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ABSTRACT

In the cloud services industry, a key issue for cloud operators
is to minimize operational costs. In this paper, we consider
algorithms that elastically contract and expand a cluster of
in-memory databases depending on tenants’ behavior over
time while maintaining response time guarantees.
We evaluate our tenant placement algorithms using traces

obtained from one of SAP’s production on-demand applica-
tions. Our experiments reveal that our approach lowers op-
erating costs for the database cluster of this application by
a factor of 2.2 to 10, measured in Amazon EC2 hourly rates,
in comparison to the state of the art. In addition, we care-
fully study the trade-off between cost savings obtained by
continuously migrating tenants and the robustness of servers
towards load spikes and failures.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Distributed
databases, parallel databases

Keywords

Data placement, multi tenancy, in-memory databases, cloud
computing, fault tolerance

1. INTRODUCTION
Traditionally, in-memory databases have been employed

in performance-sensitive applications such as telephony or
financial services markets. In the recent past, however, in-
memory databases have become more generally adopted,
which is reflected by the product offerings of the major
database vendors.1 At the same time, the Software-as-a-
Service (SaaS) model has become increasingly attractive to
customers, since it relieves customers of the hassle of oper-
ating the system, which entails provisioning the hardware

1http://www.gartner.com/id=2151315
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as well as configuring, operating, and maintaining applica-
tion servers and databases. The SaaS provider, on the other
hand, can leverage economies of scale by automating com-
mon maintenance tasks as well as by consolidating multiple
customers (i.e. tenants) onto the same machine to improve
utilization and thereby decrease costs. SAP already operates
an in-memory based SaaS application for operational report-
ing.2 We expect SaaS applications on in-memory databases
to become more widespread in the near future. We focus
on read-mostly workloads, which encompass a large class of
applications, e.g. SAP ERP, where writes account for less
than 10% of the database workload [17].

In this paper, we consider the problem of consolidating
multiple in-memory database tenants onto the smallest pos-
sible number of servers to save operating costs. There is a
challenging trade-off between low operational cost for the
provider and performance as perceived by the customers:
only so much consolidation can occur without significant
impact on responsiveness. For managing this trade-off, the
service provider must address two complementary research
challenges, (i) resource modeling and (ii) data placement.
The former entails the estimation of (shared) resource con-
sumption in the presence of multi tenancy on a single server.
This is done by characterizing the dominating resources (e.g.
CPU, RAM, disk I/O) and quantifying how much each ten-
ant utilizes them. In some cases, these utilization metrics
can be mapped to response times produced by a database [7,
21]. This problem has recently been studied for both disk-
based databases [5, 18, 7] and in-memory databases [21].
In the latter case, there is no need to model shared disk
I/O, which is particularly difficult. The main resources be-
ing consumed by in-memory databases, CPU, memory, and
bandwidth between CPU and memory, add up mostly lin-
early [21, 5]. Here, we build on the resource modeling ap-
proach presented in [21] and focus on challenge (ii), the
assignment of tenants to servers in a way that minimizes
the number of required servers (and thus cost). This sec-
ond challenge has received much less attention, although [5,
18] provide non-linear programs for tenant placement as a
first step. Data placement has also been studied for parallel
databases [16, 14, 19]. However, in all existing solutions,
data placement is done statically, in the sense that diurnal
changes in tenant load are not leveraged.

In this paper, we introduce the Robust Tenant Placement
and Migration Problem (RTP) and make the case for in-
cremental tenant placement, driven by variations in user

2http://www.biondemand.com/businessintelligence
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Figure 1: Using interleaved replication for minimizing the number
of servers

load. Individual tenant replicas are migrated while the ten-
ant remains on-line [8, 21]. This allows us to make frequent,
incremental changes to the tenant placement with the goal
of running with the minimal number of servers at each point
in time. As our experiments show, incremental placement
can decrease server cost for an average business day by up
to a factor of ten (measured in Amazon EC2 server hours).
More drastic savings can be realized during longer periods
of low activity, such as weekends or holidays.
At the core of our approach is the concept of interleaving

replicas across nodes, which has been studied in the context
of fault-tolerance for parallel databases [14]. We are also
interested in tolerating server failures, but our problem is
different: we try to minimize the number of servers required
at each point in time, whereas the existing work on parallel
databases assumes a fixed cluster size [16, 14, 19]. Also, a
typical SaaS tenant is small and hence there is not much
benefit to horizontal partitioning, which is a prerequisite for
the existing interleaving strategies [19, 24].
Figure 1 shows an instance of RTP with five tenants and

two replicas each, across which all load is shared. A common
approach for assigning these tenants to servers is to use a
standard first-fit algorithm and mirror the resulting place-
ment (Figure 1a). Note that in this case servers must run at
or below half their capacity limit, since the load on a server
doubles when its mirror server fails. In contrast, Figure 1b
shows an interleaved placement for the same situation. In
this case a failure of server 1 would distribute the load of
tenant A and B to server 2 and the load of tenant C and
E to server 3. As a result, the layout requires only three
instead of four servers while guaranteeing that no server is
overloaded upon the failure of any one other server.
In summary, this paper makes the following contributions:

1. We introduce and formalize the Robust Tenant Place-
ment Problem (RTP) including continuous migration, in-
terleaving of replicas, and coping with hardware failure.

2. We present several novel algorithms that solve RTP for
both static and incremental scenarios.

3. We provide an extensive experimental evaluation using
real-world load traces from a production cloud service
run by SAP and benchmark our algorithms in terms of
cost, running time, and their ability to maintain response
time guarantees in spite of server failures.

4. We develop and evaluate generic over-provisioning strate-
gies for avoiding excess load coming from unexpected
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Figure 2: Aggregate request rate across five calendar weeks, in-
cluding Christmas

load spikes; it turns out that these strategies also help
to cope with multiple simultaneous server failures.
Apart from the cost savings possible by using our ap-

proach, our experiments may provide guidance to admin-
istrators seeking to balance overall operating cost and tem-
porarily overloaded servers after unexpected load spikes. We
provide practical advice on the question of how many repli-
cas each tenant should have so that overall cost and robust-
ness towards unexpected load spikes are balanced.

The remainder of this paper is organized as follows. In
Section 2, we analyze real-world load traces we received
from SAP, motivating the need for placement algorithms
that make incremental changes to existing placements at
frequent intervals. Section 3 provides a rigorous formaliza-
tion of RTP. Section 4 contains details on our algorithmic
approach. In Section 5, we evaluate our algorithms exper-
imentally. Section 6 surveys related work. Section 7 con-
cludes the paper.

2. ENTERPRISE SaaS OVERVIEW
In order to design more efficient data placement algo-

rithms for multi tenancy, we analyzed real world traces ob-
tained from a production multi-tenant, on-demand applica-
tion that runs on an in-memory database. These traces were
the anonymized application server logs of 100 randomly se-
lected tenants in Europe over a four months period. We also
have additional statistics such as the tenants’ database size.
Figure 2 shows a normalized view of the aggregate number
of requests across all tenants over a five week period.3 In
the trace, one can clearly see that tenant behavior follows
seasonalities: workdays (with a drop at lunch time), work-
ing weeks and annual calendar events. One example for the
latter is Christmas Eve which was a Friday in 2010. On this
day, the load is considerably lower than for a regular Friday.

