrix G that represents the Web graph.
It can be calculated by starting with an initial vector x
and repeatedly performing x=G∗x until convergence [7].
Similarly, recommendation systems in companies like Net-
flix are implemented using matrix decomposition [34]. Even
graph algorithms, such as shortest path, centrality measures,
strongly connected components, etc., can be expressed using
operations on the matrix representation of a graph [18].

Array-based languages such as R and MATLAB provide
an appropriate programming model to express such machine
learning and graph algorithms. The core construct of arrays
makes these languages suitable to represent vectors and ma-
trices, and perform matrix computations. R has thousands
of freely available packages and is widely used by data min-
ers and statisticians, albeit for problems with relatively small
amounts of data. It has serious limitations when applied to
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Figure 1. R’s poor multi-core support: multiple copies of data on
the same server and high communication overhead across servers.

very large datasets: limited support for distributed process-
ing, no strategy for load balancing, no fault tolerance, and is
constrained by a server’s DRAM capacity.

1.1 Towards an efficient distributed R
We validate our hypothesis that R can be used to efficiently
execute machine learning and graph algorithms on large
scale datasets. Specifically, we tackle the following chal-
lenges:

Effective use of multi-cores. R is single threaded. The eas-
iest way to incorporate parallelism is to execute programs
across multiple R processes. Existing solutions for paral-
lelizing R [23] use message passing techniques, including
network communication, to communicate among processes.
This multi-process approach is also used in commercial sys-
tems like parallel MATLAB and has two limitations. First, it
results in redundant data copies. Figure 1 shows that two R
instances on a single physical server would have two copies
of the same data, hindering scalability to larger datasets. Sec-
ond, the network communication overhead becomes propor-
tional to the number of cores utilized instead of the number
of distinct servers, again limiting scalability.

Existing efforts for parallelizing R have another limita-
tion. They do not support point-to-point communication. In-
stead data has to be moved from worker processes to a desig-
nated master process after each phase. Thus, it is inefficient
to execute anything that is not embarrassingly parallel [23].
Even simple iterative algorithms are costly due to the com-
munication overhead via the master.

Imbalance in sparse computations. Most real-world
datasets are sparse. For example, the Netflix prize dataset
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Figure 2. Variance in block density. Y-axis shows density of a
block normalized by that of the sparsest block. Lower is better.

is a matrix with 480K users (rows) and 17K movies (cols)
but only 100 million of the total possible 8 billion ratings
are available. Similarly, very few of the possible edges are
present in Web graphs. It is important to store and ma-
nipulate such data as sparse matrices and retain only non-
zero entries. These datasets also exhibit skew due to the
power-law distribution [13], resulting in severe computation
and communication imbalance when data is partitioned for
parallel execution. Figure 2 illustrates the result of naı̈ve
partitioning of various sparse data sets: LiveJournal (68M
edges) [3], Twitter (280M edges), pre-processed ClueWeb
sample1 (1.2B edges), and the ratings from Netflix prize
(100M ratings). The y-axis represents the block density rel-
ative to the sparsest block, when each input matrix is par-
titioned into 100 blocks. The plot shows that a dense block
may have 1000× more elements than a sparse block. De-
pending upon the algorithm, variance in block density can
have a substantial impact on performance (Section 6).

1.2 Limitations of current data parallel approaches
Existing distributed data processing frameworks, such as
MapReduce and DryadLINQ, simplify large-scale data pro-
cessing [11, 16]. Unfortunately, the simplicity of the pro-
gramming model (as in MapReduce) or reliance on rela-
tional algebra (as in DryadLINQ) makes these systems un-
suitable for implementing complex algorithms based on ma-
trix operations. Current systems either do not support state-
ful computations, or do not retain the structure of global
shared data (e.g., mapping of data to matrices), or do not
allow point to point communication (e.g., restrictive MapRe-
duce communication pattern). Such shortcomings in the pro-
gramming model have led to inefficient implementations of
algorithms or the development of domain specific systems.
For example, Pregel was created for graph algorithms be-
cause MapReduce passes the entire state of the graph be-
tween steps [22].

There have been recent efforts to better support large-
scale matrix operations. Ricardo [10] and HAMA [28] con-
vert matrix operations to MapReduce functions but end up
inheriting the inefficiencies of the MapReduce interface.

1 http://lemurproject.org/clueweb09.php

MadLINQ provides a linear algebra platform on Dryad but
with a focus on dense matrix computations [27]. Power-
Graph [13] uses a vertex-centric programming model (non
matrix approach) to implement data mining and graph al-
gorithms. Unlike MadLINQ and PowerGraph, our aim is to
address the issues in scaling R, a system which already has a
large user community. Additionally, our techniques for han-
dling load imbalance in sparse matrices may be applicable
to MadLINQ.

1.3 Our Contribution
We present Pronto, an R prototype to efficiently process
large, sparse datasets. Pronto introduces the distributed ar-
ray, darray, as the abstraction to process both dense and
sparse datasets in parallel. Distributed arrays store data
across multiple machines. Programmers can execute parallel
functions that communicate with each other and share state
using arrays, thus making it efficient to express complex al-
gorithms.

Pronto programs are executed by a set of worker pro-
cesses which are controlled by a master. For efficient multi-
core support each worker on a server encapsulates multiple
R instances that read share data. To achieve zero copying
overhead, we modify R’s memory allocator to directly map
data from the worker into the R objects. This mapping pre-
serves the meta-data in the object headers and ensures that
the allocation is garbage collection safe.

