
GraphX: A Resilient Distributed Graph System on Spark

Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, Ion Stoica

AMPLab, EECS, UC Berkeley
{rxin, jegonzal, franklin, istoica}@cs.berkeley.edu

ABSTRACT

From social networks to targeted advertising, big graphs capture
the structure in data and are central to recent advances in machine
learning and data mining. Unfortunately, directly applying existing
data-parallel tools to graph computation tasks can be cumbersome
and inefficient. The need for intuitive, scalable tools for graph
computation has lead to the development of new graph-parallel

systems (e.g., Pregel, PowerGraph) which are designed to efficiently
execute graph algorithms. Unfortunately, these new graph-parallel
systems do not address the challenges of graph construction and
transformation which are often just as problematic as the subsequent
computation. Furthermore, existing graph-parallel systems provide
limited fault-tolerance and support for interactive data mining.

We introduce GraphX, which combines the advantages of both
data-parallel and graph-parallel systems by efficiently expressing
graph computation within the Spark data-parallel framework. We
leverage new ideas in distributed graph representation to efficiently
distribute graphs as tabular data-structures. Similarly, we leverage
advances in data-flow systems to exploit in-memory computation
and fault-tolerance. We provide powerful new operations to simplify
graph construction and transformation. Using these primitives we
implement the PowerGraph and Pregel abstractions in less than 20
lines of code. Finally, by exploiting the Scala foundation of Spark,
we enable users to interactively load, transform, and compute on
massive graphs.

1. INTRODUCTION
From social networks to advertising and the web, big graphs can

be found in a wide range of important applications. By modeling the
relationships between users, products, and ideas, graphs allow us to
identify communities, target advertising, and decipher the meaning
of documents. In response to the growing size and importance of
graph data, a range of new large-scale distributed graph-parallel

frameworks (e.g., Pregel [9], PowerGraph [6], and others [5, 3, 11])
have emerged. Each framework introduces a new programming
abstraction that allows users to compactly describe graph algorithms
(e.g., PageRank, Belief Propagation, ...) and a corresponding run-
time engine that efficiently executes these algorithms on multicore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-

ment Experience and Systems (GRADES 2013), June 23, 2013, New York,
New York, USA.
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

and distributed systems. By abstracting away the challenges of
large-scale distributed system design, these frameworks simplify the
design, implementation, and application of new sophisticated graph
algorithms to large-scale real-world graph problems.

While existing graph-parallel frameworks share many common
properties, each presents a slightly different view of graph compu-
tation tailored to either the originating domain or a specific family
of graph algorithms and applications. Unfortunately, because each
framework relies on a separate runtime, it is difficult to compose
these abstractions. Furthermore, while these frameworks address
the challenges of graph computation, they do not address the chal-
lenges of data ETL (preprocessing and construction) or the process
of interpreting and applying the results of computation. Finally, few
frameworks have built-in support for interactive graph computation.

Alternatively data-parallel systems like MapReduce and
Spark [12] are designed for scalable data processing and are well
suited to the task of graph construction (ETL). By exploiting
data-parallelism, these systems are highly scalable and support
a range of fault-tolerance strategies. More recent systems like
Spark even enable interactive data processing. However, naively
expressing graph computation and graph algorithms in these
data-parallel abstractions can be challenging and typically leads to
complex joins and excessive data movement that does not exploit
the graph structure.

To address these challenges we introduce GraphX, a graph com-
putation system which runs in the Spark data-parallel framework.
GraphX extends Spark’s Resilient Distributed Dataset (RDD) ab-
straction to introduce the Resilient Distributed Graph (RDG), which
associates records with vertices and edges in a graph and provides
a collection of expressive computational primitives. Using these
primitives, we implement PowerGraph [6] and Pregel [9], two of
the most widely used graph-processing frameworks. In addition, we
provide new operations to view, filter, and transform graphs, that
substantially simplify the process of graph ETL and analysis. The
GraphX RDG leverages advances in distributed graph representation
and exploits the graph structure to minimize communication and
storage overhead. Our primary contributions are:

1. a new graph abstraction called the Resilient Distributed Graph
(RDG) that supports a wide range of graph operations on top
of a fault-tolerant, interactive platform.

