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Abstract
Max-Min Fairness is a flexible resource allocation mecha-
nism used in most datacenter schedulers. However, an in-
creasing number of jobs have hard placement constraints,
restricting the machines they can run on due to special
hardware or software requirements. It is unclear how to
define, and achieve, max-min fairness in the presence of
such constraints. We propose Constrained Max-Min Fair-
ness (CMMF), an extension to max-min fairness that sup-
ports placement constraints, and show that it is the only pol-
icy satisfying an important property that incentivizes users
to pool resources. Optimally computing CMMF is challeng-
ing, but we show that a remarkably simple online scheduler,
called Choosy, approximates the optimal scheduler well.
Through experiments, analysis, and simulations, we show
that Choosy on average differs 2% from the optimal CMMF
allocation, and lets jobs achieve their fair share quickly.

1. Introduction
Large clusters running parallel processing frameworks like
MapReduce [8] have become a key computing platform.
As their workloads become more diverse, efficient resource
allocation becomes even more important. One of the most
widely used resource allocation mechanisms has been max-
min fairness. Many current datacenter schedulers, including
Hadoop’s Fair Scheduler [34] and Capacity Scheduler [1],
Seawall [29], and DRF [12], provide max-min fairness. The
attractiveness of max-min fairness stems from its generality.
By enabling different weights to be set for different users,
a wide range of policies can be implemented, including
priority, reservation, and proportional sharing [31, 32].

While there has been much work on max-min fairness
for datacenter schedulers, little focus has been on max-min
fairness with placement constraints. As recently observed,
over 50% of the jobs at Google have strict, albeit simple,
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constraints about the machines that they can run on [28].
For example, a job might require a machine with a public
IP address, particular kernel version, special hardware such
as GPUs, or large amounts of memory, and might be unable
to run on machines that lack these requirements. These are
simple constraints that define which machines the job can
run on and not complex combinatorial constraints, such as
requiring two tasks to be placed on two distinct machines.
Placement constraints are not specific to Google. The up-
coming Hadoop Next-Generation [2] is incorporating such
constraints in the resource requests of their resource man-
agement system. Differences in machines arise naturally as
an organization accumulates multiple generations of hard-
ware or purchases specialized hardware like GPUs [28].

In this paper, we consider the problem of max-min fair-
ness in the presence of constraints. We do so in three steps.
First, we propose an allocation policy called Constrained
Max-Min Fairness (CMMF) that naturally extends max-min
fairness. We show that CMMF is the only policy that has
two important sharing properties: it incentivizes pooling of
resources in common clusters and it is robust to users ly-
ing about their constraints. Second, we provide an optimal
offline algorithm for computing CMMF, based on iterative
linear programming. Third, we show, through analysis and
simulations, that a very simple greedy online algorithm ap-
proximates the optimal offline scheduler surprisingly well.
We now elaborate on these three.

CMMF naturally extends max-min fairness. Specifically,
CMMF recursively maximizes the allocation of the user with
the lowest share, then of the user with the second-lowest
share, etc, subject to satisfying all users’ constraints. Com-
pared to other allocation policies, CMMF has two desirable
properties. First, CMMF is the only policy that satisfies the
sharing incentive property [12], which ensures that users
on a shared cluster do not get a smaller allocation than if
they ran on a dedicated cluster of 1

n the size (assuming n
users). This ensures that users (or groups of users) are “bet-
ter off” pooling their resources in a common cluster. Other
simple allocation policies lack this property. Second, CMMF
is strategy-proof, that is, users cannot increase their shares
by lying about their demands1.

1 From a microeconomics perspective, CMMF is characterized by Nash
bargaining [24], which is different from previous fair schedulers—such as



Computing optimal CMMF allocations is challenging.
We give a solution that uses iterative linear programming.
The solution is particularly useful for coarse-grained schedul-
ing in an offline fashion, suitable in HPC/Grid contexts [25].

The offline solution does not scale to high rates of
scheduling decisions per second. For this reason, we seek
a simple approximation. Towards this end, we analyze the
performance of the simplest and most natural online sched-
uler for this problem. We refer to it as Choosy: each time a
machine is free, greedily assign it to the user with the lowest
current share that can run on that machine. Despite the com-
plexity of the optimal offline scheduler, Choosy turns out to
approximate offline solutions well.

We analyze why the simple Choosy scheduler performs
well with respect to the considerably more complex opti-
mal CMMF, and confirm these results with simulations and
experiments. For our experiments, we implement Choosy in
the Mesos resource manager [14], and use data on placement
constraints from Google [28]. The experiments and simu-
lations show that Choosy closely approximates the optimal
scheduler, providing response times that differ by less than
2% on average and letting new jobs acquire their fair share
of the cluster quickly.

Choosy fits current datacenter schedulers—such as the
Hadoop Fair Scheduler [34], Capacity Scheduler [1], and
Mesos [14]—that quickly need to schedule large numbers
of fine-grained tasks online. It is, thus, a practical choice for
implementing max-min fairness with constraints.

2. Background and Model
We first motivate the problem and describe our model of
placement constraints.

2.1 Motivation
The number of machines and applications running in dat-
acenters is steadily increasing, leading to a diverse set of
applications running over heterogeneous hardware. This has
resulted in applications having constraints on the machines
they can run on; for instance, a DNS service might need to
run on machines that have a public IP address. While the na-
ture of the constraints might vary, they can usually be clas-
sified into two categories: hard and soft constraints. A job
cannot run if its hard constraints are violated. But it can run,
possibly with degraded performance, if its soft constraints
are not met. An example of a hard constraint is the presence
of a GPU, while a soft constraint is data locality. In our work,
we focus only on hard constraints, which are more difficult
to handle (c.f., §8). Furthermore, we do not consider com-
binatorial constraints that specify rules on when different
combinations of machines are desirable.

According to Sharma et al. [28], most constraints in
practice are simple. Approximately 50% of Google’s jobs

DRF [12]—that are built on the Kalai-Smorodinsky allocation [17]. Despite
this, CMMF is strategy-proof.

only have the simple non-combinatorial constraints that we
consider, compared to 11% having complex ones. In ad-
dition, constraints have a significant impact on job perfor-
mance, considerably inflating the scheduling time of jobs in
Google’s proprietary scheduler.

2.2 Modeling Job Constraints
We seek a simple job constraint model that captures the in-
tricacies of job placement constraints. In practice, the con-
ditions behind constraints can be complex, involving, for
example, Boolean expressions about various machine at-
tributes (e.g., public IP AND memory > 16 GB) [28, 30]. To
support arbitrary such conditions, we will work, not with the
conditions themselves, but with just the results of evaluating
them. Specifically, we require, for each user (job), a Boolean
specifying whether it can use each machine. We encode this
information in a constraint graph, where the vertices are ma-
chines and users, and there is an edge between each user and
each of the machines that user can run on.

Figure 1 illustrates the model. User u1 specifies the con-
straint set c1 = {m1,m4} (i.e., she can only run on m1 or
m4), u2 specifies c2 = {m3,m4}, u3 specifies c3 = {m2,m3,
m4,m6,m7}, and u4 specifies c4 = {m5,m6,m7,m8,m9,
m10}. We urge the reader to think about what the “right”
allocation should be, assuming equally important users.

u1                    u2                        u3                       u4

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

u1                    u2                        u3                       u4

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

1/31 1/2 1/3 1
1/31/2

1 1/2 1
1/2 1 1 1 1

Figure 1: Example of 4 users with constraints on 10 machines.