To mitigate load imbalance, the runtime tracks the exe-
cution time and the number of elements in each array parti-
tion. In case of imbalance, the runtime dynamically merges
or sub-divides array partitions between iterations and assigns
them to a new task, thus varying the parallelism and load in
the system.

We have implemented seven different applications in
Pronto, ranging from a recommendation system to a graph
centrality measure. Our experience shows that Pronto pro-
grams are easy to write and can be used to express a wide va-
riety of complex algorithms. Compared to published results
of Hadoop and Spark [33], Pronto achieves equally good ex-
ecution times with only a handful of multi-core servers. For
the PageRank algorithm, Pronto is more than 40× faster than
Hadoop and 15× faster than Spark.

2. Background
Matrix computation is heavily used in data mining, image
processing, graph analysis, and elsewhere [30]. Our focus is
to analyze sparse datasets that are found as web graphs, so-
cial networks, product ratings in Amazon, and so on. Many
of these analyses can be expressed using matrix formula-
tions that are difficult to write in data parallel models such
as MapReduce.

Example: graph algorithms. Many common graph algo-
rithms can be implemented by operating on the adjacency
matrix [18]. To perform breadth-first search (BFS) from a
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Figure 3. Breadth-first search using matrix operations. The kth

multiplication uncovers vertices up to k hop distance away.

vertex i we start with a 1×N vector x which has all ze-
roes except the ith element. Using the multiplication y=x∗G
we extract the ith row in G, and hence the neighbors of ver-
tex i. Multiplying y with G gives vertices two steps away
and so on. Figure 3 illustrates BFS from source vertex A in
a five vertex graph. After each multiplication step the non-
zero entries in Yi (starred) correspond to visited vertices. If
we use a sparse matrix representation for G and x, then the
performance of this algorithm is similar to traditional BFS
implementations on sparse graphs.

The Bellman-Ford single-source shortest path algorithm
(SSSP) finds the shortest distance to all vertices from a
source vertex. SSSP can be implemented by starting with
a distance vector d and repeatedly performing a modified
matrix multiplication, d=d⊗G. In the modified multipli-
cation d(j)=mink{d(k)+G(k,j)} instead of the usual
d(j)=∑k{d(k)∗G(k,j)}. In essence, each multiplica-
tion step updates the vertex distances by choosing the mini-
mum of the current distance, and that of reaching the vertex
using one more edge.

2.1 R: An array-based environment
R provides an interactive environment to analyze data. It
has interpreted conditional execution (if), loops (for,
while, repeat), and uses array operators written in C,
C++ and FORTRAN for better performance. Line 1 in Fig-
ure 4 shows how a 3× 3 matrix can be created. The argu-
ment dim specifies the shape of the matrix and the sequence
10 : 18 is used to fill the matrix. One can refer to entire subar-
rays by omitting an index along a dimension. For example, in
line 3 the first row of the matrix is obtained by A[1, ], where
the column index is left blank to fetch the entire first row.
Subsections of a matrix can be easily extracted using index
vectors. Index vectors are an ordered vector of integers. To
extract the diagonal of A we create an index matrix idx in
line 4 whose elements are (1,1),(2,2) and (3,3). In line 6,
A[idx] returns the diagonal elements of A. In a single ma-
chine environment, R has native support for matrix multi-
plication, linear equation solvers, matrix decomposition and
others. For example, %∗% is an R operator for matrix mul-
tiplication (line 7).

1: > A<-array(10:18,dim=c(3,3)) #3x3 matrix
2: > A

[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

3: > A[1,] #First row
[1] 10 13 16

4: > idx<-array(1:3,dim=c(3,2)) #Index vector
5: > idx

[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3

6: > A[idx] #Diagonal of A
[1] 10 14 18

7: > A%*%idx #Matrix multiply
[,1] [,2]

[1,] 84 84
[2,] 90 90
[3,] 96 96

Figure 4. Example array use in R.

3. Programming model
Pronto is R with new language extensions and a runtime
to manage distributed execution. The extensions add dis-
tributed and parallel execution. The runtime takes care of
memory management, scheduling, dynamic data partition-
ing, and fault tolerance. As shown in Figure 5, programmers
write a Pronto program and submit it to a master process.
The runtime at the master is in charge of the overall execu-
tion. It executes the program as distributed tasks across mul-
tiple worker processes. Table 1 depicts the Pronto language
constructs which we discuss in this section.

3.1 Distributed arrays
Pronto solves the problem of structure and scalability by
introducing distributed arrays. Distributed array (darray)
provides a shared, in-memory view of multi-dimensional
data stored across multiple servers. Distributed arrays have
the following characteristics:

Partitioned. Distributed arrays can be partitioned into
chunks of rows, columns or blocks. Users specify the size
of the initial partitions. Pronto workers store partitions of
the distributed array in the compressed sparse column for-
mat unless the array is defined as dense. Programmers use
partitions to specify coarse grained parallelism by writ-
ing functions that execute in parallel and operate on par-
titions. Partitions can be referred to by the splits func-
tion. The splits function automatically fetches remote
partitions and combines them to form a local array. For ex-
ample, if splits(A) is an argument to a function exe-
cuting on a worker then the whole array A would be re-
constructed by the runtime, from local and remote partitions,
and passed to that worker. The ith partition can be referenced
by splits(A,i).