2. a tabular representation of the efficient vertex-cut partitioning
described by [6] and data-parallel partitioning heuristics.

3. implementations of the PowerGraph and Pregel graph-parallel
frameworks using RDGs in less than 20 lines of code each.

4. preliminary performance comparisons between a popular data-
parallel and graph-parallel frameworks running PageRank on
a large real-world graph.

visits
(HDFS file)

(URL, 1)
pairs counts

map reduceByKey

Figure 1: Lineage graph for the RDDs in our Spark example. The
oblong ovals represent RDDs, while circles show partitions within a
dataset. Lineage is tracked at the granularity of partitions.

2. SPARK AND RDDS
Spark is a MapReduce-like data-parallel computation engine

open-sourced by UC Berkeley. Spark has several features that dif-
ferentiate it from traditional MapReduce engines such as Hadoop:

1. It supports general computation DAGs beyond the two-stage
MapReduce topology.

2. The execution engine can tolerate the loss of any set of worker
nodes and can automatically re-execute lost tasks. This is
explained further below.

3. It provides an in-memory storage abstraction called Resilient
Distributed Datasets (RDDs) that lets applications keep data
in memory, and automatically reconstructs lost partitions upon
failures.

4. It integrates with the Scala command-line shell to enable
interactive operations on RDDs.

5. RDDs allow the optional specification of a data partitioner,
and the execution engine can exploit this to co-partition RDDs
and co-schedule tasks to avoid data movement.

RDDs are immutable, partitioned collections that can be created
through various data-parallel operators (e.g., map, group-by, hash-

join). Each RDD is either a collection residing in an external storage
(e.g., on disks), or a derived dataset created by applying operators to
other RDDs. For example, given an RDD of (visitID, URL) pairs
for visits to a website, we might compute an RDD of (URL, count)
pairs by applying a map operator to turn each event into an (URL, 1)
pair, and then a reduce to add the counts by URL. RDD operations
are invoked through a functional interface in Scala, Java, or Python.
For example, the Scala code for the query above is:

val visits = spark.hadoopFile("hdfs://...")

val counts = visits.map(v => (v.url, 1))

.reduceByKey((a, b) => a + b)

Spark RDDs can contain arbitrary objects (since Spark runs on
the JVM, these elements are Java objects), and are automatically
partitioned across the cluster, but they are immutable once created,
and they can only be created through Spark’s deterministic parallel
operators. These two restrictions, however, enable efficient fault
recovery. In particular, instead of replicating each RDD across nodes
for fault-tolerance, Spark maintains the lineage of the RDD (the
graph of operators used to build it), and recovers lost partitions by
recomputing them from base data. For example, Figure 1 shows the
lineage graph for the RDDs computed above. If Spark loses one of
the partitions in the (URL, 1) RDD, it can recompute it by rerunning
the map on just the corresponding partition of the input.

In the next section, we discuss how we leverage various properties
of RDDs and Spark to implement the Resilient Distributed Graph
(RDG) abstraction.

class Graph[V, E] {

def vertices(): RDD[(Id, V)]

def edges(): RDD[(Id, Id, E)]

def filterVertices(f: (Id, V)=>Bool): Graph[V, E]

def filterEdges(f: Edge[V, E]=>Bool): Graph[V, E]

def mapVertices(f: (Id,V)=>(Id,V2)): Graph[V2, E]

def mapEdges(

f: (Id, Id, E)=>(Id, Id, E2)): Graph[V, E2]

def updateVertices(tbl: RDD[(Id, A)],

func: (Id, V, A)=>(Id, V2)): Graph[V2, E]

def aggregateNeighbors(

mapFunc: (Id, Edge[V, E]) => A,

reduceFunc: (A, A) => A): RDD[(Id, A)]

def reverseEdgeDirection(): Graph[V, E] =

mapEdges(e => (e.dst, e.src, e.data))

def degree(): RDD[(Id, Int)] =

aggregateNeighbors((id, e) => 1, (a, b)=> a + b)

}

Listing 1: Resilient Distribute Graph (RDG) Interface (in

Scala): The RDG encodes both the directed adjacency structure and
contains the attributes associated with each vertex (V) and edge (E).
Each vertex is identified by a unique vertex Id. The Edge[V,E]
type represents an edge with its attributes as well as the attributes of
both vertices and Spark RDDs over records of type T are denoted
by RDD[T]. The method edges() returns the set of all edges as
an RDD of three-element-tuples consisting of the source Id, target
Id, and the edge attribute E. Alternatively, mapVertices returns
a new graph by applying the function f which maps vertex id and
attribute pair (Id, V) to a new vertex id and attribute pair.