3. Desirable Scheduler Properties
In this section, we motivate and define two desirable proper-
ties of a fair allocation policy in the presence of constraints:
(i) constrained sharing incentive, and (ii) strategy proofness.

3.1 Sharing Incentive
As observed in DRF [12], a highly desirable property of
any allocation policy in datacenters is sharing incentive. In a
nutshell, this property ensures that users get more resources
when pooling resources in a dynamically shared cluster than
statically partitioning the resources among themselves. For
example, in the case of n identical users, each user should
be able to get at least 1

n of the resources in a shared cluster
regardless of the demand of other users. Otherwise, this
user would be better off in a dedicated cluster containing
only 1

n of the machines. This is especially important when
sub-divisions of an organization might consider buying a
dedicated cluster.

Unfortunately, it is easy to see that this version of the
sharing incentive property cannot be guaranteed in the pres-
ence of arbitrary constraints. For example, consider ten ma-
chines and ten users, with the first nine users only able to



use the first machine, whereas the last user is able to use any
of the ten machines. It is impossible to guarantee that each
user gets one machine, which is each user’s share according
to the sharing incentive property.

Fortunately, there is a simple generalization of the sharing
incentive property to handle constraints:

Constrained sharing incentive. Assume each user i
contributes ki machines to a common pool of ma-
chines, and that each user can use at least the ma-
chines she contributed. Then, user i should be able
to get at least ki machines.

Note that this definition assumes that user i is “entitled”
to at least ki machines, i.e., her weight is ki. In addition,
user i can also get more than ki machines if some of the
other users do not currently need their full entitlements.

3.2 Strategy-Proofness

Prior work has shown that users are willing to manipulate
the scheduling system to gain more resources, even within
a single organization [12]. For example, in one company,
jobs were required to have high utilization in order to be
given dedicated machines, so users artificially inflated their
utilization by adding busy-loops to their code. At another
company, users of a Hadoop cluster observed that the slots
for map tasks were often contended whereas slots for reduce
tasks were usually free, so they rewrote their job to run the
entire computation in the reduce task, acquiring nodes faster
but bypassing all the efficiency benefits associated with data
locality-aware map scheduling [12].

Allocation policies can avoid manipulation by ensuring
that they are robust to misreported requirements. This is
captured by the strategy-proofness property:

Strategy-proofness. A user should not be able to raise
her allocation of desirable machines by misreporting
the set of machines she is constrained to run on.

An example of a policy that does not meet strategy-
proofness would be one that tries to assign each user a share
proportional to the total number of machines that user can
run on. In this case, a user might be better off misreporting
her job as being able to run on any machine, as this might
let her receive more machines that she wants in addition to
some that she does not want. Such scenarios have been ob-
served for extensions of max-min fairness to settings with
multiple resource types [11, 12], so we wish to avoid them
for the constrained sharing case.

4. Policies for Allocation with Constraints
In this section, we study three resource allocation policies.
First, we consider a simple natural policy, independent al-
location, that, unfortunately, does not satisfy the sharing in-
centive property, demonstrating how this property can be vi-
olated. Next, we introduce our approach, Constrained Max-
Min Fairness (CMMF). Finally, we discuss how CMMF re-

u1                    u2                        u3                       u4

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

u1                    u2                        u3                       u4

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

1/31 1/2 1/3 1
1/31/2

1/2 1/2 1
1/2 1/2 1 1 1

Figure 2: Independent allocation for the problem in Figure 1. The
numbers show the fraction of a machine that each user is given.

lates to market-based allocation. Some of the proofs are in
the appendix of this paper.

4.1 Independent Allocation
An intuitive allocation policy, which we call independent
allocation2, is to consider each machine in isolation and give
each of the k users that can use that machine 1

k of it. In effect,
this treats each machine as a separate type of resource.3

One advantage of the independent allocation policy is that
it is additive. This means that the independent allocations
can be computed by allocating each machine in isolation and
then taking the union of the results.

For the example problem in Figure 1, independent al-
location gives the following shares, shown in Figure 2:
a1 = {m1,

m4
3 }, a2 = {m3

2 , m4
3 }, a3 = {m2,

m3
2 , m4

3 , m6
2 ,

m7
2 }, and a4 = {m5,

m6
2 , m7

2 ,m8,m9,m10}.
Unfortunately, this policy lacks an important property:

THEOREM 1. Independent allocation does not satisfy the
constrained sharing incentive property.

Proof Consider two machines and two users, each user con-
tributing one machine, where the first user can use both ma-
chines, while the second user can use only the second ma-
chine. Suppose both users have infinite demands. Indepen-
dent allocation will then assign the first machine to the first
user, as the second one cannot use it. In addition, it will as-
sign half of the second machine to the first user, and half to
the second user. This violates the constrained sharing incen-
tive, as user two only gets half a machine. ⇤

Thus, pooling resources in a common cluster may hurt
a user’s allocation with independent allocation—an undesir-
able property in a shared cluster. Independent allocation does
turn out to be strategy-proof (see Appendix), but we view the
lack of sharing incentive as a serious reason not to use it.

We thus propose an alternate policy, CMMF, that does
provide the sharing incentive, and is also strategy-proof.

4.2 Constrained Max-Min Fairness (CMMF)
Our policy, Constrained Max-Min Fainess (CMMF), at-
tempts to recursively maximize the allocation of the worst-
off user, then the second-worst-off user, and so on.
2 This allocation policy matches the game theory concept of Shapley Value,
which is important in cost- and gain-sharing theory [23].
3 In practice, allocation does not have to be performed by subdividing
machines. There are often multiple machines satisfying each equivalence
class of constraints (e.g., having both a public IP and a GPU), and these can
be divided k ways among the interested users.



u1                                                       u2

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

u1                                                       u2

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

Figure 3: A simple CMMF example with two users and ten ma-
chines. Solid lines indicate allocations, whereas dashed lines indi-
cate that a machine can be used by a particular user.

u1                    u2                        u3                       u4

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

u1                    u2                        u3                       u4

m1       m2      m3      m4      m5      m6      m7      m8      m9      m10

1/31 1/2 1/3 1
1/31/2

1/2 1/2 1
1/2 1/2 1 1 1

Figure 4: CMMF allocation of the example in Figure 1.

Specifically, we define a CMMF allocation to be an as-
signment in which it is not possible to increase the minimum
allocation within any subset of users by reshuffling the ma-
chines given to these users. This captures the intuitive no-
tion that we cannot increase the share of any user without
decreasing the share of another user with a lower share.4

For example, in the simple two-user setting in Figure 3,
CMMF allocates a1 = {m1, · · · ,m3} to user u1, and a2 =
{m4, · · · ,m10} to user u2. These assignments are repre-
sented by full lines in the figure. Note that while both users
can use machine m3, this machine is given to u1, as u1 can-
not use as many other machines as u2. It is easy to check
that this allocation satisfies CMMF: user u1 cannot use more
than the three machines she already has, while u2 cannot in-
crease her allocation without reducing the allocation of user
u1, who already has a lower allocation.