Investigating the log data revealed another interesting
pattern: a non-negligible number of tenants suddenly ap-
pear, use the system actively for 2–3 weeks, then become
inactive for a considerable amount of time (say, two weeks),
and suddenly become active again for six weeks (Figure 3).
Analysis revealed that these were mainly demo and training
systems. Capacity planning often neglects those systems.
The behavior of tenants in trial periods is particularly hard
to predict, which, in part, motivates the incremental place-
ment algorithms presented in this paper.

A more detailed analysis of the load traces can be found
in [22]. The following sections leverage these insights for our
placement algorithms. Furthermore, we used the real-world
traces for evaluating our placement techniques in Section 5.

3For privacy reasons, we are not allowed to publish absolute
requests rates and the figure only shows relative values.
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Figure 3: Demo system used only at beginning and end of trial

3. THE ROBUST TENANT PLACEMENT
AND MIGRATION PROBLEM

In this section, we formally introduce the problem of as-
signing tenants to servers such that response time SLOs are
met and costs are minimized. We call this problem the Ro-
bust Tenant Placement and Migration Problem (RTP).
A valid tenant placement is an assignment of at least two

copies of a given number of tenants to a number of (cloud)
servers such that
◦ no server is overloaded in terms of any of its resources
◦ no server contains more than one copy per tenant, and
◦ the failure of a single server does not cause overloading

any other server.
A tenant t is characterized by its size σ(t) (i.e. the amount

of space each replica consumes in memory) and its load "(t).
Our formalization of RTP requires that a workload man-
agement technique (i.e. challenge (i) in the introduction) is
in place to provide "(t) as an input. In particular, an es-
timation of the combined resource consumption of multiple
tenants on a machine is required to provide RTP with an
indicator for the “fill level” of a server. Therefore, we begin
with discussing our assumptions on the underlying resource
modeling approach before formalizing RTP.

3.1 Modeling Tenant Resource Requirements
As stated in Section 1, tenant placement requires to es-

timate the resource consumption and the impact on other
clients when a new tenant is placed on a server. This prob-
lem has been studied for both disk-based [5, 18, 7], and
in-memory databases [21]. In principle, any of these load
metrics can be used in RTP. We build on [21], since our fo-
cus is also on in-memory databases. This focus considerably
simplifies resource modeling in contrast to the disk-based
approaches. Schaffner et al. [21] propose a regression model
for estimating the combined CPU and CPU-memory band-
width utilization. The inputs to their regression model are
the database sizes and the current request rate of the ten-
ants. All tenants run the same workload. The output is
a scalar value representing the combined CPU and CPU-
memory bandwidth utilization of the server. This is similar
to the approach in [7], where a logical I/O metric is intro-
duced to characterize the dominant resource bottleneck, al-
though their focus is on disk-based systems. The load metric
from [21] is additive across multiple tenants. Curino et al. [5]
also observe additivity of CPU and memory consumption in
disk-based systems. In RTP, we use the load metric from [21]
as an input parameter indicating the load of a tenant. In
principal, our heuristics (Section 4.1) could also handle non-
linear resource models for disk access making our techniques
applicable to a wider range of systems.
Service Level Objectives (SLOs). As stated above, ten-
ant consolidation is constrained by compliance with response

time SLOs. Here, we require the underlying resource model
to incorporate SLOs so that it enables the placement algo-
rithms to guarantee SLO compliance as long as the place-
ment is valid. For providing such SLOs, we may again build
on the resource modeling approach in [21] where the load
metric is correlated to the query response times of a server
in the 99-th percentile (across all tenants and for the given
workload). Normalizing the maximum load prior to an SLO
violation to 1.0 allows us to express SLO compliance as∑

t∈T "(t) ≤ 1.0, where "(·) is the load of a tenant in T ,
the set of all tenants on a server. Thus, as long as the place-
ment algorithm keeps the total load of a server below 1.0,
the response time goals will be met (similar to [18]).

3.2 Formalization
Based on the above considerations, RTP can be described

as follows. Given an initial placement (potentially contain-
ing overloaded servers), find a valid placement by migrating
not more than a limited amount of data (called themigration
budget) such that the number of active servers is minimal.
We call a server active if it contains at least one tenant.
We consider a server overloaded when one of its resources
is used beyond its capacity limit. This includes additional
load redirected to a server when another server has failed.

A valid instance of RTP has the following data as input:
◦ T ⊆ IN, the set of tenants.
◦ N ⊆ IN, the set of available servers.
◦ R = {1, 2, . . . , r(t)}, the replicas per tenant. r(t) ≥ 2

is the (fixed) number of replicas per tenant; Section 3.4
contains details on how to obtain r(t).

◦ σ : T → IN+, a function returning the DRAM require-
ment of a given tenant.

◦ capσ : N → IN+, a function returning the DRAM ca-
pacity of a given server.

◦ " : T → (Q+, a function returning the current load of a
given tenant. As discussed in Section 3.1, a single metric
is sufficient given our focus on in-memory databases.

◦ cap" : N → (Q+, a function returning the request pro-
cessing capacity of a given server.

◦ An existing tenant placement.
◦ A migration budget δ ∈ IN. This parameter depends on

the length of a reorganization interval, i.e. the time after
which a placement is reconsidered.

◦ νi : N → [0, 1], a function returning the capacity loss
when a server is a migration target.

◦ µi : N → [0, 1], a function returning the capacity loss
when a server is a migration source. We will discuss how
to obtain ν and µ later in this section.

In an assignment formulation of RTP, a valid solution
must assign appropriate values to the following decision vari-
ables as output:
◦ a binary decision variable y ∈ {0, 1}N×T×R with y(k)

t,i =
1 if and only if copy k of tenant t is on server i.

◦ s ∈ {0, 1}N , where si = 1 denotes that server i is active.
◦ p ∈ (QN

+ , where pi denotes the capacity of server i that
must be left unused such that additional load due to a
single server failure does not cause an SLO violation.
We call pi the penalty that must be reserved on server i.
As stated in Section 3.1, an SLO violation occurs when
the total load of any non-failed server exceeds 1.0 as a
consequence of another server failing.

The objective of RTP is to minimize the number of active
servers, i.e. min

∑
i∈N si.



A solution of RTP must obey the following constraints.
∑

i∈N

y
(k)
t,i = 1 ∀t ∈ T, ∀k ∈ R (1)

Constraint (1) ensures that each replica 1 ≤ k ≤ r(t) of a
tenant t is assigned to a server exactly once.

∑

k∈R

y
(k)
t,i ≤ 1 ∀t ∈ T, ∀i ∈ N (2)

Constraint (2) ensures that no two copies of the same
tenant are placed on the same server.

∑

t∈T

∑

k∈R

σ(t) · y(k)
t,i ≤ capσ(i) · si ∀i ∈ N (3)

Constraint (3) ensures that the total size of all tenants on
a server does not exceed the server’s DRAM capacity. If at
least one tenant is assigned to the server, si is set to one.
Similarly, the following constraint ensures that the total

load of all tenants on a server does not exceed the process-
ing capabilities of the server. We assume that load can be
shared across replicas: each server holding a replica of ten-
ant t receives only 1/r(t)-th of "(t). We will justify this
assumption in Section 3.3.