Shared. Distributed arrays can be read-shared by multiple
concurrent tasks. The user simply passes the array partitions
as arguments to many concurrent tasks. Arrays can be mod-
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Figure 5. Pronto architecture

ified inside tasks and the changes are visible globally when
update is called. Pronto supports only a single writer per
partition.

Dynamic. Partitions of a distributed array can be loaded
in parallel from data stores such as HBase, Vertica, or from
files. Once loaded, arrays can be dynamically re-partitioned
to reduce load imbalance and to mitigate stragglers.

3.2 Distributed parallelism
Pronto provides programmers with a foreach construct to
execute deterministic functions in parallel. The functions do
not return data. Instead, programmers call update inside
the function to publish changes. The Pronto runtime starts
tasks on worker nodes for parallel execution of the loop
body. By default, there is a barrier at the end of the loop
to ensure all tasks finish before statements after the loop are
executed.

3.3 Repartition and invariants
At runtime programmers can use the repartition func-
tion to trigger Pronto’s dynamic repartitioning method.
Repartitioning can be used to subdivide an array into a spec-
ified number of parts. Two or more partitions can be com-
bined using the merge flag. Repartitioning is a performance
optimization which helps when there is an imbalance in the
system.

One needs be careful while repartitioning structured data,
otherwise program correctness may be affected. For exam-
ple, when multiplying two matrices, the number of rows
and columns in partitions of both the matrices should con-
form. If we repartition only one of the matrices then this in-
variant may be violated. Therefore, Pronto allows program-
mers to optionally specify the array invariants in the pro-
gram. We show in Section 4.3 how the runtime can use the
invariant and repartition functions to automati-
cally detect and reduce imbalance without any user assis-
tance.

Note that for programs with general data structures (e.g.,
trees) writing invariants is difficult. However, for matrix
computation, arrays are the only data structure and the
relevant invariant is the compatibility in array sizes. The
invariant in Pronto is similar in spirit to the alignment
directives used in High Performance Fortran (HPF [20]). The

Functionality Description
darray(dim=, blocks=,
sparse=)

Create a distributed array with dimensions
specified by dim, and partitioned by blocks
of size blocks.

splits(A,i) Return ith partition of the distributed array A
or the whole array if i is not specified.

foreach(v, A, f()) Execute function f as distributed tasks for
each element v of A. Implicit barrier at the end
of the loop.

update(A) Publish the changes to A.

repartition(A, n=,
merge=)

Repartition A into n parts.

invariant(A, B, type=) Declare compatibility between arrays A and
B by rows or columns or both. Used by
the runtime to maintain invariants while re-
partitioning.

Table 1. Main programming language constructs in Pronto

HPF directives align elements of multiple arrays to ensure
the arrays are distributed in the same manner. Unlike HPF,
in Pronto the invariants are used to maintain correctness dur-
ing repartitioning.

3.4 Example: PageRank
Figure 6 shows the Pronto code for PageRank. M is the mod-
ified adjacency matrix of the Web graph. PageRank is calcu-
lated in parallel (lines 6–13) using the power method [7]. In
line 1, M is declared as an NxN array. M is loaded in parallel
from an HBase table using the Pronto driver, and is parti-
tioned by rows. In line 3 the number of columns of M is used
to define the size of a dense vector pgr which acts as the
initial PageRank vector. This vector is partitioned such that
each partition of pgr has the same number of rows as the
corresponding partition of M. The accompanying illustration
points out that each partition of the vector pgr requires the
corresponding (shaded) partitions of M, Z, and the whole ar-
ray xold. The Pronto runtime passes these partitions and
completely reconstructs xold from its partitions before ex-
ecuting prFunc at each worker.

Line 5 (Figure 6) is an example invariant for the PageR-
ank code. Each of pgr, M, xold, and Z should have the
same number of rows in each partition. By specifying this
invariant, the programmer constrains the runtime to adhere
to this compatibility between arrays even during automatic
repartitioning.

4. System design
The Pronto master acts as the control thread. The workers
execute the loop body in parallel whenever foreach loops
are encountered. The master keeps a symbol table which
maps variables to their physical location. This map is used
by workers to exchange information using pairwise com-
munication. In this paper we describe only the main mech-
anisms related to multi-core support and optimizations for
sparsity and caching.
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#Load data in parallel from adjacency matrix in HBase
1 : M<- darray(dim=c(N,N),blocks=c(s,N), sparse=T)
2 : load(M, table=’Web-graph’, drv=’HBase’)
3 : pgr<- darray(dim=c(ncol(M),1),blocks=c(s,1),sparse=F)
4 : ...
5 : invariant(pgr,M,xold,Z, type=ROW)
#Calculate PageRank (pgr)
6 : repeat{

#Distributed matrix operations
7 : foreach(i, 1: numsplits(M),

prFunc(p= splits(pgr,i), m= splits(M,i),
x= splits(xold), z= splits(Z,i)) {

8 : p<-(m%*%x)+ z
9 : update(p)
10: })
11: if(norm(pgr-xold)<1e-9) break
12: xold<-pgr
13: }

PageRank splitsPageRank splits
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Figure 6. PageRank on a Web graph.