To better understand CMMF, we consider the more com-
plex example given by Figure 1. If we assume that only
whole machines can be allocated (i.e., machines are in-
divisible) then one constrained max-min fair allocation
is given by Figure 4: a1 = {m1,m4}, a2 = {m3},
a3 = {m2,m6,m7}, and a4 = {m5,m8,m9,m10}. To
see that this is indeed a CMMF allocation, note that it is
not possible to increase the minimum allocation across any
subset of users by reshuffling the allocations between the
users in that subset. For example, consider the subset of
users {u1, u2}: while one could give m4 to u2 instead of
u1, this does not increase the minimum allocation across
the two users, which still remains one (before re-allocation,
u2 has one machine, while after m4’s reallocation, u1 has
one machine). Note that this alternative allocation is also a
CMMF allocation, which shows that the CMMF allocation
is not always unique.

If we allow fractional allocation of the machines, the
CMMF allocation is the same as above except that the first

4 The reason for the more complicated definition is to handle the discrete
case, where we could, for example, increase the allocation of a user with 1
machine by giving it a machine from a user with 2 of them, but this would
not change the overall fairness of the allocation.

two users get assigned half of the second machine each, i.e.,
a1 = {m1,

m4
2 } and a2 = {m3,

m4
2 }.

4.2.1 Weighted CMMF

CMMF can be easily generalized to include a weight wi for
each user ui. For each allocation vector hx1, · · · , xni, define
a corresponding weighted allocation vector h x1

w1
, · · · , xn

wn
i,

where xi is the total number of machines allocated to user i,
and wi is the weight of user ui. Then a weighted CMMF
allocation is one in which, for each subset of users, one
cannot reshuffle the machines assigned to that subset to
increase the minimum value of xi

wi
across those users.

4.2.2 Properties

THEOREM 2. When users have infinite demands (i.e., can
launch an arbitrary number of tasks), the constrained shar-
ing incentive property is equivalent to weighted CMMF.

Proof Suppose that each user i brought ki machines that
she can use to a shared cluster. Then the only allocation
vector that satisfies the constrained sharing incentive is
hk1, k2, . . . , kni, i.e.,, giving user i exactly ki machines.
If we set the weight of each user in weighted CMMF to
ki, then the weighted allocation vector for this allocation
is h1, 1, . . . , 1i. This is a feasible allocation, and it is not
possible to increase one of the components without decreas-
ing another (since all k1 + · · · + kn machines have been
allocated), so this is the weighted CMMF allocation. ⇤

Note that when some users do not have infinite demand
(e.g., a user brought 10 machines to the cluster but currently
only needs 5), there are multiple possible allocations that
satisfy the constrained sharing incentive. However, CMMF
is the “natural” extension of max-min fairness in this case,
as it maximizes the share of the least well-off user.

We also show that CMMF is robust to misreporting (proof
in Appendix):

THEOREM 3. CMMF is strategy-proof.

In fact, a user that misreports a superset of the machines
she can run on can actually get hurt under CMMF. Consider
two users and two machines. The first user can only run on
m1, whereas the second user can run on either m1 or m2. If
the first user misreports that she can run on either machine,
then CMMF might allocate the m2 to this user and the m1

to the second user. But the first user cannot m2. This is not
true under independent allocation, where additivity ensures
that the first user still gets the same share of m1.

Finally, we look at the relationship of CMMF to pricing.

4.3 Market-Based Allocation

An alternate approach to scheduling is to use a market-based
solution. Users are given a budget, prices are set for each
machine, and users use their budget to buy machines.



The key question in this model is how to set the prices.
For a perfectly competitive market,5 the prices and alloca-
tion can be computed without resorting to trading, through
the Nash bargaining solution [27, Thm 3]. This solution first
assigns machines that are only usable by one user to that
user. It then finds the allocation that maximizes the product
of the utilities of the users, where each user’s utility is de-
fined as the number of contended machines she receives.

After removing the non-contended machines, the Nash
bargaining solution turns out to be equivalent to CMMF.
Thus, market-based allocation and CMMF produce the same
assignments as long as each machine can be used by at
least two users. Note that this is unlike in other datacenter
scheduling settings, such as the multi-resource setting con-
sidered in Dominant Resource Fairness [12], where market-
based allocation is not strategy-proof, and schedulers use a
different Kalai-Smorodinsky solution instead [17].

In summary, CMMF is the only policy that provides
the sharing incentive property, and is additionally strategy-
proof. We view both requirements as essential.

5. Computing CMMF Allocations Offline
In this section, we explore how to compute constrained max-
min fair (CMMF) allocations. We initially assume that there
are a fixed set of users with constraints on the machines, and
that all the machines are currently idle. This represents the
offline setting [13]. We later derive an online algorithm that
approximates this solution.

Like other max-min fair solutions [4, 12], the general ap-
proach we take is progressive filling. The algorithm starts
by increasing all users’ allocations equally until the maxi-
mum possible level, M1. Once this maximum value has been
found, we determine which users can continue increase their
allocation beyond M1 without decreasing other users below
M1. We call these users active. Round 2 of the algorithm
freezes the inactive users’ number of machines at M1, while
raising the allocations of the active users equally to a new
maximal level M2. This process repeats until there are no
more active users. Note that the freezing only applies to the
quantity of allocated machines and not the actual machine
allocation, which may change.

Before going through the details, the following exam-
ple demonstrates the algorithm. Consider five machines
and two users with constraints c1 = {m1,m2} and c2 =
{m2,m3,m4,m5}. In the first round, one could end up
with the allocation a1 = {m1,m2} and a2 = {m3,m4}.
Thus, M1 = 2 since both users have been given two ma-
chines. Since it is impossible to increase user 1’s allocation
further, but it is possible to increase the user 2’s alloca-
tion without decreasing user 1’s, the second round only has
user 2 as active and requires that user 1 maintains two ma-
chines. Thus the second round ends with a1 = {m1,m2}

5 With the usual micro-economic assumptions, such as price-taking users.

and a2 = {m3,m4,m5}. Now it is impossible to increase
any user without hurting others, so we are done.

5.1 Algorithm for Divisible Resources

The actual allocation in each round can be found in different
ways depending on whether resources are divisible (i.e.,
users can receive fractional shares of a machine).

With divisible resources, we can solve for Mi in each
round using a linear program. The linear program has non-
negative variables xi,j , describing how much of machine j
user i is allocated, and two types of constraints: machine
constraints and user constraints. The machine constraints
are

P
i xi,j  1 for all j, i.e., they ensure that all users are

together allocated at most one unit of each machine. In the
first round, the user constraints are

P
j xi,j � M1 for all i,

i.e., that each user gets at least M1 number of machines, and
the linear program attempts to maximize M1. In subsequent
rounds, the user constraints are updated for the active users
to

P
j xi,j � M2, and the program aims to maximize M2.

Thus, inactive users are guaranteed to get M1 units, while all
active users are increased simultaneously.