∑

t∈T

∑

k∈R

"(t)

r(t)
· y

(k)
t,i + pi ≤ νi · cap"(i) · si ∀i ∈ N . (4)

Each server must be capable of potentially handling addi-
tional load in case another server fails. The spare capacity
reserved for this excess load is captured by a penalty pi in
Constraint (4). The following constraint defines the penalty.

pi = max
j∈N:j "=i

∑

t∈T

∑

k,k′∈R

"(t)

r(t)2 − r(t)
y
(k)
t,i y

(k′)
t,j ∀i ∈ N (5)

What fraction of a tenant’s load must be added to pi de-
pends on the number of remaining replicas. If server j han-
dled a fraction "(t)/r(t) of the load of tenant t load prior to
the failure, then the remaining r(t) − 1 replicas of tenant t
must share the load after the failure. Hence, the extra load
that server i must support is

"(t)

r(t)

1

r(t) − 1
=

"(t)

r(t)2 − r(t)
. (6)

Constraint (5) ensures that pi is set large enough to guar-
antee that even the failure of the “worst case” other server
j (= i would not result in overloading server i. The con-
straint renders heuristics for bin-packing unusable for RTP:
given three servers U, V , and W , moving a tenant from V
to W may increase pU and thus render server U unable to
sustain the extra load coming from another server failing.
RTP guarantees that performance SLOs are met while

tenants are being migrated. The intuition that migration
affects query latencies is quantified in [21] for those servers
participating in migrations. During a migration, a source
server with a total load of µ = 0.85 (or a destination server
with a total load of ν = 0.82) produces a response time of
one second in the 99-th percentile.4 We build on this in the
following Constraints. Note that Constraint (4) implicitly
takes the given placement into account via the parameter
νi: whenever server i is a migration target, i.e. a tenant
is assigned to server i that was not assigned to this server
previously, the load capacity of the server drops by a factor
of νi < 1. If i is not a migration target we have νi = 1.
For notational convenience, we define Tmig := {t ∈ T :

a copy of t was moved}.

4This assumes that all migrations are executed sequentially.
Degradation factors depend on the workload, the hardware,
and on how migrations are implemented in the DBMS.

∀ t ∈ Tmig ∃ i ∈ N :

∑

t′∈T

∑

k∈R

"(t′)

r(t)
· y

(k)

t′,i
+ pi ≤ µ · cap"(i) · si . (7)

Constraint (7) ensures that for every tenant being mi-
grated, a server exists that has enough spare capacity to act
as a migration source. A stronger version of (7), in which
we replace Tmig by T , guarantees that every tenant has a
replica on a server that may act as a migration source.

Constraint (8) enforces the migration budget δ.
∑

t∈Tmig

σ(t) ≤ δ (8)

Constraints (7) and (8) may render RTP infeasible in case
of extreme load change in comparison to the given place-
ment. In such cases, it may occur that (i) no server can
act as a safe migration source for a tenant or (ii) the migra-
tion budget is not large enough for repairing all overloaded
servers. When an infeasibility occurs, it becomes necessary
to tolerate SLO violations while restoring a valid and flexi-
ble placement. Besides temporarily dropping constraints, a
change in the objective function becomes necessary to min-
imize SLO violations. Instead of minimizing the number of
active servers, a placement should be found with the lowest
number of overloaded servers, which can be formalized as
follows. We introduce a variable e ∈ (QN

+ which measures
the excess load on a server. For i ∈ N , we define

ei =
∑

t∈T

∑

k∈R

"(t)

r(t)
· y

(k)
t,i + pi − cap"(i) (9)

and alternative objective functions are
min

∑

i∈N

ei or minmax
i∈N

ei. (10)

Computational Complexity. We introduce a special case
of incremental RTP, which will be useful in our experiments
as well as for discussing the (computational) complexity of
RTP. We call the subclass of incremental RTP where (i) no
initial placement is given, (ii) both νi = µi = 1 for all i, and
(iii) δ = ∞, static RTP. Note that an optimal solution of
static RTP is a lower bound for optimal solutions of incre-
mental RTP. A reduction from the PARTITION problem [11]
shows the (weak) NP-hardness of static RTP. Consequently,
for an arbitrary migration budget, incremental RTP is also
NP-hard. We omit proofs due to space restrictions.

3.3 Load Distribution Across Replicas
Our formulation of RTP assumes load to be distributed

equally among a tenant’s replicas (e.g. in Constraint (4)).
This allows to serve more requests per tenant. However, we
can only obtain this benefit when the workload has read-
mostly characteristics. This applies to real-time analyti-
cal database applications: an analysis of several enterprise
database workloads showed that write queries account for
less than 10% of the total workload [17].

To simplify the presentation of our formal model, Con-
straint (4) assumes a read-only workload. Splitting load
into weighted read and write components, (4) could be mod-
ified such that our formulation of RTP is independent of the
workload characteristics. For a write-mostly workload, how-
ever, the load cannot be split among replicas; instead, all re-
plicas are exposed to the full load (assuming that writes go
to all replicas). Also, no load-redistribution occurs in case
of a failure. All other aspects of the problem formulation
remain intact with write-intensive workloads. However, an
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Figure 4: Required number of servers dependent on r(t)

exhaustive study of the impact of writes on replicated tenant
placement is beyond the scope of this paper.

3.4 Choosing the Number of Replicas
In the previous section, the number of replicas per tenant

r(t) was treated as an input parameter to our optimiza-
tion problem. In the following, we discuss how to obtain
r(t). Intuition suggests to set r(t) as low as possible, since
(i) more replicas require more space, which could lead to
a higher number of active servers, and (ii) the problem be-
comes more constrained. However, increasing the number of
replicas beyond r(t) = 2 becomes necessary when the load
of a tenant is so high that a single server cannot handle half
of it. The number of copies r(t) of a tenant t must be chosen
such that "(t)/r(t) < cap"(i). In addition, server i must be
able to handle the extra load coming from another server
failing that also holds a copy of t. Hence, we must choose
r(t) in such a way that the following inequality applies.

"(t)

r(t)
+

"(t)

r(t)2 − r(t)
≤ cap"(i) ∀i ∈ N (11)

We rearrange Inequality (11) for r(t) to obtain:

r(t) := max(2,
⌈ "(t)

cap"(t)
+ 1

⌉

) (12)

In contrast to our intuition, increasing the number of re-
plicas beyond the lower bound as defined in (12) can lead to
placements with fewer servers, as shown in Example 1.

Example 1. Consider four tenants A to D, each with a load
1.0 and servers with capacity 1.0. For two replicas per ten-
ant, as shown in Figure 4a, eight servers are necessary to
place all tenants. The load on all servers including spare
capacity reserved to accommodate potential server failures
(i.e. pi) is 1.0. If we allow three replicas per tenant, as shown
in Figure 4b, then a total of six servers are sufficient. Also
in this case, the load on all servers including pi is 1.0.

4. ALGORITHMS FOR RTP
In this section, we present algorithms for solving RTP. We

start by discussing heuristics for static RTP because they
form the foundation for our incremental algorithms. We
also tackle RTP with exact algorithms, in particular, with
mixed integer programming (MIP) solvers. The challenge
lies in linearizing the non-linear constraints to obtain a MIP
formulation. Powerful solvers like Cplex can then be used
to provide solutions and bounds on the optimal solution.5

5http://www.ilog.com/products/cplex

Due to space restrictions, we omit the linearizations and
focus on the heuristics.

4.1 Heuristics for Static RTP
Greedy Heuristics. For the related bin-packing problem,
greedy heuristics deliver good results [11]. Another reason
for considering greedy variants are their speed. Even for
short migration intervals, a greedy heuristic can be used
when more complex algorithms are prohibitively slow.