4.1 Versioning arrays
Pronto uses versioning to ensure correctness when arrays are
updated across loop iterations. For example, write conflicts
may arise if tasks read share an array which is also written
to within that iteration. To avoid such conflicts, each parti-
tion of a distributed array has a version. The version of a
distributed array is a concatenation of the versions of its par-
titions, similar in spirit to vector clocks. Updates to array
partitions occur on a new version of the partition. By updat-
ing the version, concurrent readers of previous versions are
guaranteed to have access to data. For example, the PageR-
ank vector pgr in Figure 6 starts with version 〈0,0, ..,0〉.
After the first iteration the new version is 〈1,1, ..,1〉. Pronto
uses reference counting to garbage collect older versions of
arrays not used by any task. Pronto workers periodically in-
form the master about what partitions they are still using.
The master uses this information to track live references.

4.2 Efficient multi-core support
Since R is not thread safe, a simple approach to utilize
multi-cores is to start multiple worker processes on the same
server. There are three major drawbacks: (1) on the server
multiple copies of the same array will be created, thus in-
hibiting scalability, (2) copying the data across processes,
using pipes or network, takes time, and (3) the network com-
munication increases as we increase the number of cores be-
ing utilized.

Instead, Pronto allows a worker to encapsulate multiple
R processes that can communicate through shared mem-
ory with zero copying overhead (Figure 7). The key idea
in Pronto is to efficiently initialize R objects by mapping
data using mmap or shared memory constructs. However,
there are some important safety challenges that need to be
addressed.

Worker
DRAM

Shared data

R 
instance

O hConnections

R 
instance

R 
instance

Other 
workers

Connections
Network layer

Figure 7. Multiple R instances share data hosted in a worker.
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R instance R instance

Figure 8. Simply sharing R objects can lead to errors.

Issues with data sharing. Each R object consists of a
fixed-size header, and an array of data immediately follow-
ing the header. The header (among other things) has infor-
mation about the type and size of the corresponding data
part. Simply pointing an R variable to an external data source
leads to data corruption. As shown in Figure 8, if we were to
share an R object across different R instances two problems
can arise. First, both the instances may try to write instance
specific values to the object header. This conflict will lead
to header corruption. Second, R is a garbage-collected lan-
guage. If one of the instances garbage collects the object then
the other instance will be left with a dangling pointer.

Safe data sharing. We solve the data sharing challenge by
entrusting each worker with management of data shared by
multiple R processes. We only share read-only data since
only one process may write to a partition during a loop iter-
ation and writes always create a new version of a partition.
Pronto first allocates process local objects in each R instance
and then maps the shared data on the data part of the object.
Since the headers are local to each R instance, write conflicts
do not occur on the header.

There is another issue that has to be solved: the mmap call
locates data only to an address at a page boundary. However,
R’s internal allocator does not guarantee that the data part of
an object will start at a page boundary. To solve this issue,
Pronto overrides the behavior of the internal allocator of
R. We use malloc hook to intercept R’s malloc() calls.
Whenever we want to allocate a shared R object we use our
custom malloc to return a set of pages rounded to the nearest
multiple of the page size. Once the object has been allocated
the shared data can be mapped using mmap.

Figure 9 shows that R objects are allocated through the
default malloc for local objects and through Pronto’s malloc
function for shared objects. The shared objects consist of a
set of pages with the data part aligned to the page bound-
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Figure 9. Shared object allocation in an R instance.

ary. The first page starts with an unused region because the
header is smaller than a full page.

When the objects are no longer needed, these spe-
cially allocated regions need to be unmapped. Pronto uses
free hook to intercept the calls to the glibc free() func-
tion. Pronto also maintains a list of objects that were spe-
cially allocated. The list contains the starting address and al-
location size of the shared objects. Whenever free is called,
the runtime checks if the object to be freed is present in the
list. If it is then munmap is called. Otherwise, the glibc free
function is called. Note that while the malloc hook is used
only when allocating shared R objects, the free hook is ac-
tive throughout the lifetime of the program, because we do
not know when R may garbage collect objects.

4.3 Dynamic partitioning for sparse data
While shared memory constructs help in reducing the net-
work overhead, the overall time taken for a distributed com-
putation also depends on the execution time. Partitioning a
sparse matrix may lead to uneven distribution of nonzero el-
ements and cause a skew in task execution times. Moreover,
the number of tasks in the system is tied to the number of
partitions which makes it difficult to effectively use addi-
tional workers at runtime. Pronto uses dynamic partitioning
to mitigate load imbalance, and to increase or decrease the
amount of parallelism in the program at runtime. One can
determine optimal partitions statically to solve load imbal-
ance but it is an expensive solution. Such partitions may not
remain optimal as data is updated and static partitioning does
not adjust to change in number of workers.

Pronto uses two observations to dynamically adjust par-
titions. First, since our target algorithms are iterative, we re-
fine the partitions based on the execution of the first few it-
erations. Second, if we know the invariants for the program
we can automatically re-partition data without affecting cor-
rectness.

The Pronto runtime tracks both the number of elements
in a partition (ei) and the execution time of the tasks (ti).
It uses these metrics to decide when to repartition data to
reduce load imbalance. The runtime starts with an initial
partitioning (generally user specified), and in subsequent

iterations may either merge or sub-divide partitions to create
new ones. The aim of dynamic partitioning is to keep the
partition sizes and the execution time of each task close
to the median [4]. The runtime tracks the median partition
size (em) and task execution time (tm). After each iteration,
the runtime checks if a partition has more (less) elements
than the median by a given constant (partition threshold e.g.
ei/em ≥ δ ) and sub-divides (merges) them. In the PageRank
program (Figure 6), after repartitioning the runtime simply
invokes the loop function (pgFunc) for a different number
of partitions and passes the corresponding data. No other
changes are required.

