
Highly Available Transactions: Virtues and Limitations

Peter Bailis, Aaron Davidson, Alan Fekete†, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica
UC Berkeley and †University of Sydney

ABSTRACT
To minimize network latency and remain online during server fail-
ures and network partitions, many modern distributed data storage
systems eschew transactional functionality, which provides strong
semantic guarantees for groups of multiple operations over multi-
ple data items. In this work, we consider the problem of providing
Highly Available Transactions (HATs): transactional guarantees
that do not suffer unavailability during system partitions or incur
high network latency. We introduce a taxonomy of highly avail-
able systems and analyze existing ACID isolation and distributed
data consistency guarantees to identify which can and cannot be
achieved in HAT systems. This unifies the literature on weak trans-
actional isolation, replica consistency, and highly available sys-
tems. We analytically and experimentally quantify the availability
and performance benefits of HATs—often two to three orders of
magnitude over wide-area networks—and discuss their necessary
semantic compromises.

1 Introduction
The last decade has seen a shift in the design of popular large-

scale database systems, from the use of transactional RDBMSs [14,
38, 37] to the widespread adoption of loosely consistent distributed
key-value stores [21, 23, 30]. Core to this shift was the 2000 in-
troduction of Brewer’s CAP Theorem, which stated that a highly
available system cannot provide “strong” consistency guarantees in
the presence of network partitions [16]. As formally proven [35],
the CAP Theorem pertains to a data consistency model called lin-
earizability, or the ability to read the most recent write to a data item
that is replicated across servers [41]. However, despite its narrow
scope, the CAP Theorem is often misconstrued as a broad result re-
garding the ability to provide ACID database properties with high
availability [9, 16, 22]; this misunderstanding has led to substan-
tial confusion regarding replica consistency, transactional isolation,
and high availability. The recent resurgence of transactional sys-
tems suggests that programmers value transactional semantics, but
most existing transactional data stores do not provide availability
in the presence of partitions [19, 22, 42, 25, 48, 59, 61].

Indeed, serializable transactions—the gold standard of traditional
ACID databases—are not achievable with high availability in the
presence of network partitions [28]. However, database systems
have a long tradition of providing weaker isolation and consis-
tency guarantees [2, 12, 37, 38, 43]. Today’s ACID and NewSQL
databases often employ weak isolation models due to concurrency
and performance benefits; weak isolation is overwhelmingly the
default setting in these stores and is often the only option offered

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 3
Copyright 2013 VLDB Endowment 2150-8097/13/11.

(Section 3). While weak isolation levels do not provide serializ-
ability for general-purpose transactions, they are apparently strong
enough to deliver acceptable behavior to many application pro-
grammers and are substantially stronger than the semantics pro-
vided by current highly available systems. This raises a natural
question: which semantics can be provided with high availability?

To date, the relationship between ACID semantics and high avail-
ability has not been well explored. We have a strong understanding
of weak isolation in the single-server context from which it origi-
nated [2, 12, 38] and many papers offer techniques for providing
distributed serializability [14, 25, 27, 42, 61] or snapshot isola-
tion [43, 59]. Additionally, the distributed computing and parallel
hardware literature contains many consistency models for single
operations on replicated objects [23, 41, 48, 49, 60]. However,
the literature lends few clues for providing semantic guarantees for
multiple operations operating on multiple data items in a highly
available distributed environment.

Our main contributions in this paper are as follows. We relate
the many previously proposed database isolation and data consis-
tency models to the goal of high availability, which guarantees
a response from each non-failing server in the presence of arbi-
trary network partitions between them. We classify which among
the wide array of models are achievable with high availability, de-
noting them as Highly Available Transactions (HATs). In doing
so, we demonstrate that although many implementations of HAT
semantics are not highly available, this is an artifact of the im-
plementations rather than an inherent property of the semantics.
Our investigation shows that, besides serializability, Snapshot Iso-
lation and Repeatable Read isolation are not HAT-compliant, while
most other isolation levels are achievable with high availability.
We also demonstrate that many weak replica consistency models
from distributed systems are both HAT-compliant and simultane-
ously achievable with several ACID properties.