Finally, to determine which users remain active after each
round, we can solve a linear program for each user i that
leaves all users except i at their previous rounds’ allocations,
while maximizing the allocation of i. If it is possible to in-
crease i’s allocation, then i is considered active. This test
can be done independently for each user because if k users
can separately increase their allocation without hurting any
other user, then they can also increase their allocation to-
gether without hurting others. This can be done by taking
a linear combination of the allocations that increased each
user’s share individually: the resulting allocation will still be
feasible, but will simultaneously increase all their shares.

Example The following example, illustrated in Figure 5,
shows how the algorithm works. Consider 9 machines and 3
users with constraints c1 = {m1,m2}, c2 = {m2, . . . ,m5},
and c3 = {m5, . . . ,m9}. In the first round there are 9
machine constraints of the form x1,j + x2,j + x3,j  1
for every j. Each user i has a constraint of the form xi,1 +
· · · + xi,9 � M1. The program attempts to maximize M1.
It finds the allocation in Figure 5a, where each user has
been given two machines (M1 = 2). Now a saturation
test is done for each of the three users, and both u2 and
u3 are determined to be active as they can be allocated
machines m5 and m8 respectively. Thus the algorithm enters
round 2, with the same machine constraints but these two
users’ constraints updated to: x1,1 + x1,2 + x1,3 � M1 and
xi,1 + xi,2 + xi,3 � M2. The new program maximizes M2

and finds the allocation given by Figure 5b. Note that the
set of machines allocated to both active and inactive users
can shift, but their number of machines will obey the user
constraints. For the third round, only u3 is active, which
leads to the final allocation in Figure 5c.



procedure OFFLINE SOLVER(C)
r := 1 . Current round
M0 := 0, S0 := ; . Max level and users stuck
while true do

(Mr, xi,j) := LP(C, r,M1, ..,Mr�1, S1, .., Sr�1)
Sr := SATURATED(r,M1, ..,Mr, S1, .., Sr)
if |S1 [ · · · [ Sr| = N then . All users saturated?

return xi,j . Return matrix of allocations
r := r + 1

procedure SATURATED(r,M1, ..,Mr, S1, .., Sr�1)
U := {1, . . . , n} \ (S1 [ · · · [ Sr�1) . Active users
S := ; . Users saturated in this round
for u 2 U do

Sr := U\{u} . Saturate all but u and solve LP
(Mr+1, xi,j) := LP(C, r + 1,M1, ..,Mr, S1, .., Sr)
if Mr+1 = Mr then . Did u fail to improve?

S := S [ {u}
return S

procedure LP(C, r,M1, ..,Mr�1, S1, .., Sr�1)
maximize Mr subject to:

Xm

j=1
xi,j  Ci,j (1  i  n)

Xm

j=1
xi,j � Ml (1  l  r � 1, i 2 Sl)

Xn

i=1
xi,j  1 (1  j  m)

Mi, xi,j � 0 (1  i  n, 1  j  m)

return (Mr, xi,j) . Value and allocations found

Algorithm 1: Offline CMMF scheduler for divisible resources.

a)

b)

c)

u1                        u2                        u3

m1 m2      m3      m4      m5      m6      m7      m8      m9      

Figure 5: (a) Allocation after round 1 of the offline CMMF algo-
rithm, in which all users are given 2 machines. (b) Allocation after
round 2, where u2 and u3 are active and each gets 3 machines. (c)
Final allocation after round 3, where u3 is active.

Optimization: Coalescing Identical Machines While a
cluster can consist of tens of thousands of machines, the total
number of unique machine configurations is substantially
lower [28]. We refer to each such configuration as a machine
type. Thus, we can reduce the number of variables in our
linear program by having one variable for each machine
type, and thus make the problem faster to solve. Resources
with identical constraints also arise in when each machine is
partitioned into multiple “slots” that can run tasks [1, 34].

Algorithm for Non-Divisible Resources When resources
are not divisible, it is possible to find the allocations at each
round using a network flow algorithm instead of a linear

program, which will efficiently compute integer allocations
for the types of constraints in our matching problem. The
details of this are out of scope for this paper.

6. Choosy: An Online CMMF Scheduler
The previous section outlined an offline algorithm for CMMF.
Offline scheduling is often used in HPC and Grid environ-
ments, in which jobs are typically coarse-grained, using
several machines for long periods of time. In these environ-
ments, jobs tell the scheduler an upper bound on how long
they will run, and the scheduler can make a plan for when to
launch each job [22].

In datacenter environments, however, schedulers need to
make online decisions on which task to allocate resources
to whenever a new job is added or when resources free up.
This is because data-intensive computing frameworks like
MapReduce and Dryad divide jobs into fine-grained tasks,
each of which uses a slice of a machine for a short amount
of time that is not known to the scheduler in advance [14].6
Typical datacenter schedulers, including the Hadoop Fair
Scheduler and Mesos, make thousands of scheduling deci-
sions per second as tasks continuously finish and their re-
sources need to be allocated to new tasks [14, 34].

The offline scheduler is not applicable in this environment
because, if we simply called it each time a resource freed up,
we might have to reallocate a large number of machines to
obtain the configuration it returns. This could include both
migrating tasks and preempting (pausing) them. In general,
current data-intensive computing frameworks do not support
migration or preemption, and such facilities come at a cost.7
In addition, the offline solution is expensive to compute; we
show in §7.4 that it can take more than 1s for large clusters,
which is too slow to make thousands of decisions per second.

Nonetheless, we can approximate the optimal allocation
by looking at what the offline scheduler would do if it were
restricted to not migrate or preempt existing tasks. In partic-
ular, suppose that a cluster is full with tasks from n users,
and one machine, mi, frees up. Then to obtain the “fairest”
(lexicographically largest) allocation vector subject to the
constraint of not touching existing tasks, we need to allocate
mi to the user with the lowest share that is capable of using
the machine. This is precisely our simple online scheduler,
which we call Choosy:

Whenever a resource frees up, assign it to the user
with the lowest current allocation whose constraints
the resource satisfies.

To our surprise, this remarkably simple scheduler approx-
imates the optimal offline scheduler quite well; a user re-
ceives her fair share within a few seconds of joining the clus-

6 The fine-grained model is necessary to achieve good data locality in these
environments, by allowing jobs to take turns accessing data distributed
across machines, and facilitates load balancing and fault recovery [14].
7 Some systems can kill tasks [16, 34], but do it rarely to avoid wasted work.



ter (see Section 7). The rest of the paper investigates why this
is so, and how well Choosy approximates CMMF.

6.1 Convergence Properties
How well does Choosy approximate CMMF, given that it
only schedules one machine at a time? The following theo-
rem (and prove it in the appendix), shows that for any ini-
tial allocation, Choosy will eventually converge close to the
CMMF allocation.

THEOREM 4. Consider a cluster with n users, each of which
have infinite demand and finite task lengths. Then no matter
what allocation it starts with, Choosy converges to an allo-
cation where each user’s share is at most 2n machines less
than its share in some optimal allocation.

Note that the number of users, n, is typically far smaller
than the number of machines in a cluster. Thus, being 2n
machines from the optimal global allocation is for practical
purposes close to the CMMF allocation.

6.2 Ramp-up time
The previous sub-section showed that that Choosy eventu-
ally converges close to the optimal CMMF allocation, here
we analyze how long convergence takes.