3. RESILIENT DISTRIBUTED GRAPHS
Analogous to data-parallel computation which adopts a record

centric view of data, graph-parallel computation typically adopts a
vertex (and occasionally edge) centric view of computation. How-
ever, in contrast to data-parallel systems which define program logic
as functional transformations on collections, existing graph-parallel
systems restrict program logic to the level of vertex processes. Re-
taining the data-parallel metaphor, program logic in the GraphX
system defines transformations on graphs with each operation yield-
ing a new graph. As a consequence, the core data-structure in the
GraphX systems is an immutable graph.

The GraphX graph consists of both the directed adjacency struc-

ture as well as user defined attributes associated with each vertex
and edge. Programs in the GraphX system describe transformations
from one graph to the next either through operators which trans-
form vertices, edges, or both in the context of their neighborhoods
(adjacent vertices and edges).

In Listing 1 we present the RDG graph interface which exposes
methods to view, filter, and transform the graph. The methods
vertices() and edges() provide tabular views of the
vertices and edges. The methods filterVertices(pred)

and filterEdges(pred) construct the sub-graphs satisfying
the predicate pred. The methods mapVertices(f) and
mapEdges(f) apply a user-defined function f to vertices
and edges and return new graphs. In addition, the method
updateVertices(tbl,f) transforms the vertices by first

(a) Edge-Cut (b) Vertex-Cut
Figure 2: Edge-Cut vs Vertex-Cut: An edge-cut (a) splits the
graph along edges while a vertex-cut (b) splits the graph along
vertices. In this illustration we partition the graph across three
machines (corresponding to color).

joining the user supplied table and then mapping the result. Finally
the method aggregateNeighbors(m,r) joins the vertex and
edge data, maps the joined edges using the m function, and then
reduces by the destination vertex id using the r function.

In the next section we demonstrate that the RDG interface is suf-
ficiently expressive to easily implement the Pregel and PowerGraph
programming abstractions.

3.1 Partitioning
Unlike data-parallel computation in which data is processed in

isolation, graph-parallel computation requires each vertex or edge
to be processed in the context of its neighborhood. Moreover each
transformation depends on the result of distributed joins between
vertices and edges. As a consequence, indexing and data layout
are important steps in achieving an efficient distributed execution.
Because the graph structure describes data movement, distributed
graph computation systems rely on graph partitioning and efficient
graph storage to minimize communication and storage overhead,
and ensure balanced computation.

3.1.1 From Edge-Cuts to Vertex-Cuts

Most graph-parallel systems partition the graph by constructing
an edge-cut. An edge-cut uniquely assigns vertices to machines
while allowing edges to span across machines (see Figure 2a). The
communication and storage overhead of an edge-cut is directly
proportional to the number of edges that are cut. Therefore we can
reduce communication overhead and ensure balanced computation
by minimizing both the number of cut edges as well as the number
of vertices assigned to the most loaded machine.

However, for most large-scale real-world graphs, constructing an
optimal edge-cut can be prohibitively expensive. As a consequence,
many graph computation systems have adopted the strategy of ran-
domly distributing vertices across the cluster, i.e., constructing a
random edge-cut. However as [6] demonstrated that while random
edge-cuts achieve nearly optimal work balance they also achieve
nearly worst-case communication overhead, cutting most of the
edges in the graph.