Our investigation is based on both impossibility results and sev-
eral constructive, proof-of-concept algorithms. For example, Snap-
shot Isolation and Repeatable Read isolation are not HAT-compliant
because they require detecting conflicts between concurrent up-
dates (as needed for preventing Lost Updates or Write Skew phe-
nomena), which we show is unavailable. However, Read Com-
mitted isolation, transactional atomicity (Section 5.1.2), and many
other consistency models from database and distributed systems are
achievable via algorithms that rely on multi-versioning and limited
client-side caching. For several guarantees, such as causal con-
sistency with phantom prevention and ANSI Repeatable Read, we
consider a modified form of high availability in which clients “stick
to” (i.e., have affinity with) at least one server—a property which is
often implicit in the distributed systems literature [41, 48, 49] but
which requires explicit consideration in a client-server replicated
database context. This sticky availability is widely employed [48,
64] but is a less restrictive model (and therefore more easily achiev-
able) than traditional high availability.

At a high level, the virtues of HATs are guaranteed responses
from any replica, low latency, and a range of semantic guaran-
tees including several whose usefulness is widely accepted such



as Read Committed. However, highly available systems are funda-
mentally unable to prevent concurrent updates to shared data items
and cannot provide recency guarantees for reads. To understand
when these virtues and limitations are relevant in practice, we sur-
vey both practitioner accounts and academic literature, perform ex-
perimental analysis on modern cloud infrastructure, and analyze
representative applications for their semantic requirements. Our
experiences with a HAT prototype running across multiple geo-
replicated datacenters indicate that HATs offer a one to three order
of magnitude latency decrease compared to traditional distributed
serializability protocols, and they can provide acceptable seman-
tics for a wide range of programs, especially those with monotonic
logic and commutative updates [4, 58]. HAT systems can also en-
force arbitrary foreign key constraints for multi-item updates and,
in some cases, provide limited uniqueness guarantees. However,
HATs can fall short for applications with concurrency-sensitive op-
erations, requiring unavailable, synchronous coordination.

Finally, we recognize that the large variety of ACID isolation
levels and distributed consistency models (and therefore those in
our taxonomy) can be confusing; the subtle distinctions between
models may appear to be of academic concern. Accordingly, we
offer the following pragmatic takeaways:

1. The default (and sometimes strongest) configurations of most
widely deployed database systems expose a range of anomalies
that can compromise application-level consistency.

2. Many of these “weak isolation” models are achievable without
sacrificing high availability if implemented correctly. However,
none of the achievable models prevents concurrent modifications.

3. In addition to providing a guaranteed response and horizontal
scale-out, these highly available HAT models allow one to three
order of magnitude lower latencies on current infrastructure.

4. For correct behavior, applications may require a combination of
HAT and (ideally sparing use of) non-HAT isolation levels; fu-
ture database designers should plan accordingly.

2 Why High Availability?
Why does high availability matter? Peter Deutsch starts his clas-

sic list of “Fallacies of Distributed Computing” with two concerns
fundamental to distributed database systems: “1.) The network is
reliable. 2.) Latency is zero” [32]. In a distributed setting, network
failures may prevent database servers from communicating, and, in
the absence of failures, communication is slowed by factors like
physical distance, network congestion, and routing. As we will see
(Section 4), highly available system designs mitigate the effects of
network partitions and latency. In this section, we draw on a range
of evidence that indicates that partitions occur with frequency in
real-world deployments and latencies between datacenters are sub-
stantial, often on the order of several hundreds of milliseconds.
2.1 Network Partitions at Scale

According to James Hamilton, Vice President and Distinguished
Engineer on the Amazon Web Services team, “network partitions
should be rare but net gear continues to cause more issues than it
should” [39]. Anecdotal evidence confirms Hamilton’s assertion.
In April 2011, a network misconfiguration led to a twelve-hour se-
ries of outages across the Amazon EC2 and RDS services [7]. Sub-
sequent misconfigurations and partial failures such as another EC2
outage in October 2012 have led to full site disruptions for popular
web services like Reddit, Foursquare, and Heroku [33]. At global
scale, hardware failures—like the 2011 outages in Internet back-
bones in North America and Europe due a router bug [57]—and
misconfigurations like the BGP faults in 2008 [51] and 2010 [52]
can cause widespread partitioning behavior.

10-1 100 101 102 103

RTT (ms)

0.0
0.2
0.4

0.6
0.8
1.0

C
D

F

east-b:east-b
east-c:east-d
CA:OR
SI:SP

Figure 1: CDF of round-trip times for slowest inter- and intra-
availability zone links compared to cross-region links.

Many of our discussions with practitioners—especially those op-
erating on public cloud infrastructure—as well as reports from large-
scale operators like Google [29] confirm that partition management
is an important consideration for service operators today. System
designs that do not account for partition behavior may prove diffi-
cult to operate at scale: for example, less than one year after its an-
nouncement, Yahoo!’s PNUTS developers explicitly added support
for weaker, highly available operation. The engineers explained
that “strict adherence [to strong consistency] leads to difficult sit-
uations under network partitioning or server failures...in many cir-
cumstances, applications need a relaxed approach” [53].