A newly joined user must wait for her machines to free
up in her constraint set so that she can ramp-up to her fair
share. In an offline scheduler, the optimal allocation can be
computed as soon as the user joins, and preemption can
be used to ensure that the user ramps up quickly. In the
online setting, resources free up one by one and are greedily
assigned to whoever can use them. Here we analytically
show that in this simple online setting, without preemption,
users quickly reach their fair share.

The ramp-up time depends on how many machines a user
wants and how many machines she can run on. The pickiness
p of a user is defined to be the ratio between her target count
k and constraint count n. The target count of a user is the
number of machines the user is entitled to according to her
fair share. The constraint count of a user is the number of
machines she is constrained to use. For example, if a user can
only run on n = 20 machines and has a fair share of k = 5
machines, her pickiness is p = 0.25. The ramp-up time is
the time the user has to wait until she has been allocated her
target count.

Computing the ramp-up time requires computing the
probability distribution of the remaining task duration, given
a user that joins at time t. For exponentially distributed task
durations the remaining task duration is also exponentially
distributed due to memorylessness. However, analysis from
existing clusters show that task durations have been observed
to be Pareto distributed [10], complicating the analysis due
to the waiting-time paradox [6].

Distribution of Remaining Task Duration. Assume the
cluster is full when a new user u arrives at time t. Assume
further that the task duration in the cluster is given by the

CDF FT (and PDF fT ). The average duration of the tasks
running at time t is longer than the average duration of all
tasks due to the aforementioned waiting-time paradox [6].
Let FY denote the CDF for the entire duration of the tasks at
time t, calculated as follows. The likelihood of user joining
during an interval of length y dy is proportional to the length
of the interval times the frequency that the interval occurs,
i.e., fY (y)dy / yfT (y)dy. Normalizing fY (y) such that it
integrates to 1 gives the task duration distribution observed
at time t:

fY (y) =
yfT (y)

E[T ]

We are interested in the distribution of the task duration
remaining at time t. Conditioned on the duration of the
task length y then t is distributed uniformly over y, i.e.,
fR|Y (r, y) =

1
y for 0 < r  y, where R is a random variable

of the remaining task duration. Thus, the joint distribution is
fR,Y (r, y) =

fT (y)
E[T ] . By convoluting we get the PDF for the

remaining task durations at time t to be:

fR(r) =

Z 1

r

fT (y)

E[T ]
dy =

1� FT (r)

E[T ]

The CDF for the Pareto distribution with shape ↵ and
minimum value m is:

FT (t) =

(
0 if t < m

1�
�
m
t

�↵ if t � m

For ↵ > 1 the expected value of T is:

E[T ] =
↵m

↵� 1

This lets us compute the distribution of the remaining time
R for Pareto distributed task durations with shape ↵ and
minimum value m:

fR(x) =

(
↵�1
↵m for x < m
m↵�1

x↵
↵�1
↵ for x � m

The CDF of R is:

FR(x) =

(
↵�1
↵m x if x < m

1� m↵�1

x↵�1↵ if x � m

The k–th order statistic [7] can then be applied to FR

to compute the ramp-up time. Though the closed formula
of the order statistic is somewhat involved, it is known to
be approximated for large n by the normal distribution with
mean F�1

R

�
k
n

�
.

For the Pareto distribution with shape ↵ and minimum
value m the inverse CDF for R is:

F�1
R (x) =

(
↵m
↵�1x if 0  x < ↵�1

↵

m (↵(1� x))
1

1�↵ if x � ↵�1
↵













          

























Figure 6: Ramp-up time for varying levels of pickiness. The y-
axis shows the ramp-up waiting time as a factor of the mean task
duration for different levels of pickiness on the x-axis.
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Figure 7: Tasks in Facebook and Bing production clusters are
Pareto distributed with ↵ > 1.9 and fit ⇡ 0.8.

Figure 6 shows the analytically computed ramp-up times
for different pickiness degrees (x-axis). The y-axis shows the
factor of the mean task duration that a user has to wait. The
figure also includes simulation results that confirm that the
derivations are correct. We see that for larger values of ↵, the
ramp-up time is much less than 2x the mean task duration.

We analyzed tasks from two large production clusters
at Bing and Facebook and found that the task duration is
roughly (with R2 fit around 0.8) Pareto distributed with ↵
greater than 1.9 (see Figure 7). For such high values, the
ramp-up time (see Figure 6) is less than twice the mean task
duration for pickiness values as high as 0.85. Note that the
ramp-up time is the time until the user gets all of her fair-
share. She can, however, start running tasks long before the
ramp-up time has been reached.

Summary. Ramp-up time with Choosy will be quick for
any ↵ > 1.9 and pickiness below 0.8. The reason is that with
Pareto distributions (and exponential), the vast majority of
tasks are small and finish quickly. Only highly picky users
(> 0.9) will have to wait for the very few long tasks that
need to finish for them to ramp-up to their fair-share.

7. Evaluation
We evaluated Choosy through simulations based on exist-
ing workloads and an implementation using the Mesos re-

source manager. We start with simulations of a large cluster
based on workload traces from Facebook and Google (Sec-
tion 7.1). We then use a smaller set of microsimulations to
compare Choosy to offline schedulers in various scenarios
(Section 7.2). Next, we show results for our implementation
in Mesos (Section 7.3). Finally, we report the performance
of our offline CMMF solver (Section 7.4).

7.1 Macrobenchmark
We simulated a 1000-node cluster, running workloads based
on traces from Facebook and Google, to evaluate Choosy
for large-scale datacenter workloads. Specifically, we used
the distribution of MapReduce job and task sizes at Face-
book [34] to generate a schedule for a series of MapReduce
jobs. We ran 100 different simulations, each covering one
hour of simulated time with 300 submitted jobs.

We assigned constraints to jobs using the model proposed
by Sharma et al. for constraints at Google [28]. In this model
there are 21 different constraints, several machine types, and
a frequency of each machine type meeting each constraint.
Frequencies range from 100% for one constraint to 7-8%.
Jobs require each constraint with varying probabilities, with
each job having 1.8 constraints on average. In our experi-
ments, the average job could use 38% of the machines; 40%
of the jobs could use less than 20% of the machines; and
30% of them could use less than 10% of the machines. This
constitutes a nontrivial workload, with a significant fraction
of highly constrained jobs.

We compared Choosy against an optimal offline sched-
uler that is not permitted to migrate or preempt tasks (Re-
stricted Offline), as well as two offline schedulers that are
granted more freedom than typical systems to give an up-
per bound on how fair a system can be. One of these (Mi-
gration) could migrate tasks at no cost, and another (Pre-
emption) could also preempt them at no cost (the preempted
task is simply paused, and it resumes from where it left off
whenever it is rescheduled). We note that these latter two
schedulers are quite unrealistic: no current cluster program-
ming framework supports pausing or migrating tasks, and
these actions will certainly come at a cost. Some systems do
support killing tasks, but this causes computation to be lost.
However, we compare against these schedulers to show how
close Choosy gets even to these ideal CMMF allocations.

As a side note, the absolute majority of jobs in the work-
load are small. Thus, the majority of jobs can fit all their
tasks within their fair share, implying that their job response
time is similar to other scheduling principles that run whole
jobs, such as shortest job first.

We evaluate Choosy on two metrics: similarity of its
allocation vectors to those of the offline schedulers, and job
response times. Ideally, an online scheduler would provide
the same allocation vectors and the same response time for
each job as an offline scheduler.