For dynamic partitioning the programmer needs to spec-
ify the invariants and annotate functions as safe under repar-
titioning. For example, a function that assigns the first ele-
ment of each partition is unsafe. Such a function is closely
tied to each partition, and if we sub-divide an existing par-
tition then two cells will be updated instead of one. In our
applications, the only unsafe functions are related to initial-
ization such as setting A[i]=1 in breadth-first search.

4.4 Co-location, scheduling, and caching
Pronto workers execute functions which generally require
multiple array partitions, including remote ones. Pronto uses
three mechanisms to reduce communication: locality based
scheduling, partition co-location, and caching.

The Pronto master schedules tasks on workers. The mas-
ter uses the symbol table to calculate the amount of re-
mote data copy required when assigning a task to a worker.
It then schedules tasks to minimize data movement. Parti-
tions that are accessed and modified in the same function
can be co-located on the same worker. As matrix compu-
tations are structured, in most cases co-locating different
array partitions simply requires placing the ith partition of
the corresponding arrays together. For example, in PageR-
ank, the ith partition of vectors pgr, M, and Z should be
co-located. Instead of another explicit placement directive,
Pronto reuses information provided by the programmer in
the invariant function to determine which arrays are re-
lated and attempts to put the corresponding partitions on
same workers. This strategy of co-location works well for
our applications. In future, we plan to consider work-stealing
schedulers [5, 26].

Pronto automatically caches and reuses arrays whose ver-
sions have not changed. For example, in the PageRank code
Z is never modified. After the first iteration, workers always
reuse Z as its version never changes. The runtime simply
keeps the reference to partitions of Z alive and is informed
by the master when a new version is available. Due to au-
tomatic caching, Pronto does not need to provide explicit
directives such as broadcast variables [33].

4.5 Fault tolerance
Pronto uses primary-backup replication to withstand failures
of the master node. Only the meta-data information like the
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symbol table, program execution state, and worker informa-
tion is replicated at the backup. The state of the master is
reliably updated at the backup before a statement of the pro-
gram is considered complete. R programs are generally a
couple of hundred lines of code, but most lines perform a
compute intensive task. The overhead of check-pointing the
master state after each statement is low compared to the time
spent to execute the statement.

We use existing techniques in literature for worker fault
tolerance. The master sends periodic heartbeat messages to
determine the progress of worker nodes. When workers fail
they are restarted and the corresponding functions are re-
executed. Like MapReduce and Dryad we assume that tasks
are deterministic, which removes checkpointing as data can
be recreated using task re-execution. The matrix computa-
tion focus of Pronto simplifies worker fault-tolerance. Ar-
rays undergo coarse grained transformations and hence it is
sufficient to just store the transformations reliably instead
of the actual content of the arrays. Therefore, Pronto recur-
sively recreates the corresponding versions of the data after
a failure. The information on how to recreate the input is
stored in a table which keeps track of what input data ver-
sions and functions result in specific output versions. In prac-
tice, arrays should periodically be made durable for faster
recovery.

5. Implementation
Pronto is implemented as an R add-on package and provides
support for the new language features described in Section 3.
Dense and sparse matrices are stored using R’s Matrix li-
brary. Our current prototype has native support for a limited
set of distributed array operators such as load, save, matrix
multiplication, addition, and so on. Other operators and algo-
rithms can be written by programmers using functions inside
foreach. The implementation of both Pronto master and
workers use Zero MQ servers [15]. Control messages, like
starting the loop body in a worker or calls to garbage col-
lect arrays, are serialized and sent using Google’s protocol
buffers. Data transfers, such as copying remote arrays, occur
directly via TCP connections. The Pronto package contains
800 lines of R code and 10,000 lines of C++ code.

6. Evaluation
Programmers can express various algorithms in Pronto that
are otherwise difficult or inefficient to implement in current
systems. Table 2 lists seven applications that we implement
in Pronto. These applications span graph algorithms, matrix
decomposition, and dense linear algebra. The sequential ver-
sion of each of these algorithms can be written in fewer than
80 lines in R. In Pronto, the distributed versions of the same
applications take at most 135 lines. Therefore, only a mod-
est effort is required to convert these sequential algorithms
to run in Pronto.

Application Algorithm R Pronto
Characteristic LOC LOC

PageRank Eigenvector calculation 20 41
Vertex centrality Graph Algorithm 40 128
Edge centrality Graph Algorithm 48 132
SSSP Graph Algorithm 30 62
Netflix recom-
mender [34]

Matrix decomposition 78 130

Triangle count [17] Top-k eigenvalues 65 121
k-Means clustering Dense linear algebra 35 71

Input data Size Application
Twitter V=41M, E=1.4B PageRank, Centrality, SSSP
ClueWeb-S V=100M, E=1.2B PageRank
ClueWeb V=2B, E=6B PageRank

Table 2. Pronto applications and their input data.

In this paper we focus on PageRank, vertex centrality,
and single-source shortest path (SSSP). We compare the
performance of Pronto to Spark [33], which is a recent in-
memory system for cluster computing, and Hadoop-mem,
which is Hadoop-0.20 but run entirely on ramfs to avoid disk
latencies. Spark performs in-memory computations, caches
data, and is known to be 20× faster than Hadoop on certain
applications. In all the experiments we disregard the initial
time spent in loading data from disk. Subsequent references
to Hadoop in our experiments refers to Hadoop-mem.