In contrast to edge-cuts which evenly assign vertices to machines,
vertex-cuts evenly assign edges to machines and allow vertices to
span multiple machines. In Figure 2b we illustrate the vertex-cut
for the same graph. The communication and storage overhead of
a vertex-cut is directly proportional to the sum of the number of
machines spanned by each vertex. Therefore, we can reduce com-
munication overhead and ensure balanced computation by evenly
assigning edges to machines in way that minimizes the number of
machines spanned by each vertex. In contrast to edge-cuts which
have been shown [8, 1, 7] to perform poorly on real-world graphs,
there are theoretical [2] and experimental [6] results indicating that
real-world graphs have good vertex-cuts.

While constructing optimal vertex-cuts is also prohibitively expen-

Vertex
Map

Vertex Data
Table

Edge Table

A

B

C

D
E

A B

A C

A D

E D

A F

partition 1

partition 2

edge

partition 1

edge

partition 2

F

edge

partition 3

partition 3

A E

F E

A B

partition 1

C

D E

partition 2

F

1B

3

A 2

C

A

1A

1

F

D

3

3

2

1

E

E

Figure 3: GraphX Tabular Representation of a Vertex-Cut:

Here we partition the graph on the left across three virtual par-
titions using a vertex-cut. The edge table contains the edge data as
well as the vertex ids for each edge and is partitioned by the virtual
pid field associated with each record. The vertex table contains the
vertex id and vertex data and is partitioned (keyed) by the vertex
id. Finally, the vertex map contains tuples of (vid,pid) and en-
codes the mapping from vertex id to the edge table partitions which
contain adjacent edges. The vertex map table is also partitioned and
keyed by the vertex id.

sive on large-scale real-world graphs, [6] proposed several simple
data-parallel heuristics for edge-partitioning. The simplest strategy
is to use a hash function to randomly assign edges to machines.
Through a simple analysis it can be shown that for the power-law
degree distributions found in real-world graphs, random vertex-cuts
can be orders of magnitude more efficient than random edge-cuts.
By cleverly constructing the hash function h(i → j) for each edge

we can guarantee that each vertex spans at most 2
√
M of the the

machines in a cluster of size M . This can be achieved by extending
2D partitioning [4] with hashing:

h(i → j) =
√
M × (h(i)mod

√
M) + (h(j)mod

√
M) (1)

where the number of machines is a perfect square
√
M ∈ N and

h(i) is a uniform hash function on the vertex ids.

3.1.2 Vertex-Cuts as Tables in GraphX

The GraphX resilient distributed graph (RDG) data-structure
achieves a vertex-cut representation of a graph using three unordered
horizontally partitioned tables implemented as Spark RDDs. Read-
ers are encouraged to refer to Figure 3 as an example to illustrate
the internal representation.

1. EdgeTable(pid, src, dst, data): stores the ad-
jacency structure and edge data. Each edge is represented as a
tuple consisting of the source vertex id, destination vertex id,
and user-defined data as well as a virtual partition identifier
(pid). Note that the edge table contains only the vertex ids
and not the vertex data. The edge table is partitioned by the
pid.

2. VertexDataTable(id, data): stores the vertex data,
in the form of a vertex (id, data) pairs. The vertex data table
is indexed and partitioned by the vertex id.

3. VertexMap(id, pid): provides a mapping from the id
of a vertex to the ids of the virtual partitions that contain
adjacent edges. For example in Figure 3, because vertex A is
associated with edges in all partitions, there are three tuples
related to A in the vertex map table. The vertex map table is
partitioned by the vertex id.

During graph computations, we often need to assemble an edge
with the data associated on both vertices. GraphX uses a 3-way

def Pregel(graph: Graph[V,E],

initialMsg: M

vprogf: ((Id,V), M) => V,

sendMsgf: Edge[V,E] => Option[M],

combinef: (M,M) => M,

numIter: Long): Graph[V,E] = {

// Initialize the messages to all vertices

var msgs: RDD[(Vid, A)] =

graph.vertices.map(v => (v.id, initialMsg))

// Loop while their are messages

var i = 0

while (msgs.count > 0 && i < maxIter) {

// Receive the message sums on each vertex

graph = graph.updateVertices(msgs, vprogf)