Our greedy algorithms are loosely based on the well-
known best-fit algorithm [4]. When placing a single replica
of a tenant, for each server its total load including its penalty
(Section 3.2) is computed. The servers are then ordered ac-
cording to load plus penalty in decreasing order. Similar
to best-fit, the first server that has enough free capacity
is selected. If no active server has enough capacity, then
the tenant is placed on a new server. Apart from load plus
penalty on the servers, we consider Constraints (1)–(7).

This basic mechanism for placing a single replica of a ten-
ant is called robustfit-single-replica. It is the basis for the al-
gorithms robustfit-s-mirror and robustfit-s-interl., which will
now be discussed. robustfit-s-mirror first sorts all tenants by
load in descending order and places the first replica of each
tenant. Since there is no penalty when there is only one
copy, the algorithm assumes a server capacity of µ·cap"(i)

2 in
this step. Then, all servers are mirrored. Finally, the algo-
rithm places additional replicas individually for tenants that
require more than two replicas (see Section 3.4). robustfit-
s-interl. also sorts all tenants and then, tenant after tenant,
places all replicas of each tenant. For the first replica of each
tenant, a server capacity of µ · cap"(i) is assumed. For all
other replicas the algorithm assumes a capacity of cap"(i).
This results in a placement where each tenant has a safe
source server. Also, tenant replicas are naturally interleaved
across servers. Both algorithms have polynomial complexity
and run fast for the problem sizes we consider in this paper.
Metaheuristic: Tabu Search. Having considered fast
greedy heuristics, we consider a computationally more ex-
pensive heuristic next. We propose an adaptation of Tabu
search [12], used as an improvement heuristic. Given a start-
ing solution (e.g. obtained by one of the greedy heuristics
above), tabu-static tries to remove an active server S by
traversing the search space as follows. Every valid solution
of RTP is a point in the search space. We move from one
valid solution to another valid solution by migrating a ten-
ant t from S to a different server T , even if this move leads to
an invalid placement. Next, we fix possible conflicts (if pos-
sible without placing a tenant on S). In order to avoid both
cycling and stalling in a local optimum, a so-called Tabu list
stores each move (t, S, T ). We only allow a move if it is not
in the Tabu list. When the list reaches a certain length, the
oldest element is removed. The search aborts if, after a cer-
tain number of iterations, no placement was found that does
not use S. If a solution without S was found, search contin-
ues from the new solution with the goal of removing another
server. The performance of tabu-static relies on the careful
adjustment of its parameters (e.g. Tabu list length, choice of
server to be cleared out, order in which tenants are moved).
We identified good settings using careful experimentation.

4.2 Algorithms for Incremental RTP
The static algorithms discussed above are the basis for

our incremental placement heuristics. In order to leverage
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the different heuristics, we use a metaheuristic, which acts
as a framework for all incremental placement strategies. Its
main benefit is a significant reduction of the solution search
space, leading to lower overall algorithm execution times.

4.2.1 A Framework for Incremental RTP
The framework consists of six phases. They are executed

at the beginning of each reorganization interval, independent
of the algorithm that is currently run. Individual algorithms
must plug in a method for placing a single replica of a tenant
or replace entire phases. Such a method is for example the
robustfit-single-replica method described above. An incre-
mental algorithm can also provide an own implementation
for individual phases of the framework. The six phases of
this framework are as follows.
1. Delete unnecessary replicas. When the load of a
tenant has decreased in comparison to the previous interval,
it might be the case that removing a replica of the tenant
is possible (see also the discussion on the lower bound on
the number of replicas in Section 3.4). Therefore, in this
phase, a heuristically selected replica of all tenants meeting
this condition is deleted. Note that deleting a tenant does
not count towards the migration budget.
2. Ensure migration flexibility. This phase ensures that
all tenants have at least one replica on a server that has
enough spare capacity to participate in a migration as a
source server (Constraint (7)). For determining this server,
the plugged-in algorithm is used. This results in the ability
to migrate tenants without causing SLO violations.
3. Create missing replicas. This phase handles the oppo-
site case of phase (1), where the lower bound on a tenant’s
replicas has increased as a result of increasing load. The
plugged-in algorithm is used to place enough extra replicas
as necessary to match the new lower bound.
4. Fix overloaded servers. This phase repairs overloaded
servers by moving tenants away from them until they are no
longer overloaded. The plugged-in algorithm is used to de-
termine the target servers for replicas that are moved.
5. Reduce number of active servers. All servers are
ordered by total load plus penalty. Then, all tenants on the
most lightly loaded server are moved to other servers using
the plugged-in algorithm. This phase is repeated with the
next server up to the point where the server cannot be emp-
tied without creating a new server.
6. Minimize maximum load. When a reduction of the
number of servers is no longer possible, this phase flattens
out the variance in load plus penalty across all servers. The
goal is to avoid having servers in the placement that have a
much higher penalty than other servers. Again, the plugged-
in heuristic is used. This phase terminates when the migra-
tion budget is exhausted or further migrations would have
too small an effect on the variance.
The execution of the framework is immediately aborted

when the migration budget is exhausted. When too low a
value for the migration budget is chosen, the placement may
be invalid (i.e. it does not satisfy all the constraints of RTP)
after premature termination. A placement is always valid
after completion of phase (4).
Note that the execution order of the above framework is

itself a heuristic. Experimentation has revealed that exe-
cuting phase (4) after phase (2) results in fewer servers than
the inverse order, because some overloaded servers are re-
paired as a side product of finding a safe migration source

for the tenants. Note further that the question of decid-
ing how many replicas a tenant should have is orthogonal
to this framework. Similar to plug-in methods for placing
individual replicas, different strategies for determining the
replication factor can be plugged in. The standard method
is to use exactly as many replicas as suggested by the lower
bound. Another method is to increase the lower bound by a
fixed offset. A more sophisticated method is to set the num-
ber of replicas across all tenants in a way that all replicas
receive more or less the same load. A last method is to repair
overloaded servers in phase (4) by creating additional repli-
cas elsewhere, thus decreasing the load of the tenant on the
overloaded server. In the following, we discuss the plug-in
algorithms that we have developed for this framework.

4.2.2 Greedy Heuristics
The simplest and fastest algorithm is called robustfit-inc.

and merely entails the method for placing a single replica us-
ing robustfit-single-replica (described in Section 4.1). This
method is plugged into the above framework as is. Since
the space of possible actions when transforming a given
placement into a new placement is very large, we created
splitmerge-inc. This algorithm acts exactly as robustfit-inc.
but provides an own implementation of phases (4) and (5)
in the framework above. In phase (4) the only allowed op-
eration is splitting each overloaded server into two servers.
In phase (5), conversely, merging two servers into one is the
only legal operation, although multiple server pairs can be
merged in one step. Since the underlying robustfit-single-
replica method is very fast, we use a more complex procedure
for deciding what servers to merge: splitmerge-inc. builds
up its list of merge pairs by checking whether two servers U
and V can be merged for all candidate pairs U × V . The
method in splitmerge-inc. for removing servers is effective
but computationally intensive. Its approach for fixing over-
loaded servers is rather simple: overloaded servers cannot be
fixed without creating one new server per overloaded server,
which seems too drastic. We therefore replaced splitmerge-
inc.’s implementation of phase (4) with the standard one
again and used robustfit-single-replica as the plug-in heuris-
tic referring to this as robustfit-merge.