Several recent studies rigorously quantify partition behavior. A
2011 study of several Microsoft datacenters observed over 13,300
network failures with end-user impact, with an estimated median
59,000 packets lost per failure. The study found a mean of 40.8
network link failures per day (95th percentile: 136), with a median
time to repair of around five minutes (and up to one week). Perhaps
surprisingly, provisioning redundant networks only reduces impact
of failures by up to 40%, meaning network providers cannot easily
curtail partition behavior [36]. A 2010 study of over 200 wide-area
routers found an average of 16.2–302.0 failures per link per year
with an average annual downtime of 24–497 minutes per link per
year (95th percentile at least 34 hours) [63]. In HP’s managed en-
terprise networks, WAN, LAN, and connectivity problems account
for 28.1% of all customer support tickets while 39% of tickets re-
late to network hardware. The median incident duration for highest
priority tickets ranges from 114–188 minutes and up to a full day
for all tickets [62]. Other studies confirm these results, showing
median time between connectivity failures over a WAN network of
approximately 3000 seconds with a median time to repair between
2 and 1000 seconds [50] as well as frequent path routing failures on
the Internet [45]. A recent, informal report by Kingsbury and Bailis
catalogs a host of additional practitioner reports [44]. Not surpris-
ingly, isolating, quantifying, and accounting for these network fail-
ures is an area of active research in networking community [47].

These studies indicate that network partitions do occur within
and across modern datacenters. We observe that these partitions
must be met with either unavailability at some servers or, as we
will discuss, relaxed semantic guarantees.

2.2 Latency and Planet Earth
Even with fault-free networks, distributed systems face the chal-

lenge of network communication latency, Deutsch’s second “Fal-
lacy.” In this section, we quantify round-trip latencies, which are
often large—hundreds of milliseconds in a geo-replicated, multi-
datacenter context. Fundamentally, the speed at which two servers
can communicate is (according to modern physics) bounded by the
speed of light. In the best case, two servers on opposite sides of the
Earth—communicating via a hypothetical link through the planet’s
core—require a minimum 85.1ms round-trip time (RTT; 133.7ms
if sent at surface level). As services are replicated to multiple, geo-
graphically distinct sites, this cost of communication increases.



H2 H3
H1 0.55 0.56
H2 0.50

(a) Within us-east-b AZ

C D
B 1.08 3.12
C 3.57

(b) Across us-east AZs

OR VA TO IR SY SP SI
CA 22.5 84.5 143.7 169.8 179.1 185.9 186.9
OR 82.9 135.1 170.6 200.6 207.8 234.4
VA 202.4 107.9 265.6 163.4 253.5
TO 278.3 144.2 301.4 90.6
IR 346.2 239.8 234.1
SY 333.6 243.1
SP 362.8

(c) Cross-region (CA: California, OR: Oregon, VA: Virginia, TO: Tokyo,
IR: Ireland, SY: Sydney, SP: São Paulo, SI: Singapore)

Table 1: Mean RTT times on EC2 (min and max highlighted)

In real deployments, messages travel slower than the speed of
light due to routing, congestion, and server-side overheads. To
illustrate the difference between intra-datacenter, inter-datacenter,
and inter-planetary networks, we performed a measurement study
of network behavior on Amazon’s EC2, a widely used public com-
pute cloud. We measured one week of ping times (i.e., round-
trip times, or RTTs) between all seven EC2 geographic “regions,”
across three “availability zones” (closely co-located datacenters),
and within a single “availability zone” (datacenter), at a granular-
ity of 1s1. We summarize the results of our network measurement
study in Table 1. On average, intra-datacenter communication (Ta-
ble 1a) is between 1.82 and 6.38 times faster than across geograph-
ically co-located datacenters (Table 1b) and between 40 and 647
times faster than across geographically distributed datacenters (Ta-
ble 1c). The cost of wide-area communication exceeds the speed of
light: for example, while a speed-of-light RTT from São Paulo to
Singapore RTT is 106.7ms, ping packets incur an average 362.8ms
RTT (95th percentile: 649ms). As shown in Figure 1, the distribu-
tion of latencies varies between links, but the trend is clear: remote
communication has a substantial cost. Quantifying and minimiz-
ing communication delays is also an active area of research in the
networking community [66].