// Compute and combine new messages

msgs = graph.aggregateNeighbors(sendMsgf,

combinef)

i = i + 1

}

}

Listing 2: Pregel Runtime in GraphX: The Pregel runtime applies
user defined functions to transform the vertex attributes of a GraphX
RDG. The Pregel method takes as arguments the RDG parameter-
ized by V and edge attributes E, an initial message of type M, the
vprogf function which takes a vertex and a message and returns
a new attribute value for that vertex, a sendMsgf function which
computes the new message along each edge, and a combinef

function which is used to combine messages to the same vertex.

relational join to bring together the source vertex data, edge data,
and target vertex data:

VertexDataTable v

JOIN

VertexMap vm

ON (v.id=vm.id)

RIGHT OUTER JOIN

EdgeTable e

ON (e.pid=vm.pid && (e.src=v.id OR e.dst=v.id))

WITH PARTITIONER edgeTable.partitioner ON pid

The joins are fairly straightforward with the exception of the
partitioner. As discussed in the previous subsection, the edge table
is often much larger than the vertex data table. The partitioner is
a hint to Spark to ensure the join site would be local to the edge
table. This allows GraphX to shuffle only the vertex data and avoid
moving any of the edge data.

Note that conceptually the vertex data table and the vertex map
table can be merged as a single table. However, we separate them
into two tables due to their functional differences: the vertex data
table contains states associated with the vertices that are changing
in the course of graph computations, while the vertex map table
remains static as long as the graph structure does not change. To
minimize the communication, GraphX co-partitions the two tables
so the first join can be done locally.

The resulting table from the 3-way join presents an edge-
centric view of the graph, with each tuple containing the edge
data, source vertex data, and the target vertex data. This table
can be used to implement the basic transformations such as
aggregateNeighbors:

SELECT dstVid, reduceFunc(*) FROM (

SELECT dstVid, mapFunc(*) FROM edgeWithVertices)

GROUP BY dstVid

// Load and initialize the graph

val graph = Graph.load(’hdfs://webgraph.tsv’)

var prGraph = graph.updateV(graph.degrees(OutEdges),

(v,deg) => (v.id,(deg, 1.0)) // Initial rank=1

// Execute PageRank

prGraph = Pregel(prGraph,

1.0, // Initial message is 1.0

vprogf = // Update Rank

(v, msg) => (v.deg, 0.15 + 0.85 * msg),

sendMsgf = // Compute Msg

e => e.src.rank/e.src.deg,

combinef = // Combine msg

(m1, m2) => m1 + m2,

10) // Run 10 iterations

// Display the maximum PageRank

print(prGraph.vertices.map(v=>v.rank).max)

Listing 3: PageRank in Pregel: The graph is loaded from HDFS,
and the default vertex attributes are replaced with a tuple consisting
of the out-degree and the initial PageRank. We then apply then
define and apply the PageRank algorithm using only three tiny
functions. Finally, we extract and print the maximum PageRank
value from the resulting Graph.

4. GRAPH-PARALLEL COMPUTATION
While the basic GraphX RDG interface naturally expresses graph

transformations, filtering operations, and queries, it does not directly
provide an API for recursive graph-parallel algorithms (e.g., PageR-
ank). Instead, the GraphX interface was designed to enable the
construction of new graph-parallel APIs. By composing operations
in the RDG interface we are able to compactly express several of the
most widely used graph-parallel abstractions and in this section we
provide the actual code for PowerGraph [6] and Pregel [9] written
in a few lines using the GraphX interface.

Existing graph-parallel abstractions like PowerGraph [6] and
Pregel [9] adopt a vertex centric programming model in which the
user implements a vertex program Q which is executed in parallel

on each vertex v ∈ V in the sparse graph G = {V,E}. Each
instance Q(v) of the vertex program transforms the vertex attributes
by interacting, through shared state or messages, with neighboring
instances Q(u) where (u, v) ∈ E. Because most graph algorithms
factor according to the graph structure, they can be naturally ex-
pressed in the form of vertex-programs. By restricting the scope
of computation, automatically coordinating communication, and
addressing the challenges of distributed execution, graph-parallel
abstractions substantially simplify the implementation of scalable
distributed graph algorithms. In this section we will use the PageR-
ank [10] as an example of a canonical graph-parallel algorithm.