To measure similarity of the allocation vectors, we plot a
CDF of Root Mean Square Error (RMSE) between Choosy’s
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Figure 9: CDFs of job durations in Choosy vs. offline schedulers.
The CDFs match closely, with Choosy and Restricted Offline being
farthest right (having slightly longer jobs) and with the scheduler
that can preempt tasks being farthest left.

Job size Slowdown versus:
Restricted offline Migration Preemption

<30s 1.02 (0.25) 1.07 (0.38) 1.13 (0.58)
30–120s 1.00 (0.06) 1.01 (0.06) 1.02 (0.07)
120–600s 1.00 (0.03) 1.01 (0.04) 1.01 (0.04)
>600s 1.00 (0.01) 1.01 (0.04) 1.01 (0.04)

Table 1: Slowdown of jobs in Choosy relative to the offline sched-
ulers, binned by job duration in the offline scheduler (e.g., a job
that takes 29s with an offline scheduler but 31s with Choosy is in
the first bin). Standard deviations in parentheses.

allocation vectors and the ones of each offline scheduler
in Figure 8. That is, if Choosy gives a sorted allocation
vector hc1, c2, . . . , cni at a particular time t, and an offline
scheduler gives ho1, o2, . . . , oni for the same workload, the
RMSE is

q
1
n ((c1 � o1)2 + · · ·+ (cn � on)2). We see that

the average RMSE is 0.09% for the restricted offline sched-
uler (that cannot migrate or preempt tasks), and stays below
0.71% even if we allow preemption and migration.

The discrepancy in job response times between Choosy
and the offline schedulers is even lower. Figure 9 plots CDFs
of the job response times in each system, showing that their
distributions are nearly identical. However, looking at the
overall distribution might hide discrepancies in the response
times of particular jobs (e.g., if some jobs are slowed down
at the expense of others in Choosy). To measure the differ-
ences in response times of individual jobs, we also computed
the slowdown of each job against each offline scheduler, de-
fined as the ratio of the job’s running time on Choosy vs. the
offline scheduler. We report the mean slowdowns for jobs

Scheduler Avg. Execution Time (s)
Choosy 1.5
Restricted offline 228.5
Offline w. migration 266.8
Offline w. preemption 590.0

Table 2: Running time of each simulation with each scheduler,
showing the computational costs of the schedulers. Choosy is two
orders of magnitude faster than the offline schedulers.

of different sizes in Table 1. In general, Choosy’s job re-
sponse times are almost identical to those of the restricted of-
fline scheduler across all size ranges. When comparing with
schedulers that can migrate or pause tasks, the main differ-
ences are in the smallest bin (jobs that take less than 30s).
This occurs because jobs submitted at a time when all the
machines they can use are full will take longer to get sched-
uled without migration than if migration is allowed, and a
fixed increase in response time has a greater effect on the
slowdown metric for a small job. Longer jobs have nearly
identical response times even with migration.

Finally, we compare the computational cost of each al-
gorithm. Table 2 lists average running times of a simulation
with each scheduler. The offline schedulers are more than
two orders of magnitude slower than Choosy, because they
solve a flow problem to make each scheduling decision. In
fact, with a larger cluster than the 1000-node one we used,
the running times of the offline schedulers would exceed the
time period we simulate (about 55 minutes), meaning that
they would be too slow to schedule tasks in a real cluster.

7.2 Microbenchmarks

For the microbenchmarks, we simulate the behavior of
Choosy with respect to different offline schedulers in var-
ious simple scenarios, such as a user joining or leaving. We
use a synthetic workload with random constraints to clearly
highlight Choosy’s behavior.

We explore how the system behaves when users join and
leave while tasks are continuously starting and finishing.
When a user joins, her tasks are immediately ready to be
launched. For the case of leaves, there are two scenarios to
consider. First, a user’s tasks may finish one by one and
once the user has no more tasks to run, she is done and
can leave. The second case is if a user suddenly leaves
and relinquishes all her resources at once. While the former
scenario is more common in Hadoop and Dryad, it is also
the most optimistic for Choosy, as there is only one task to
assign at a time and Choosy will assign it the same way as an
offline scheduler. We therefore do not include those results,
as they look similar to the case of joining users. Instead,
we test the more pessimistic scenario for Choosy, where
many resources free up at once and an offline scheduler can
make a better decision than Choosy’s greedy approach. This
scenario occurs if, for instance, a job is canceled.















         











Figure 10: Choosy vs. restricted offline (no preemption/migration)
for 9 users joining and leaving. Dark lines show offline allocations
and colored filled curves give the Choosy allocation.













         











Figure 11: Choosy vs. an ideal offline scheduler that can perform
preemption and migration for free. (Color legend in Figure 10.)

Our first three simulations show the same workload, in
which nine users join the cluster over time and then leave,
and tasks have exponential durations with mean 1.

Choosy vs Restricted Offline Figure 10 compares Choosy
with the offline optimal allocator when it is restricted to not
move or preempt tasks. Much like in our macrobenchmark,
Choosy closely matches the offline scheduler, as the offline
scheduler has little choice but to allocate any resource to the
user with the lowest share.

Choosy vs Offline with Migration+Preemption Fig-
ure 11 compares Choosy with an offline scheduler for an
ideal system that can pause or move tasks for free. As we
see from the dark lines, the optimal allocation has a step-
like shape as it immediately adjusts when a new user joins.
We see that for joins, there is a slight discrepancy between
allocations, because the offline scheduler can immediately
preempt tasks. For leaves, the two schedules are almost iden-
tical. We also compared a scheduler with just migration, but
its results were similar to this one.

Choosy vs Periodic Offline Scheduling Finally, Fig-
ure 12 compares Choosy with a hybrid scheduler, which
uses the optimal offline schedule to make online decisions.
This scheduler solves for a new offline allocation when a
user joins or leaves, and then attempts to converge to that al-













         











Figure 12: Choosy vs. periodic offline scheduling. (Color legend
in Figure 10.)













          












Figure 13: Choosy vs. all offline schedulers. Nine users with ran-
dom constraints join an empty cluster. (Color legend in Figure 10)

location by reassigning machines as tasks finish so that each
user receives the correct number of machines of each type.

While this periodic offline policy might seem good at
first glance, somewhat surprisingly, we see that Choosy per-
forms better than the periodic offline scheduler. The reason
is that the offline scheduler decides on one particular allo-
cation, whereas there might be many different allocations
that satisfy the joining users constraints. Thus, even though
a machine that frees up can go to a joining user, the hybrid
scheduler might decide to give it back to the user that just
finished using it, because it has another machine in mind for
the joining user. Depending on the order that machines finish
in, the hybrid scheduler can thus be far from optimal.

All Users Joining an Empty Cluster Finally, we test
what happens if all users join an empty cluster. As seen
from Figure 13, the optimal scheduler immediately reaches
the optimal CMMF allocation. This is true for all varia-
tions of the optimal scheduler, i.e., with or without preemp-
tion/migration. In contrast, Choosy assigns machines greed-
ily, and can take some time to converge. We see, however,
that even when task durations are on average 1 time unit,
most users are very close to their fair share within 1 time
unit, so Choosy quickly converges to the right allocation.
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Figure 14: Resource share of each job over time in our experiment
running Choosy on Mesos.