4.2.3 Metaheuristic: Tabu Search
We also use our Tabu search for incremental RTP: tabu-

inc. replaces phase (5) with the Tabu search from Sec-
tion 4.1. Note that tabu-inc. does not use a solution ob-
tained by a greedy heuristic as the starting solution; it sim-
ply starts with the given placement. tabu-inc. simply omits
phase (6), which saves some of the migration budget and
thereby allows the Tabu search to run longer. The next
heuristic, tabu-inc.-long works exactly as tabu-inc., except
that the parameters of the Tabu search are set in such a
way that it runs significantly longer (and thus visits more
solutions). Finally, we combine robustfit-inc. with tabu-inc.
into tabu-robustfit. This algorithm runs robustfit-inc. as a
preprocessing step, thereby omitting phase (6) so that the
remaining migration budget can be used to improve the so-
lution using Tabu search. Another variant of this algorithm
is tabu-robustfit-l., where the Tabu component runs longer.

4.2.4 Portfolio Approach
The portfolio approach combines all heuristics for incre-

mental RTP. We simply run all heuristics starting from the



same, best-known solution. We then pick the best solution
among all algorithms as the next solution. Choosing the best
solution as the next solution is itself a heuristic approach.

5. EXPERIMENTS
In this section, we evaluate our algorithms for RTP. Our

evaluation is based on real-world load traces, which we ob-
tained from a production cluster of the aforementioned SAP
application. To preserve customer privacy, an anonymized
random sample of 100 tenants was given to us. While this is
only a fraction of the customer base, the sample provides a
realistic profile of the whole customer base. Unfortunately,
the sample is not large enough for experiments at scale. We
thus used the technique presented in [22] to bootstrap new
tenants. The newly created tenants have load traces sim-
ilar to the original tenants and follow the same periodical
patterns. Our final testing dataset contains 435 tenants.
The evaluation is structured as follows: Section 5.1 dis-

cusses the performance of our algorithms w. r. t. their bal-
ance among (i) the number of active servers, (ii) computa-
tion time, and (iii) their robustness towards load changes.
We will see that robustfit-inc. achieves a good balance be-
tween all three measures. Consequently, Section 5.2 explores
robustfit-inc. further. We investigate lower bounds for server
cost. We also study the effects of increasing the number of
replicas per tenant beyond the minimum, which has inter-
esting effects on the number of active servers and the sta-
bility of a placement over the day. In Section 5.3 we study
generic over-provisioning strategies to reduce the impact of
temporarily overloaded servers until it becomes negligible.
In all experiments, we assume that servers have a DRAM

capacity of capσ = 32GB. We further assume a homoge-
neous server load capacity of cap" = 1.0. While our al-
gorithms also work for heterogeneous servers, homogeneity
simplifies the presentation of our experiments. Results from
the literature suggest that approximability results for ho-
mogenous servers will carry over to heterogenous servers [2,
15]. In the experiments, we set the migration budget to δ
= 27GB because such an amount can safely be migrated in
a ten minute interval using SAP’s in-memory database and
a 10Gbit Ethernet interconnect [21]. Our experiments were
conducted on an Intel Xeon X7560 server with 2.27GHz
running Linux. We implemented our heuristics in Scala and
used Cplex as a MIP solver. We have not yet parallelized
our heuristics (in contrast to Cplex). We would expect a
significant speed-up from a multi-threaded implementation,
especially for Tabu search and portfolio.

5.1 Comparison of Heuristics for RTP
In order to evaluate our heuristics for solving (incremen-

tal) RTP we consider the following three measures:
1. the cost associated with the resulting placements,6

2. the computation times required by the algorithms, and
3. robustness of the placement towards unexpected increases

in tenant load.
Not all can be optimized for at the same time; conse-

quently, a trade-off between these measures must be found.
A particularly inexpensive placement may require an unreal-
istic amount of computing time and then, at the same time,

6We measure operational cost as accrued when using a vary-
ing number of “high memory” instances on Amazon EC2.
See http://aws.amazon.com/ec2/pricing/.

the tenants might be packed so tightly that servers are prone
to temporary overloads when load changes.
Experiment (i): Incremental Placement vs. State of the
Art. We compare our incremental heuristics against two
baselines published in [25] and [5]. Table 1 summarizes the
benefits of our incremental algorithms over these two static
approaches measured on a typical working day. To allow a
fair comparison, we modified both baseline approaches such
that they also encompass the replication, load balancing and
failure-robustness properties of RTP.

The first static approach, modeled after [25], entails mon-
itoring all tenants for one week and observing the peak load
of each tenant within that period. Afterwards, one provi-
sions for this peak load. We used the week directly preced-
ing the Wednesday chosen for our experiments to estimate
the maximum load for each tenant. We then solved static
RTP for the observed peak loads using greedy heuristics.
Table 1 shows that robustfit-s-mirror, the simplest static al-
gorithm, requires 320 servers, whereas robustfit-s-interl., the
best static algorithm in this case, requires 192 servers.

The second static approach, kairos-MIP, modeled after [5],
also entails monitoring all tenants for a period of time and
then computing a static placement. In contrast to [25],
where this placement is computed based on the maximum
load requirements observed for all tenants during the obser-
vation period, kairos-MIP tries to consolidate more aggres-
sively by requiring its (static) placement to be valid across
all ten minute intervals in the observation. We picked the
Wednesday of the week preceding our exemplary Wednes-
day and tried to compute a placement with kairos-MIP, our
implementation of [5] in Cplex. Note that given our fo-
cus on in-memory databases and the absence of shared disk
access, we can use a MIP formulation, which has computa-
tional advantages. However, the corresponding MIP formu-
lation becomes so large for our trace data that kairos-MIP is
computationally unsolvable within one week. We therefore
picked a subset of high-load ten minute intervals from the
Wednesday and ran kairos-MIP on this subset. Hence, we
only obtain a lower bound on the actual cost of the kairos-
MIP placement; we can expect the kairos-MIP placement
over all ten minute intervals (if it was computable) to be
significantly more costly. Our experimentation with smaller
sets of tenants and servers suggests that working on a sub-
set of ten minute intervals results in placements which are
approx. 60% cheaper than including all ten minute inter-
vals. Table 1 shows that kairos-MIP requires (at least) 45
servers. Note that the running time for kairos-MIP even
when run on a subset of ten minute intervals is much higher
than reported in [5], although we use Cplex. This may be
partially due to the additional constraints of RTP that we
added for comparability (e.g. Constraint (5)). However, the
main reason is probably the much higher number of tenants
and servers in our experimental data compared to [5].

In contrast to both static baselines, our incremental al-
gorithms, which alter the placement in ten minute inter-
vals, require between 33 and 40 servers during times of peak
load and much fewer servers during the night and times of
low load (e.g. weekends). Table 1 shows the cost for server
rent for all incremental algorithms. On average, the cost for
server rent is an order of magnitude lower when using an in-
cremental algorithm as opposed to using static provisioning
based on peak load while being computationally compara-
ble. Incremental placement is still a factor of 2.2 cheaper

http://aws.amazon.com/ec2/pricing/


than the lower bound on the Kairos approach, while being
far superior in terms of computational times.