EXAMPLE 4.1 (PAGERANK). The PageRank algorithm recur-

sively defines the rank of a vertex v:

Pr(v) = 0.15 + 0.85
∑

u links to v

wu,v × Pr(u) (2)

in terms of the weighted wu,v ranks Pr(u) of the vertices u that link

to v. The PageRank algorithm iterates Eq. (2) until the ranks of all

vertices converge.

4.1 Pregel
Pregel [9] is a bulk synchronous message passing graph-parallel

abstraction in which all vertex programs run concurrently in a se-
quence of super-steps. Within a super-step each program instance

def PowerGraph(graph: Graph[V,E],

gatherf: Edge[V,E] => A,

sumf: (A, A) => A,

applyf: ((Id,V), A) => V,

signalf: Edge[V,E]=> Bool,

maxIter: Int): Graph[V,E] = {

// Extend the vertex data to include isActive

var glGraph =

graph.mapVertices((Id,v) => (id, (true,v)))

// Loop while there are active vertices

var i = 0

var nActive = g.numVertices

while (i < maxIter && nActive > 0) {

// Execute the gather phase

val acc = glGraph.filterE(e => e.dst.isActive)

.aggregateNeighbors(gatherf, sumf)

// Execute the apply phase.

glGraph = glGraph.updateVertices(acc, applyf)

// Execute the Scatter Phase

val active = glGraph.filter(e=>e.src.isActive)

.aggregateNeighbors(scatterf, (a,b)=> a||b)

// Update activity status of vertices

glGraph = glGraph.updateVertices(active,

((id, (old,v)), active)=>(id,(active,v)))

// Count the number of active vertices

nActive = glGraph.vertices

.map(v => v.isActive)

.reduce((a,b) => a + b)

i = i + 1

}

// Return the graph (without active flag)

return glGraph.mapVertices(v => (v.id, v.data))

}

Listing 4: PowerGraph Runtime in GraphX: The PowerGraph
program logic is similar to the Pregel program logic however we
augment the vertex data to track active vertices and then restrict
the aggregateNeighbors operations to run on the subset of
edges adjacent to active vertices. During the gather phase we only
consider edges inbound to active vertices and then during the scatter
phase we only consider edges departing from active vertices. The
program loops while their are still active vertices or the max number
of iterations is achieved.

Q(v) receives the sum of all messages sent by neighbors in the pre-
vious super-step, computes a new value, and then sends messages
to its out neighbors in the next super-step. A barrier is imposed
between super-steps ensuring that all messages are received before
entering the next super-step. The message sum is computed through
a user-defined commutative associative binary message combiner.

In Listing 2 we provide the actual1 code for a modified version of
the Pregel runtime implemented in a few lines using GraphX. The
program takes as input a graph, an initial message to broadcast to all
vertices, the vertex program, a function that computes the message
along each edge, the message combiner, and the maximum number
of iterations.

We have adopted a more functional API than was described by
[9] in which the vertex program is a mapping from the old vertex
value and message to a new vertex value. Furthermore, unlike the
original Pregel API in which the vertex program is passed the set of
neighbors and returns a list of messages, our implementation learns

1We have omitted some Scala syntax to keep lines short.

// Load and initialize the graph

val graph = Graph.load(’hdfs://webgraph.tsv’)

// Initialize the graph for dynamic PageRank by

// storing the degree and the old and new PageRank

var prGraph = graph.updateV(graph.degrees(OutEdges),

(v,deg) => (v.id, (deg, 1.0, 1.0))

// Execute PageRank

prGraph = PowerGraph(prGraph,

gatherf = e => e.src.rank / e.src.deg,

sumf = (a,b) => a + b,

applyf = // Update rank and save previous rank

(v, a) => (v.deg, 0.15 + 0.85*a, v.rank)

scatterf = // Activate neighbors on big change

e => abs(e.src.rank - e.srd.oldRank) > eps,

10) // Run 10 iterations

// Display the maximum PageRank

print(prGraph.vertices.map(v=>v.rank).max)