7.3 Mesos Implementation

To evaluate Choosy with real jobs, we implemented it in the
Mesos resource manager [14] as a new pluggable allocation
module. The allocation module then ensures that whenever
resources are free, Mesos offers them to the application with
the lowest share of the cluster that can use them.

We set up a cluster on Amazon EC2 with a total of 160
cores, divided equally among 4 types of machines:

• Standard nodes with 8 cores and 7 GB RAM.
• High-memory nodes with 8 cores and 68 GB RAM.
• Cluster nodes with 8 cores, 23 GB RAM, and a fast 10

Gbps Ethernet network.
• Cluster GPU nodes with 8 cores, 23 GB RAM, 10 Gbps

Ethernet, and GPUs.
We then ran four jobs with different constraints:

• Hadoop: can use any kind of node.
• Spark: an in-memory computation framework that can

only run on the high-memory nodes [35].
• CUDA: a GPU-based Black-Scholes solver.
• MPI: a communication-intensive Linpack benchmark

that needed 10 Gbps Ethernet.
Figure 14 shows the shares of each application over time

with Choosy. We see that initially, only Hadoop is active, and
has a full share of the cluster. After about 30 seconds, a Spark
job is submitted and ramps up to its CMMF share ( 14 of the
machines) within 5 seconds. At time 65, the CUDA job is
submitted and also ramps up within 5s as well. At time 100,
the MPI job is submitted and ramps up within 4s. Both MPI
and CUDA eventually finish, giving their resources back to
Hadoop. Finally, at time 305, we submit a second MPI job
that is now allowed to take 3

8 of the machines instead of 1
4

because CUDA is no longer active; thus, at this point, the
resource allocations are 1

4 for Spark, 3
8 for Hadoop, and 3

8
for MPI, which is again the CMMF allocation.

In summary, the experiment shows that Choosy converges
to CMMF allocations quickly in practice in environments
running fine-grained tasks.
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Figure 15: Performance of the offline CMMF solver versus the
numbers of users (U ), distinct machine types (T ), and total ma-
chines in the cluster. Standard deviations were less than 10%.

7.4 Performance of Offline Solver
We implemented our flow-based offline CMMF solver (Sec-
tion 5.1) in C++ using the push-relabel network flow pack-
age in the Boost Graph Library [5]. We made several opti-
mizations to the algorithm to identify frozen users faster and
search for the next level to increase the flows to efficiently.

We evaluated its performance using scheduling problems
with various numbers of users, machines, and distinct ma-
chine types based on the distribution of constraints reported
at Google [28]. We plot the performance of the solver in Fig-
ure 15, averaging results for ten problem instances of each
type. We see that the algorithm runs in less than 5 seconds
even with 5000 users, 100,000 machines and 100 distinct
machine types. The running time is roughly linear with the
number of users and machine types, but grows slower with
the number of actual machines (only growing by a factor of
4–18⇥ when we increase the number of machines by 100⇥).
While these running times are too high for scheduling fine-
grained tasks, they indicate that offline CMMF is viable for
environments with coarser-grained scheduling.

8. Related Work
Datacenter Schedulers Quincy [16] and the Hadoop Fair
Scheduler [34] are fair schedulers for datacenters that take
into account data locality. However, these schedulers treat
locality as a preference rather than a hard constraint, and can
assign tasks non-locally if a suitable machine is not avail-
able. In contrast, our work tackles the problems of defin-
ing a fair allocation in the presence of hard constraints, and
of efficiently computing it online. Hard constraints are more
difficult to handle than soft because they require careful ma-
chines selection. For instance, Choosy may need to itera-
tively swap machines among multiple users to improve the
allocation (see, for example, Figure 5 in §5).

Of these schedulers, Quincy is perhaps closest to our
work, as it defines a cost model using an optimization prob-
lem. However, Quincy does not handle hard constraints—it
only seeks to equalize the number of machines each user
gets, and to make as many tasks local as possible. For in-
stance, in a cluster of 20 machines, where user 1 and user
2 both prefer the same subset of 10 of the nodes, Quincy is
not guaranteed to split these ten equally; it may give 10 pre-



ferred nodes to one user and 10 non-preferred to the other.
In addition, Quincy is an offline scheduler that takes several
seconds to make a decision for 2500 nodes [16], while we
provide a fast online scheduler for fine-grained tasks.8

Another recent scheduler that takes into account con-
straints is alsched [30]. alsched asks users for utility func-
tions capturing constraints, and maximizes the sum of these
utilities using an offline solver. Unfortunately, maximizing
the total utility may provide neither sharing incentives nor
strategy-proofness. First, the allocation that maximizes to-
tal utility might well be one that gives some users zero re-
sources, which goes against the sharing incentive property.
Second, users that provide their own utility functions may
overstate how important some resources are to them to get a
higher share (e.g., claim that their utility is 0 unless they get
at least 10 nodes). CMMF provably avoids these problems.

Max-Min Fairness Max-min fairness has been widely
studied in networks, operating systems, and queuing sys-
tems [3, 4, 26, 31–33]. However, previous work assumes
that resources are identical (e.g., they are units of bandwidth
on a link or cycles on a CPU), and does not take into account
placement constraints. Our work proposes a generalization
of max-min fairness that retains the attractive properties of
single-resource fairness.

Dominant Resource Fairness (DRF) [12] extends max-
min fairness to multiple resource types, such as CPU and
memory, where tasks might have different requirements on
different resource dimensions. However, it still assumes that
the resources of a given type (e.g., CPUs) are identical.
While DRF identifies several important allocation proper-
ties, such as sharing incentive, and studies allocation from a
microeconomic perspective, its setting and solution turn out
to be quite different than in our constrained sharing problem:
DRF selects an allocation based on the Kalai-Smorodinsky
solution, and in its multi-resource setting, market-based
(Nash bargaining) allocation is not strategy-proof, while
CMMF selects an allocation similar to Nash bargaining that
does turn out to be strategy-proof (§4.3).

Scheduling Theory In the theory literature, Kleinberg et
al. [19, 20] solved and approximated the single-source un-
splittable flow problem, which is to route flows in a network
in a weighted fair manner assuming that each flow must fol-
low a single path. They noted that this problem is closely
related to a job scheduling problem, in which a set of indi-
visible jobs are given that have constraints on the machines
they can use. This work differs from ours in that we are con-
cerned with parallel jobs that are composed of multiple tasks
and can thus be assigned multiple machines, as opposed to
the unsplittable jobs in Kleinberg et al.’s work.

8 Quincy does not provide max-min fairness. Max-min fair algorithms typi-
cally require solving multiple optimization problems as each set of users is
saturated, as in our algorithm in §5, but Quincy only solves one optimiza-
tion problem, which is to maximize locality while meeting certain limits on
user shares.

The above work is part of a long effort by the computer
science theory community to model, analyze, and construct
algorithms for job scheduling [18]. Many different varia-
tions of the problem has been studied. The identical, uni-
formly related, and unrelated machine models capture the
efficiency of each job on each machine, but do not consider
hard placement constraints. The open, job shop, and flow
machine models capture the fact that a job might consist
of smaller operations (e.g., steps in assembling a product).
This is closer to the parallel job model we are concerned
with [8, 14, 15], but most of this work assumes that only one
operation from a job can execute at a time (i.e., jobs are not
parallel), and that it runs on one machine [18, 21].