Table 1: Server cost and running time of heuristics for RTP

Algorithm Cost Servers Running time
max avg max

Static:
robustfit-s-mirror $3456.00 320 66.4 s
robustfit-s-interl. $2073.60 192 481.3 s
kairos-MIP > $432.00 > 45 > 3 days

Incremental:
tabu-inc. $273.83 40 2.5 s 5.9 s
tabu-inc.-long $208.20 34 26.8 s 87.0 s
tabu-robustfit $202.95 33 3.0 s 10.8 s
robustfit-inc. $201.45 39 1.7 s 3.7 s
splitmerge-inc. $200.18 38 95.5 s 321.6 s
robustfit-merge $198.08 32 84.2 s 256.4 s
tabu-robustfit-l. $193.05 33 19.8 s 60.5 s
portfolio $191.55 33 182.1 s 565.3 s

Note that for incremental placement there might be over-
heads associated with shutting down and powering up differ-
ent nodes dynamically in a cluster. Prior to shutting down
a node, all tenants must be replicated away from the node.
RTP ensures that this is done without SLO violations. Also,
copying tenants to other nodes counts towards the migration
budget. Powering up a node incurs some time for provi-
sioning, which is not modeled in RTP. A reasonably-priced
workaround is to maintain a pool of 2–5 spare nodes, which
can instantly be filled with tenants when required.
Experiment (ii): Incremental Algorithms: Cost vs. Run-
ning time. The time in a ten minute interval is split into
the time for algorithmic computation and the remainder,
which is used to physically carry out the migrations. The
shorter the running time of an algorithm the more time is
available for performing migrations. A short running time
also indicates good scalability of an algorithm towards larger
problem sizes. Among the fast algorithms with an average
running time below 10 s (see Table 1), robustfit-inc. finds the
solutions with the lowest cost. It is also the fastest algorithm
overall, and thus the best option for short reorganization in-
tervals. Among the longer-running heuristics, portfolio nat-
urally delivers the best results because it combines all other
incremental heuristics and selects the placement with the
fewest servers in each ten minute interval. portfolio is also
by far the slowest (incremental) algorithm. tabu-robustfit-l.
is almost as good as portfolio w. r. t. server cost. However,
on average, tabu-robustfit-l. is more than ten times faster
than portfolio. tabu-robustfit-l. is the best choice if one can
allow investing up to one minute of computation per ten
minute interval. At certain times during the day portfo-
lio produces placements requiring more servers than some
of the other incremental heuristics (e.g. robustfit-merge).
This behavior results in portfolio requiring a higher max-
imum number of servers than robustfit-merge (see Table 1).
This phenomenon—counter-intuitive at first since portfolio
is supposedly the best incremental heuristic—highlights the
strong influence that the given placement from the previous
interval has on the ability of any incremental algorithm to
minimize the number of active servers.
Experiment (iii): Robustness Towards Load Spikes.
When using an incremental placement strategy, one tries to
find a placement using the minimal number of servers while

still providing just enough resources to handle the load of
all tenants without violating response time SLOs. This re-
sults in situations where servers have little spare capacity.
When changes in tenant load are observed, a new placement
is computed and tenants are migrated away from overloaded
servers. When using a static placement strategy, in contrast,
all servers must have enough spare capacity to handle an es-
timated peak load over a longer time period. In the follow-
ing, we study how many servers are temporarily overloaded
in each ten minute interval when an incremental placement
strategy is used. Here, a temporarily overloaded server has
a load beyond its load capacity limit at the beginning of a
ten minute interval, i.e. after new values for the load of the
tenants have been observed and before a new incremental
placement is computed and put in place. This metric is an
indicator for a placement’s robustness towards unexpected
load spikes. The fact that servers are temporarily overloaded
while the placement is being re-organized in response to a
load spike is perhaps the most important downside of incre-
mental placement. Managing the trade-off between tempo-
rary overloads and cost for server rent is a key challenge.

Figure 5a provides two main insights. Firstly, temporary
overloads occur mostly in the morning when people come in
to work. This is the time when load increases drastically
between adjacent ten minute intervals. Secondly, tempo-
rary overloads affect a large fraction of all active servers.
The latter is actually positive: due to interleaving, excess
load is distributed across many servers, which avoids local
hotspots in the cluster. As can be seen in Figure 5b, the
average excess load on all servers is moderate for most ten
minute intervals. The largest component of the average ex-
cess load on the servers is due to headroom that is reserved
for server failures (i.e. our penalty). Figure 5c shows the
net average overload across all servers, without including
the penalty in the load on the servers. For our exemplary
business day, as long as no server failure occurs exactly at
7:20 a.m., temporarily overloaded servers actually never ex-
ceed their capacity limit by more than 10%.

Surprisingly, placements computed with the splitmerge-
inc. algorithm are extremely robust: only 30% of the servers
are beyond their load capacity when considering penalty,
and no server at all is overloaded when considering only the
actual load without penalty. In the latter case there is not
a single ten minute interval with an overloaded server. Al-
though splitmerge-inc. is clearly superior to our other heuris-
tics in this regard, its high running times (between 1.5 and
5.5 minutes per ten minute interval) make its use mostly
impracticable. Note also that splitmerge-inc. is harder to
parallelize than for example tabu-inc. or portfolio due to its
complex merge phase. Based on this experiment, it becomes
clear that our heuristics must be extended to minimize the
impact of temporarily overloaded servers. We develop and
evaluate appropriate techniques in Section 5.3.

We conclude that robustfit-inc. provides the best balance
between server cost, running time, and robustness towards
temporary load spikes. The overall most robust algorithm,
splitmerge-inc., has prohibitively long running times. There-
fore, we evaluate robustfit-inc. in more detail in the follow-
ing. Due to space restrictions, we omit experiments with
a varying migration budget in this paper. It turns out
that tabu-inc. has some characteristics that make it favor-
able over robustfit-inc. for small migration budgets and thus
shorter reorganization intervals. However, reorganization in-
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Figure 5: Overloaded servers during working hours for selected algorithms

tervals shorter than ten minutes could result in “thrashing”
in the sense of overreacting to short-lived load bursts.

5.2 Advanced Experiments with Robustfit
Having established that immense cost savings can be real-

ized using incremental placement strategies, a natural next
question is by how much our algorithms deviate from place-
ments which are optimal in terms of the number of required
servers. We therefore investigate lower bounds on server
cost in this section. We also consider varying the number of
replicas per tenants beyond the minimum.
Experiment (iv): Lower Bounds on Operational Cost.
In the following, we compare robustfit-inc. with two sets of
cost baselines. The first comes from solving the static vari-
ant of RTP with our heuristics. The second comes from
running Cplex on our MIP formulation for RTP, with the
goal of finding optimal solutions. Both lower bounds are
only of theoretical interest because (i) running a static al-
gorithm in each ten minute interval ignores migration costs
and (ii) we allow a time limit of three hours per ten minute
interval for Cplex. Table 2 contains details.