Listing 5: Dynamic PageRank in PowerGraph: The graph is
loaded from HDFS, and the default vertex attributes are replaced
with a tuple consisting of the out-degree and the initial PageRank
and the old PageRank. In dynamic PageRank we keep track of how
much the rank changes on each update and only trigger neighbors
to recompute if the rank changes by more than some small constant
epsilon.

from the observations made by [6] and lifts the message construc-
tion out of the vertex-program. Messages are computed using a
message generating function which takes an edge containing the
source and target attributes and returns a message or void indicating
the absence of a message. By lifting the message construction out
of the vertex-program, we are able to achieve a more efficient execu-
tion than the original Pregel framework and leverage the vertex-cut
representation. Moreover, message construction for a single vertex
can be distributed over the cluster, moved to the receiving machine,
and executed in an efficient order.

When their are no remaining messages (i.e., all message calcula-
tions return void) or the maximum number of iterations is achieved
the Pregel execution terminates returning the new graph. In Listing 3
we use the GraphX Pregel API (defined in Listing 2) to load and
prepare a graph, implement and apply the PageRank algorithm, and
then finally compute the highest PageRank.

4.2 PowerGraph
In the PowerGraph abstraction vertex-programs interact by di-

rectly reading the state of neighboring vertices and edges. To effi-
ciently achieve this shared-memory illusion in the distributed set-
ting, [6] introduced the Gather-Apply-Scatter (GAS) decomposi-
tion which further decomposes a vertex-program into three func-
tional phases. During the gather phase, a map-reduce job is run
on the incoming-edges of each active vertex (this is precisely the
aggregateNeighbors operation in the GraphX API). Then,
during the apply phase, the output of the gather phase is consumed
along with the old vertex attribute and a new vertex attribute is
computed (this is precisely the updateVertices operation in
the GraphX API).

Finally, during the scatter phase, a predicate is evaluated on all
outgoing-edges of active vertices. If any of the incoming-edges
of a vertex evaluate to true then it becomes active during the next
super-step. If a vertex is not activated in the previous phase then
it is skipped in the subsequent phase. The ability to modulate
computation and pull information during the gather phase allows

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

PowerGraph" GraphX" Mahout"

R
u
n
$
m
e
'i
n
'S
e
c
o
n
d
s
'

Figure 4: PageRank Runtime Comparison between GraphX, Ma-
hout/Hadoop, and PowerGraph. The reported runtime includes the
time to load the graph from HDFS and then run 10 iterations of
PageRank.

us to easily express a much more efficient dynamic PageRank (see
Listing 5).

In Listing 4 we provide the code for the PowerGraph runtime
using the GraphX API. The program takes as input a graph, an
initial message to broadcast to all vertices, the vertex program, a
function that computes the message along each edge, the message
combiner, and the maximum number of iterations. The program
logic is relatively similar to that of Pregel except that we filter the
graph during the gather and scatter phase dropping edges adjacent
to inactive vertices.

5. PRELIMINARY EXPERIMENTS
We conducted a preliminary performance evaluation of the

GraphX system by comparing against two popular data-parallel and
graph-parallel platforms:

1. Apache Mahout: version 0.6 on Hadoop 0.20.205.

2. PowerGraph: the latest release as part of GraphLab 2.1.

We evaluated each platform by timing the execution of the PageR-
ank algorithm on the LiveJournal[8] graph with approximately
4.8 million vertices and 69 million edges. All experiments were
conducted on Amazon EC2 using 16 m2.4xlarge nodes. Each
node has 8 virtual cores, 68GB of memory, and runs 64-bit Linux
3.2.28.

As illustrated in Figure 4, our results show that GraphX is 8X
faster than a general data-parallel platform (Mahout/Hadoop), but
7X slower than PowerGraph, a heavily optimized graph-parallel
execution engine and one of the fastest open-source graph-parallel
frameworks. We emphasize that it is not our intention to beat Pow-
erGraph in performance. GraphX is designed to be a general engine
that supports a wide range of operations including loading, con-
struction, transformation, and computation, while leveraging the
performance advances developed in the context of dedicated graph
computation systems like PowerGraph. We believe that the loss in
performance may, in many cases, be ameliorated by the gains in
productivity achieved by the GraphX system.