Our evaluation shows that:
• Pronto is the first R extension to efficiently leverage

multi-cores by reducing memory and network overheads.
• Pronto can handle load imbalance due to sparsity by

dynamic partitioning.
• Pronto is much faster than current systems. On PageRank

Pronto is 40× faster than Hadoop, 15× faster than Spark,
and comparable to MPI implementations.

Our experiments use a cluster of 50 HP SL390 servers with
Ubuntu 11.04. Each server has two 2.67GHz (12-core) Intel
Xeon X5650 processors, 96GB of RAM, 120GB SSD, and
a 10Gbps network interface. Pronto, Hadoop, and Spark are
run with the same number of workers or mappers. Hadoop
algorithms are part of Apache Mahout [1].

6.1 Application description
Since we have discussed PageRank and SSSP in Section 2,
we briefly describe the centrality measure algorithm.

Vertex or edge betweenness centrality determines the im-
portance of a vertex or edge in a network (e.g., social graph)
based on the number of shortest paths that include the vertex
or edge. We implement Brandes’ algorithm for unweighted
graphs [6]. Each betweenness algorithm consists of two
phases: first the shortest paths from each vertex to all other
vertices are determined (using BFS) and then these paths are
used to update the centrality measure using scalar transfor-
mations. In our experiments we show the results of starting
from a vertex whose BFS has 13 levels.
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Figure 10. Multi-core (MC) support lowers total execution time
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6.2 Advantages of multi-core support
Pronto’s multi-core support lowers the memory and commu-
nication overhead over simply using multiple (single core)
worker instances. In this section we vary the number of cores
utilized and show the time spent during computation, com-
posite creation (constructing a distributed array from its par-
titions), and data transfer. We use Pronto-NoMC to denote
the system which does not have multi-core support and has
single core workers.

Single server: low memory overhead. The first advantage
of multi-core support is that there is no need to copy data be-
tween two R instances that are running on the same server.
Unlike other R packages, Pronto can safely share data across
processes through shared memory. Figure 10 shows the av-
erage iteration time of PageRank on the 1.5B edge Twitter
graph when executed on a single server. The data transferred
in this algorithm is the PageRank vector. In Pronto there is
no transfer overhead as all the R instances are on the same
server and can share data. At 8 cores Pronto-NoMC spends
7% of the time in data transfers and takes 5% longer to
complete than Pronto. The difference in execution time is
not much as communication over localhost is very ef-
ficient even with multiple workers per server. However, the
real win for multi-core support in a single server is the re-
duction in memory footprint. The table in Figure 10 shows
that at 8 cores the redundant copies of the PageRank vector
in Pronto-NoMC increase the memory footprint by 2 GB,
which is 10% of the total memory usage. For the Clueweb-S
dataset Pronto-NoMC uses up to 5.3 GB of extra memory.

Multiple servers: low communication overhead. The sec-
ond advantage of Pronto is that in algorithms with all-to-all
communication (broadcast), the amount of data transferred
is proportional only to the number of servers, not the num-
ber of R instances. Figure 11 shows the significance of this
improvement for experiments on the Twitter graph. In these
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Figure 11. Multi-core support reduces communication overhead
in (a) PageRank (b) Centrality. Lower is better.

experiments we fix the number of servers to 5 and vary the
total number of cores utilized. Figure 11(a) shows that the
network transfer overhead for Pronto-NoMC is 2.1× to 9.7×
higher than Pronto as we vary the total cores utilized from 10
to 40. Worse still, at 40 cores the PageRank code on Pronto-
NoMC not only stops scaling rather it takes more time to
complete than with 20 cores due to higher transfer overhead.
In comparison, Pronto can complete an iteration of PageR-
ank in about 3 seconds, though there is only marginal benefit
of adding more than 20 cores for this dataset. Figure 11(b)
shows similar behavior for the centrality measure algorithm.
Using Pronto the execution time for a single vertex decreases
from 244 seconds at 10 cores to 116 seconds at 40 cores. In
comparison, with no multi-core support Pronto-NoMC in-
curs very high transfer overhead at 40 cores and the execu-
tion time is worse by 43% and takes 168 seconds.

6.3 Advantages of dynamic partitioning
While multi-core support lowers the memory and communi-
cation overhead, dynamic repartitioning of matrices reduces
imbalance due to data sparsity. We evaluate the effective-
ness of dynamic partitioning for PageRank on the ClueWeb
graph with 2B vertices and 6B edges. These experiments use
25 servers each with 8 R instances. Even though we use 200
cores in this experiment, we initially partition the graph into
1000 parts. This allows the scheduler to intelligently overlap
computations and attempts to improve the balance. In this
section we show that dynamic repartitioning improves per-
formance even in such a case.
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Effects of repeated partitioning Figure 12 shows how the
repartitioning algorithm proceeds on the ClueWeb dataset. A
black colored partition indicates that the particular block was
heavy and chosen for repartitioning. The newly created array
partitions are shown in gray. In Figure 12 the first block (also
the densest) is continuously repartitioned from iteration 1 to
iteration 7 and then again at iterations 11, 13, 15, and 20.
Overall, repartitioning reduces the size of this partition from
23GB to 2.2GB.