HPC and Grids Job scheduling has also been studied ex-
tensively in the HPC and grid computing fields. However,
in these environments, jobs are typically coarse-grained, us-
ing a fixed set of machines for a long period of time, and an
upper bound on each job’s duration is given [9]. This knowl-
edge of job durations allows schedulers to plan ahead us-
ing offline algorithms and use backfilling [22] to let smaller
jobs ahead of the queue if they do not affect longer ones.
In contrast, data-intensive workloads in current datacenters
consist of thousands of fine-grained tasks with unknown du-
rations [14], necessitating online scheduling. Our contribu-
tion is an online algorithm for constraint-based scheduling
in this setting.

Choosy vs. Other Scheduling Problems Many schedul-
ing related problems have been considered in the literature.
It is, therefore, natural to ask how Choosy can be modified or
combined with other schedulers to solve other problems than
those of hard constraints. First, we note that soft constraints,
i.e., preferences, can be satisfied using orthogonal mecha-
nisms together with Choosy, such as Delay Scheduling [34].
Second, Choosy can be modified to handle multi-resources,
by modifying the multi-resource scheduler, DRF [12], to
schedule the user with the smallest dominant share that can
run on a particular machine. Finally, Choosy should work
well with existing hierarchical schedulers, as an important
property of a hierarchical scheduler is to support composi-
tion of existing schedulers in its hierarchy.

9. Conclusion
This paper shows how to extend max-min fairness to han-
dle hard task placement constraints, which are becoming a
commonplace in datacenters. We defined Constrained Max-
Min Fairness (CMMF), a generalization of max-min fairness
that has several desirable properties: First, CMMF is the only
policy providing a sharing incentive property, which is im-
portant to motivate users to pool resources. Second, CMMF
is strategy-proof, incentivizing users to truthfully report their
needs. The main challenge with CMMF is that it is not
efficiently implementable in today’s online schedulers. We
therefore presented and implemented a simple greedy online
scheduler, called Choosy, that closely approximates CMMF.



Our evaluation shows that for constraints generated from a
recent Google workload, Choosy’s performance differs by
less than 2% from an optimal scheduler.

We have focused on evaluating Choosy’s convergence in
a practical setting with current workloads. In the future, the-
oretical aspects on Choosy should be investigated, such as
better bounds on its convergence time. Furthermore, defining
a generalization of max-min fairness that takes both place-
ment constraints and multiple resources into account is both
challenging and interesting.
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10. Appendix
Here we provide the proofs of earlier stated theorems.

THEOREM 3. CMMF is strategy-proof.

Proof Let Ci be the set of machines that user i can actually
use. Let assume user i lies about her constraints by claiming
that she can use a set of machines C 0

i, instead. Let Ai, and
A0

i be the allocations of user i under constraints Ci, and C 0
i,

respectively. Let Bi = A0
i \ Ci, and B0

i = A0
i \ Bi. In other

words, Bi represents the number of allocated machines that
user i can use, and B0

i the number of allocated machines she
cannot use, when user i lies about her constraints. Assume
B0

i = ;, and assume user i benefits from lying, i.e., |Bi| >
|Ai|. If this were the case, allocation A0

i = Bi would be also
feasible under the original constraint set Ci, which means
that user i would get no benefit by lying. If B0

i 6= ;, user
i may hurt other users, but won’t get any benefit since she
cannot use these machines. This proves our claim. ⇤
THEOREM 4. Consider a cluster with n users, each of which
have infinite demand and finite task lengths. Then no matter
what allocation it starts with, Choosy converges to an allo-
cation where each user’s share is at most 2n machines less
than its share in some optimal allocation.

Proof First, note that each time a task finishes and its ma-
chine is reassigned, Choosy can only improve the leximin
vector. In particular, the machine freed can only go to the
user that owned it before, in which case the leximin vector
stays the same, or to a user with a lower share, in which case
the leximin vector improves.

Then, the only question is whether Choosy can keep im-
proving the vector, or whether it gets “stuck” at an allocation
far from the optimal. Fortunately, it is possible to show that
for n users, if Choosy reaches an allocation A where the
number of machines owned by some user is less than the
user’s share some optimal allocation O by at least 2n, then
there is a task t that can finish that will improve the leximin
vector when its machine is reassigned. Because we assume
finite task lengths, t will eventually finish, allowing us to
move to a better allocation.

Suppose that there is an allocation A in which some user,
u1, has at least 2n fewer machines than in some optimal
allocation, O. For each user u, let SA(u) denote its number
of machines in A and SO(u) denote its number of machines
in O. Then there are three cases:

Case 1: There is an unallocated machine m that can be
used by at least one user. Then, Choosy will improve the
allocation by simply giving m to a user who can use it.

Case 2: There is a machine m that at least two users u and
u0 can use, and u currently owns m but SA(u0) < SA(u)�1.
We call such a machine reassignable. Then, when the task
on m finishes, Choosy will reassign m it to u0 or to some
other user with fewer machines than u0. This will result in
the recipient’s allocation increasing from a value less than
SA(u)�1 to at most SA(u)�1, and in u’s allocation falling
to SA(u) � 1, so the lexicographic allocation vector will
strictly improve.

Case 3: All the machines usable by at least one user are
allocated, but there are no reassignable machines. We will
show that this is impossible by contradiction. Suppose that
it were true, and consider the user, u1, who has at least
2n fewer machines in A than in O (that is, SA(u1) 
SO(u1) � 2n). Then there is at least one machine, m, that
is owned by u1 in O but by some other user, u2, in A.
Because m is not reassignable in A, we have SA(u2) 
SA(u1)+1. Furthermore, because O is an optimal allocation,
we also know that m is not reassignable in O, so SO(u1) 
SO(u2) + 1. Putting these inequalities together, we get:

SA(u2)  SA(u1) + 1  SO(u1)� 2n+ 1

 SO(u2)� 2n+ 2  SO(u2)� 2(n� 1)

Now consider the user set of users U = {u1, u2}. We
know that the users in U have more machines in O than in
A, so there must be at least one machine m owned by a user
u3 62 U inside A and by a user ui 2 U in O. We also know
that SA(ui)  SO(ui)�2(n�1), because ui is either u1 or
u2. Thus, by a set of inequalities similar to the ones above,
we can obtain that SA(u3)  SO(u3)�2(n�2). Proceeding
this way, we can define a series of users u1, u2, u3, u4, . . .
and a series of sets Ui = u1, . . . , ui such that the users in set
Ui all have at least 2(n � i + 1) fewer machines in A than
they do in O. But then, because Un contains all the users in
the cluster, this means that every user has at least 2 fewer
machines in A than in O. This contradicts our assumption
that all the machines usable by at least one user are allocated,
and concludes the proof by contradiction. ⇤
THEOREM 5. Independent allocation is strategy-proof.

Proof This follows from the fact that independent allocation
is given by the Shapley Value [23], which known to be addi-
tive. That is, the allocation of each machine is independent
of how the other machines are assigned. ⇤