However, we have already identified a number of candidates for
performance improvement in our prototype. It is our belief that
we can shorten the gap in the near future, while providing a highly
usable interactive system for graph data mining and computation.

6. CONCLUSIONS AND FUTURE WORK
We have presented GraphX, an interactive graph computation

engine that combines the advantages of graph-parallel systems
and data-parallel systems. It provides a programming abstraction
called Resident Distributed Graphs (RDGs) that significantly simpli-
fies graph loading, construction, transformation, and computations.

Based on RDGs, we implement Pregel and PowerGraph APIs in 20
lines of code. GraphX’s internal data representation uses a vertex-
cut partitioning scheme that minimizes the movement of data during
graph computation. GraphX will be open sourced as part of the
Berkeley Data Analytics Stack.

We have identified a number of possible future research directions.
First, we will continue to work on improving the performance of
GraphX. Second, our tabular representation of the vertex-cut parti-
tioning is a natural fit for relational databases and we would like to
implement the GraphX abstraction on top of a distributed relational
database. A thorough study of performance characteristics between
relational databases, Spark, and PowerGraph will help us understand
the trade-off in more general systems. Last but not least, we plan to
investigate more declarative interfaces that can be compiled down
into GraphX programs to further simplify graph computation.

7. ACKNOWLEDGMENTS
We thank Haijie Gu and other members of the GraphLab team for

discussions on the GraphX prototype. We also thank Gene Pang and
the anonymous reviewers for useful feedback on earlier drafts of this
paper. This research is supported in part by NSF CISE Expeditions
award CCF-1139158 and DARPA XData Award FA8750-12-2-0331,
and gifts from Amazon Web Services, Google, SAP, Blue Goji,
Cisco, Clearstory Data, Cloudera, Ericsson, Facebook, General
Electric, Hortonworks, Huawei, Intel, Microsoft, NetApp, Oracle,
Quanta, Samsung, Splunk, VMware and Yahoo!.

8. REFERENCES
[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for

partitioning power-law graphs. In IPDPS, 2006. 3.1.1

[2] R. Albert, H. Jeong, and A. L. Barabási. Error and attack
tolerance of complex networks. In Nature, volume 406, pages
378—482, 2000. 3.1.1

[3] A. Buluç and J. R. Gilbert. The combinatorial blas: design,
implementation, and applications. IJHPCA, 25(4):496–509,
2011. 1

[4] U. V. Çatalyürek, C. Aykanat, and B. Uçar. On
two-dimensional sparse matrix partitioning: Models, methods,
and a recipe. SIAM J. Sci. Comput., 32(2):656–683, 2010.
3.1.1

[5] R. Cheng et al. Kineograph: taking the pulse of a
fast-changing and connected world. In EuroSys, 2012. 1

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In OSDI ’12. 1, 2, 3.1.1, 4, 4.1, 4.2

[7] K. Lang. Finding good nearly balanced cuts in power law
graphs. Technical Report YRL-2004-036, Yahoo! Research
Labs, Pasadena, CA, Nov. 2004. 3.1.1

[8] J. Leskovec et al. Community structure in large networks:
Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2008. 3.1.1, 5

[9] G. Malewicz, M. H. Austern, A. J. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In SIGMOD, pages 135–146, 2010. 1, 4, 4.1

[10] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, 1999. 4

[11] P. Stutz, A. Bernstein, and W. Cohen. Signal/collect: graph
algorithms for the (semantic) web. In ISWC, 2010. 1

[12] M. Zaharia et al. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. NSDI, 2012. 1

	1 Introduction
	2 Spark and RDDs
	3 Resilient Distributed Graphs
	3.1 Partitioning
	3.1.1 From Edge-Cuts to Vertex-Cuts
	3.1.2 Vertex-Cuts as Tables in GraphX

	4 Graph-Parallel Computation
	4.1 Pregel
	4.2 PowerGraph

	5 Preliminary Experiments
	6 Conclusions and Future Work
	7 Acknowledgments
	8 References