However there is a cost associated with repartitioning as
the PageRank iterations have to be paused while the graph
is being repartitioned. To quantify the cost-benefit trade-off,
we estimate the total running time of PageRank as we in-
crease the number of repartitions. Figure 13 shows the es-
timated running time for 50 iterations (till convergence) of
PageRank. We calculate the total execution time after a cer-
tain number of re-partitions by assuming no more reparti-
tions will occur. For example, at x-axis value of 5, Pronto
has performed five repartitions and the convergence time is
5,126 seconds if no further repartitions occur. The conver-
gence time reduces by 32% (40 minutes) after the first four
repartitions, but the benefits diminish beyond that. Note that
the cumulative time spent in partitioning is a small fraction
of the total execution time (between 0.3% and 3%).

Benefits of reducing imbalance Reducing the imbalance
among partitions helps decrease the PageRank iteration
time. Figure 14 shows the time taken by each worker dur-
ing one iteration of PageRank. The horizontal bars depict

0 50 100 150

1

4

7

10

13

16

19

22

25

Time (seconds) 

W
o

rk
er

s 

Fetch

Execute

0 50 100 150

1

4

7

10

13

16

19

22

25

Time (seconds) 

W
o

rk
er

s 

Fetch

Execute

Figure 14. Per worker execution time for PageRank (a) before
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what part of the total time was spent in transferring data ver-
sus the time taken to perform the computation. Since there
is a barrier at the end of an iteration, the iteration time is de-
termined by the maximum execution time among the work-
ers. Figure 14(a) shows that the slowest worker takes 147
seconds initially but after four repartitions (Figure 14(b)) it
finishes in 95 seconds thus reducing the per-iteration time.

Reducing imbalance is especially important for iterative
algorithms as the overall execution time can be significantly
high due to the skew among workers. As seen in Figure 15,
re-partitioning reduces the completion time by around 822
seconds (13.7 minutes) when the PageRank algorithm is run
for 20 iterations.

6.4 Scalability
Figure 16 uses SSSP on the 1.5B edge Twitter dataset to
show the performance scaling of Pronto. The experiments
were done using 8 cores per server. While Pronto can scale
to hundreds of cores, and the execution time continues to de-
crease, the scaling factor is less than the ideal. For example,
when increasing the cores from 16 to 128 (8×), the execu-
tion time drops from 125 seconds to 41 seconds (3×). The
less than ideal scaling is a result of the communication over-
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head involved in SSSP, which is proportional to the number
of vertices in the graph. In future we plan to rewrite the SSSP
algorithm to use block partitions of the matrix (instead of
row partitions) so that no single R instance requires the full
shortest path vector.

6.5 Comparison with MPI, Spark, and Hadoop
PageRank experiments on the 1.2B edge ClueWeb-S graph
shows that Pronto is more than 40× faster than Hadoop,
more than 15× faster than Spark, and can outperform simple
MPI implementations.

MPI. We implemented PageRank using sparse matrix and
vector multiplication in MPI. The communication phase in
the code uses MPI Allgather to gather the partitions of
the PageRank vector from processes and distribute it to all.
Figure 17(a) shows that Pronto outperforms the MPI code
sometimes by 2×. There are two reasons for this perfor-
mance difference. First, the MPI code does not handle com-
pute imbalance. For example, at 64 cores one MPI process
finishes in just 0.6 seconds while another process takes 4.4
seconds. Since processes wait for each other before the next
iteration, the compute time is determined by the slowest pro-
cess. Second, while MPI’s network overhead is very low at
8 processes, it increases with the increase in the number of
cores. However, for Pronto the network overhead is propor-
tional to the number of multi-core servers used, and hence
does not increase at the same rate. With more effort one can
implement multi-threaded programs executing at each MPI
process. Such an implementation will reduce the network
overhead but not the compute imbalance.

Spark. We use Spark’s PageRank implementation [33] to
compare its performance with Pronto. Spark takes about
64.185 seconds per-iteration with 64 cores. The per-iteration
time includes a map phase which computes the rank of
vertices and then propagates them to reducers that sum the
values. We found that the first phase was mostly compute
intensive and took around 44.3 seconds while the second
phase involved shuffling data across the network and took
19.77 seconds. At fewer cores, the compute time is as high
as 267.26 seconds with 8 cores. The main reason why Spark

is at least 15× slower than Pronto is because it generates a
large amount of intermediate data and hence spends more
time than Pronto during execution and network transfers.
Note that the Y-axis in the plot is log scale.

Hadoop. In Mahout, an iteration of PageRank takes 161
seconds with 64 mappers (Figure 17(b)). In comparison each
iteration of PageRank in Pronto takes less than 4 seconds.
A portion of the 40× performance difference is due to the
use of Java. However unlike Pronto, MapReduce has the
additional overhead of the sort phase and the time spent
in deserialization. Pronto preserves the matrix structure in
between operations, and also eliminates the need to sort data
between iterations.

Existing R packages. Unfortunately, current parallel R
packages only allow side-effect free functions to be executed
in parallel. It means that R objects in workers are deleted
across iterations. Thus, to run more than one iteration of
PageRank the whole graph needs to be reloaded in the next
iteration making the measurements flawed. Instead, we ran
a microbenchmark with 8 cores where only a dense vec-
tor of 100M entries was exchanged after each round (sim-
ilar to the PageRank vector). By efficiently using mull-cores
and worker-worker communication Pronto is more than 4×
faster than the R parallel package (called doMC).