Table 2: Gap between incremental solutions and lower bounds

Incremental Lower Bound Gap in %
Algorithm avg max
robustfit-inc. tabu-static-long 8 63
robustfit-inc. RTP-MIP 19 75
RTP-MIP RTP-MIP-lower-bound 17 42

Surprisingly, robustfit-inc. performs almost good as tabu-
static-long (the best static heuristic) on average, even though
the incremental placement problem intuitively seems more
challenging than the static one. The large maximum gap is
in fact due to an outlier: the second largest gap is 40%. For
more than 30 out of 144 ten minute intervals, robustfit-inc.
even requires fewer servers than tabu-static-long or other
static algorithms. One reason for the good performance of
robustfit-inc. might be that it often has the opportunity
to start from a good solution obtained in the previous ten
minute interval. Incremental improvements of good solu-
tions are carried forward by robustfit-inc.
Heuristics for static RTP provide an empirical lower bound

on the required number of servers attainable in a timespan
proportional to the problem size. However, exploring all
combinatorial options systematically may lead to solutions
with fewer servers. We therefore report on solving MIP
formulations of RTP with Cplex next. We are interested
in studying the relative gap between the solutions obtained

by Cplex and robustfit-inc. Unfortunately, the standard
problem size used in our experiments is too large for ex-
perimentation with Cplex. We therefore use a smaller set
of tenants (136 tenants) on which we run both Cplex and
robustfit-inc.

Cplex can often improve our heuristic solutions, some-
times by a considerable amount. The low average gap (see
lower part of Table 2) however clearly speaks for robustfit-
inc. While the results here have been obtained based on the
MIP formulation for RTP, we observed similar results when
running Cplex on the static variant with a 24 hour time
limit per ten minute interval. Based on these experiments,
we conjecture the relative gap between exact solutions and
heuristically obtained solutions to be similar for larger prob-
lem sizes (as is the case for the related bin-packing prob-
lem [11]). Cplex also computes lower bounds on the op-
timal solution (see last line of Table 2). The gap between
the best Cplex solution and this lower bound does not nec-
essarily indicate that the best Cplex solution can actually
be further improved, but rather that the lower bounds are
weak. This is another similarity to the bin-packing problem
where an assignment formulation leads to lower bounds rel-
atively far below the actual optimum [23]. We conclude that
the placements obtained by robustfit-inc. are close enough
to the theoretical optimum, especially considering its speed.
Experiment (v): Varying the Number of Tenant Replicas.
In all previous experiments the number of replicas per ten-
ant was set to the minimum with (12). Section 4.2.1 listed
several approaches for dynamically computing the number
of replicas. In this experiment, we evaluate the simplest
one: varying the number of replicas per tenant by adding
an offset between one and five to the minimum number of
replicas. Figure 6 shows that a higher replication factor de-
creases the variance in the active number of servers over the
day. Tenant size becomes the dominant resource dimension
as the number of replicas increases, up to a point where ten-
ant load is no longer the limiting factor. To our surprise we
found that the maximum number of servers required during
peak load decreases drastically as the offset increases. Con-
versely, during times of low load, a high offset increases the
number of active servers. For our Wednesday, an offset of
four is best during peak load and an offset of zero is best
during the period where load is at its lowest level. There are
stages in between where offsets of two and three do best. At
peak load, an offset of five results in the smallest number of
servers. Table 3 shows that cost for server rent does not in-
crease monotonically with a higher replication offset. In fact,
increasing the offset from zero to one decreases cost from
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Figure 7: Performance of different generic over-provisioning
strategies for avoiding overloaded servers

$201 to $187. As a point of comparison, running portfolio—
supposedly the best incremental heuristic—with an offset of
zero accounts for a daily cost of $192 (see Table 1).

Table 3: Daily server cost with varying offset

Offset 0 1 2 3 4 5
Cost ($) 201 186 201 237 257 289
Servers (max) 39 28 27 27 28 31

Dynamically varying the number of replicas over the day
is a promising avenue for future work.

5.3 Generic Over-Provisioning Strategies
As stated in Experiment 5.1, incremental placement re-

quires trading off cost and robustness towards load spikes.
In the following, we consider generic measures for reduc-
ing the number of temporarily overloaded servers, which in-
creases robustness. We also investigate scenarios in which
more than one server fails. It turns out that the best strat-
egy to avoid overloaded servers also helps when dealing with
multiple server failures. Two strategies immediately come to
mind for reducing the number of overloaded servers: (i) vir-
tually increasing the load of each tenant, and (ii) increasing
the headroom left unused on each server. Experiment 5.2
inspires a third strategy: increasing the number of replicas.
The intuition behind this strategy is that a higher replica-
tion factor could help smoothing out harsh load changes.
Experiment (vi): Avoiding Overloaded Servers.
Figure 7 shows how the three over-provisioning schemes de-
scribed above influence the trade-off between operating cost
and the occurrence of overloaded servers. We limit ourselves
to evaluate the over-provisioning strategies with robustfit-
inc. For both graphs, we vary the strength of the respective
strategies from left to right by increasing the headroom on
the servers in steps of 0.05 and by increasing the load of
the tenants by 5% in each step. Also, we increase the num-
ber of replicas per tenant by an increasing offset when going
from left to right. Increasing any of these three parameters
results in more active servers and the resulting placement
becomes more expensive in turn. The cost of placement
for our Wednesday is shown on the vertical axis. As points
of reference, both graphs in Figure 7 also show the state-
of-the art approaches from Experiment 5.1 as a baseline.
robustfit-s-interl. (dark blue arrows) produces no temporary
overloads because it strongly over-provisions. kairos-MIP
(light blue arrows) produces more temporary overloads but
is less expensive. Another point of reference in both charts

is robustfit-inc. in the standard configuration without any
over-provisioning strategy (pink arrows).

Figure 7a shows the number of occurrences of overloaded
servers across all ten minute intervals. Figure 7b shows
the sum of all excess load across all servers for the worst
ten minute interval of our Wednesday. The latter met-
ric is particularly sensitive. Its minimization reduces the
severeness of overload situations to a negligible level. For
both graphs, when moving from left to right along the x-
axis, the resulting placements obviously become more and
more expensive. When merely counting how often servers
are overloaded across all ten minute intervals, the strategy
to decrease server capacities converges towards a value of
zero overloaded servers faster (and thus more inexpensively)
than the strategy that virtually increases tenant load. When
adding up by how much the servers are overloaded, the op-
posite is the case and the strategy that virtually increases
tenant load converges towards zero excess load faster. How-
ever, for both metrics, the strategy to increase the replica-
tion offset is clearly superior to the other two strategies.
Experiment (vii): Multiple Server Failures. RTP guaran-
tees that no server is overloaded when any one other server
in the cluster fails. However, since the over-provisioning
strategies introduced in the previous experiment result in
placements where servers have more “headroom,” we are in-
terested in whether such placements can also handle mul-
tiple simultaneous server failures. We study two metrics,
(i) the amount by which other servers are overloaded as a
consequence of one or multiple simultaneous failures, and
(ii) how many tenants are rendered completely unavailable
when multiple servers fail at the same time. We collect the
first metric, the excess load, after load changes have been ob-
served, the placement algorithm has run, and all migrations
have been performed. This is in contrast to Experiments
5.1 and 5.3, where excess load has been measured before the
placement algorithm runs (the focus was on the robustness
towards unanticipated load changes). Also, we consider only
actual load on the servers without penalty, since we investi-
gate failure situations in which the servers are supposed to
use up the headroom allotted in the form of penalty.