7. Discussion
Pronto makes it easy for users to algorithmically explore
large datasets. It is a step towards a platform on which
high level libraries can be implemented. We believe that
Pronto packages that implement scalable machine learning
and graph algorithms will help the large R user base reap the
benefits of distributed computing.

However, certain challenges remain both in the current
prototype and in the applicability of R to all problems. First,
the current prototype is limited by main memory: datasets
need to fit the aggregate memory of the cluster. While most
pre-processed graphs are in the low terabyte size range, for
larger datasets it may be economical to use an out-of-core
system. Second, Pronto assumes that there is a single writer
per partition. This is reasonable for matrix computations but
is otherwise restrictive and the prototype does not detect
incorrect programs where multiple writers update the same
partition.

When applied to different datasets, array-based program-
ming may require additional pre-processing. For example,
Pronto is based on R and is very efficient at processing ar-
rays. However, graphs may have attributes attached to each
vertex. An algorithm which uses these attributes (e.g., search
shortest path with attribute pattern) may incur the additional
overhead of referencing attributes stored in R vectors sepa-
rate from the adjacency matrix. In general, real world data
is semi-structured and pre-processing may be required to
extract relevant fields and convert them into arrays. Unlike
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the Hadoop ecosystem which has both storage (HDFS) and
computation (MapReduce), Pronto only has a efficient com-
putation layer. In our experience, it’s easier to load data into
Pronto if the underlying store has tables (databases, HBase,
etc.) and supports extraction mechanisms (e.g., SQL).

8. Related Work
Dataflow models. MapReduce and Dryad are popular
dataflow systems for parallel data processing [11, 16]. To
increase programmer productivity high-level programming
models–DryadLINQ [32] and Pig [25]—are used on top of
MapReduce and Dryad. These systems scale to hundreds
of machines. However, they are best suited for batch pro-
cessing, and because of their restrictive programming and
communication interface make it difficult to implement ma-
trix operations. Recent improvements, such as HaLoop [8],
Twister [12], and Spark [33], do not change the program-
ming model but improve iterative performance by caching
data or using lineage for efficient fault tolerance. CIEL in-
creases the expressibility of programs by allowing new data-
dependent tasks during job execution [24]. However, none
of these systems can efficiently express matrix operations.

Piccolo runs parallel applications that can share state us-
ing distributed, in-memory, key-value tables [26]. Compared
to MapReduce, Piccolo is better suited for expressing ma-
trix operations. However, Piccolo’s key-value interface opti-
mizes for low level reads and writes to keys instead of struc-
tured vector processing. Unlike Presto, Piccolo does not han-
dle sparse datasets and the resulting load imbalance.

Pregel and GraphLab use bulk synchronous processing
(BSP [31]) to execute parallel programs [21, 22]. With BSP,
each vertex processes its local data and communicates with
other vertices using messages. Both systems require an ap-
plication to be (re)written in the BSP model. Pronto shows
that the widely used R system can be extended to give sim-
ilar performance without requiring any programming model
changes. Pronto’s execution time of PageRank on the Twit-
ter graph (Figure 10, 8 cores, 7.3s) compares favorably to
published results of PowerGraph (512 cores, 3.6s) [13].

Matrix computations. Ricardo [10] and HAMA [28] use
MapReduce to implement matrix operations. While they
solve the problem of scalability on large-scale data, the
implementation is inefficient due to the restrictive MapRe-
duce interface. In light of this observation, MadLINQ
provides a platform on Dryad specifically for dense matrix
computations [27]. Similar to Pronto, MadLINQ can reuse
existing matrix libraries on local partitions, is fault tolerant
and distributed. MadLINQ identifies the need to efficiently
handle sparse datasets but, unlike Pronto, does not solve the
problem, or support dynamic partitioning.

Popular high-performance computing (HPC) systems
like ScaLAPACK do not support general sparse matri-
ces. The few systems that do support sparse matrices
(SLEPc [14], ARPACK [19]) typically provide only eigen-
solvers. To write a new algorithm, such as the betweenness
centrality, one would have to implement it with their low
level interfaces including FORTRAN code. None of these
systems have load balancing techniques or fault tolerance.

MATLAB’s parallel computing toolbox and existing ef-
forts in parallelizing R can run single programs on multi-
ple data. Unlike these systems, Pronto can safely share data
across multiple processes, has fewer redundant copies of
data, and can mitigate load imbalance due to sparse datasets.

Parallel languages. HPC applications use explicit mes-
sage passing models like MPI. MPI programmers have the
flexibility to optimize the messaging layer but are difficult
to write and maintain. New parallel programming languages
like X10 [9] and Fortress [29] use the partitioned global
address space model (PGAS). These languages are not op-
timized for matrix operations and the programmer has to
deal with low level primitives like synchronization and ex-
plicit locations. For example, in X10 programmers specify
on what processors computations should occur using Place.
None of these languages are as popular as R, and users will
have to rewrite hundreds of statistical algorithms that are al-
ready present in R.
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9. Conclusion
Pronto advocates the use of sparse matrix operations to sim-
plify the implementation of machine learning and graph al-
gorithms in a cluster. Pronto uses distributed arrays for struc-
tured processing, efficiently uses multi-cores, and dynami-
cally partitions data to reduce load imbalance. Our experi-
ence shows that Pronto is a flexible computation model that
can be used to implement a variety of complex algorithms.
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