We inject failures into the cluster twice during the day
(marked in Figure 8 using arrows). At those points in time,
we fail a fixed number of servers between zero and four.
The failing servers are chosen at random. We compare
the standard case where no measures for over-provisioning
have been applied (Figure 8a) to an over-provisioned place-
ment using the strategy that virtually decreases the ca-
pacity of a server (shown in Figure 8b). We parameter-



Table 4: Average number of unavailable tenants

Simultaneous failures 0 1 2 3 4
No over-provisioning 0.00 0.00 1.75 5.59 11.50
Over-Prov. Strategy:
"(t) scaled by factor 1.85 0.00 0.00 0.68 1.80 2.78
cap" reduced to 0.45 0.00 0.00 0.10 0.60 1.76
r(t) increased by 5 0.00 0.00 0.00 0.00 0.00

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

11:00

12:00

13:00

14:00

15:00

16:00

17:00

E
xc

e
ss

 L
o

a
d

 (
T

o
ta

l)

Time (10 Minute Ticks)

F
a

ilu
re

 1

F
a

ilu
re

 2

1 simultaneous failure    
2 simultaneous failures   

(a) standard configuration

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

11:00

12:00

13:00

14:00

15:00

16:00

17:00

E
xc

e
ss

 L
o

a
d

 (
T

o
ta

l)

Time (10 Minute Ticks)

F
a

ilu
re

 1

F
a

ilu
re

 2

3 simultaneous failures   
4 simultaneous failures   

(b) over-provisioned

Figure 8: Impact of multiple simultaneous failures

ized this over-provisioning strategy such that it is in the
sweet-spot between the number of overloaded servers and
cost. The configuration we picked is marked with a circle in
Figure 7a. We observe that servers are overloaded by up to
37% in the standard configuration with four simultaneous
server failures (Figure 8a). For the over-provisioned place-
ment (Figure 8b), a measurable impact is only visible for
three and four simultaneous failures. The severity in these
cases is approximately 20 times lower than without over-
provisioning.
Table 4 shows the number of tenants that are temporarily

rendered unavailable when injecting multiple simultaneous
failures into the cluster. We vary the random seed for choos-
ing the servers that fail and report average values. From an
availability point-of-view, the replication-based strategy is
the clear winner. It is also the cheapest among the three
over-provisioned configurations. We conclude that although
RTP guarantees that SLOs are met for only a single failure,
in practice, multiple simultaneous server failures are often
not problematic.

6. RELATED WORK
Previous projects have addressed variants and subprob-

lems of the tenant placement problem, but to our knowl-
edge none considered interleaved tenant placement to mini-
mize the required servers, whilst guaranteeing response time
SLOs and taking real-world workload traces into account.
Resource Modeling. Determining a tenant’s resource
requirements entails characterizing the dominant resources
and quantifying how much each tenant utilizes them. For
MySQL, [5] presents a technique for estimating the com-
bined disk I/O performance in the presence of multi tenancy.
The tenants’ CPU and memory requirements add up linearly
in their model. In [18], tenants are grouped into several SLO
classes. All tenants in a class have the same response time
guarantees and the same size. A server is filled with a mix
of tenants from different SLO classes. A binary function de-
termines whether the server can meet the response time re-
quirements of its tenants. [7] introduces a logical I/O metric
to characterize the dominant resource bottleneck for OLAP

workloads in PostgreSQL. This I/O metric aggregates lower
level metrics such as buffer pool hits and hit rates in the
operating system’s file system cache, which are dependent
on the shared disk access behavior of concurrent queries.
In [21], the focus is on in-memory databases, where disk I/O
is not the dominant resource. Instead, the main resources
being consumed are CPU, memory, and bandwidth between
CPU and memory. This situation considerably simplifies
resource modeling in contrast to the disk-based approaches.
Note that besides resource modeling, both [5] and [18] also
provide non-linear programs for tenant placement, but they
only consider static placement and there is no notion of in-
terleaving or load redistribution in case of failure.
Declustering Algorithms. Significant research has been
devoted to declustering strategies for increasing the avail-
ability of parallel database [16, 14, 19, 24, 26]. Teradata’s
interleaved declustering strategy uses interleaved data place-
ment for fast recovery, whereas chained declustering [16] and
adaptive overlapped declustering [24] aim at equally redis-
tributing work in the cluster in the case of a server failure.
This redistribution is done by updating the load balancing
policy when a node fails, which requires controlling the load
balancing mechanism on partition granularity. All declus-
tering strategies assume that a partition can be split further
into sub-partitions and, hence, distributed across servers.
This assumption does not hold in our scenario, where a ten-
ant is considered an atomic unit and tenants are so small
that there is no benefit to partitioning. Furthermore, all
these strategies assume a fixed number of servers and repli-
cas, whereas our goal is to minimize the number of active
servers at each point in time. To our knowledge, only Mi-
crosoft SQL Azure [1] uses interleaved tenant placement, but
does not disclose details on algorithm design or effectiveness.
Greedy Algorithms. Various greedy placement strate-
gies have been proposed, none of them considering inter-
leaved placement. For example [25], used as a baseline in
Experiment 5.1, uses a greedy first-fit algorithm after ob-
serving the tenants’ load requirements. In [20], a greedy in-
cremental placement algorithm is proposed for adaptive dis-
tributed middleware, whereas [3] provides a greedy heuristic
to automatically adjust the number of machines. Neither of
these approaches considers failures and/or multiple replicas.

Notably, placement strategies for virtual machines [9, 13]
share many aspects with incremental tenant placement. For
instance, AutoGlobe [13] uses a trace-based approach that
assesses permutations and combinations of workloads to de-
termine a near-optimal workload placement providing spe-
cific SLOs. Similarly, [9] uses a linear program and heuristics
to control VM migration. Both approaches do not consider
replication to increase availability and performance.
Migration Techniques. Various systems studied proto-
cols on how to most efficiently migrate tenants: [6] presents
live migration for a decoupled storage database approach;
[8] does the same in a more traditional multi-tenant setup
as presented here. Our algorithms can be used with these
techniques by adapting the migration overhead factors.
Optimization. Finally, the optimization community has
considered the bin-packing problem for decades [11, 23].
Many variations (and the RTP is one) of the problem have
been studied over the years, e.g. [2, 10, 15], however, we are
not aware of approaches that take robustness towards indi-
vidual server failures, as we consider it, into account. It is



the robustness (or penalty, cf. Constraint (5)) that renders
existing bin-packing algorithms unusable for RTP.

7. CONCLUSION
In this paper, we introduced RTP and presented a variety

of incremental data placement algorithms for multi-tenant
SaaS. An evaluation with real-world data revealed that our
approach leads to significant cost savings in comparison to
the state of the art, while adhering to response time SLOs
captured in resource models. We extended our algorithms
with generic strategies for over-provisioning, so that admin-
istrators who wish to run their cluster with more headroom
can, at the same time, benefit from the cost savings that
come with incremental placement. Our most important find-
ings are that (i) robustfit-inc. and tabu-robustfit-l. find near
cost-optimal solutions in short running times, (ii) our over-
provisioning strategies reduce the impact of load spikes to a
negligible level while masking multiple simultaneous server
failures from the perspective of response time SLOs; and
(iii) the over-provisioning strategy based on increasing the
replication factor is the winner among the presented ap-
proaches, from a cost, availability and cluster sizing per-
spective.
In future work, we will study mechanisms for dynamically

adjusting the over-provisioning strategies over the day (e.g.
using a varying rather than a fixed offset for the number of
replicas). Given the success of machine-learning techniques
in related areas, another avenue for future work is going from
a re-active to a pro-active placement approach, for example
via load forecasting as a preprocessing step for RTP.
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