3 ACID in the Wild
The previous section demonstrated that distributed systems must

address partitions and latency: what does this mean for distributed
databases? Database researchers and designers have long realized
that serializability is not achievable in a highly available system [28],
meaning that, in environments like those in Section 2, database
designs face a choice between availability and strong semantics.
However, even in a single-node database, the coordination penal-
ties associated with serializability can be severe and are manifested
in the form of decreased concurrency (and, subsequently, perfor-
mance degradation, scalability limitations, and, often, aborts due
to deadlock or contention) [38]. Accordingly, to increase concur-
rency, database systems offer a range of ACID properties weaker
than serializability: the host of so-called weak isolation models de-
scribe varying restrictions on the space of schedules that are allow-
able by the system [2, 5, 12]. None of these weak isolation models
guarantees serializability, but, as we see below, their benefits are of-

1Data available at http://bailis.org/blog/communication-costs-in-real-
world-networks/, https://github.com/pbailis/aws-ping-traces

Database Default Maximum
Actian Ingres 10.0/10S S S
Aerospike RC RC
Akiban Persistit SI SI
Clustrix CLX 4100 RR RR
Greenplum 4.1 RC S
IBM DB2 10 for z/OS CS S
IBM Informix 11.50 Depends S
MySQL 5.6 RR S
MemSQL 1b RC RC
MS SQL Server 2012 RC S
NuoDB CR CR
Oracle 11g RC SI
Oracle Berkeley DB S S
Oracle Berkeley DB JE RR S
Postgres 9.2.2 RC S
SAP HANA RC SI
ScaleDB 1.02 RC RC
VoltDB S S
RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

Table 2: Default and maximum isolation levels for ACID and
NewSQL databases as of January 2013 (from [9]).

ten considered to outweigh costs of possible consistency anomalies
that might arise from their use.

To understand the prevalence of weak isolation, we recently sur-
veyed the default and maximum isolation guarantees provided by
18 databases, often claiming to provide “ACID” or “NewSQL” func-
tionality [9]. As shown in Table 2, only three out of 18 databases
provided serializability by default, and eight did not provide serial-
izability as an option at all. This is particularly surprising when
we consider the widespread deployment of many of these non-
serializable databases, like Oracle 11g, which are known to power
major businesses and product functionality. Given that these weak
transactional models are frequently used, our inability to provide
serializability in arbitrary HATs appears non-fatal for practical ap-
plications. If application writers and database vendors have already
decided that the benefits of weak isolation outweigh potential ap-
plication inconsistencies, then, in a highly available environment
that prohibits serializability, similar decisions may be tenable.

It has been unknown which of these guarantees can be provided
with high availability, or are HAT-compliant. Existing algorithms
for providing weak isolation are often designed for a single-node
context and are, to the best of our knowledge, unavailable due to re-
liance on concurrency control mechanisms like locking that are not
resilient to partial failure (Section 6.1). Moreover, we are not aware
of any prior literature that provides guidance as to the relationship
between weak isolation and high availability: prior work has ex-
amined the relationship between serializability and high availabil-
ity [28] and weak isolation in general [2, 12, 38] but not weak isola-
tion and high availability together. A primary goal in the remainder
of this paper is to understand which models are HAT-compliant.

4 High Availability
To understand which guarantees can be provided with high avail-

ability, we must first define what high availability means. In this
section, we will formulate a model that captures a range of avail-
ability models, including high availability, availability with sticki-
ness, and transactional availability.

Informally, highly available algorithms ensure “always on” op-
eration and, as a side effect, guarantee low latency. If users of a
highly available system are able to contact a (set of) server(s) in
a system, they are guaranteed a response; this means servers will
not need to synchronously communicate with others. If servers are
partitioned from one another, they do not need to stall in order to

http://bailis.org/blog/communication-costs-in-real-world-networks/
http://bailis.org/blog/communication-costs-in-real-world-networks/
https://github.com/pbailis/aws-ping-traces


provide clients a “safe” response to operations. This lack of fast-
path coordination also means that a highly available system also
provides low latency [1]; in a wide-area setting, clients of a highly
available system need not wait for cross-datacenter communica-
tion. To properly describe whether a transactional system is highly
available, we need to describe what servers a client must contact
as well as what kinds of responses a server can provide, especially
given the possibility of aborts.

Traditionally, a system provides high availability if every user
that can contact a correct (non-failing) server eventually receives a
response from that server, even in the presence of arbitrary, indefi-
nitely long network partitions between servers [35].2 As in a stan-
dard distributed database, designated servers might perform opera-
tions for different data items. A server that can handle an operation
for a given data item is called a replica for that item.3

4.1 Sticky Availability
In addition to high availability, which allows operations on any

replica, distributed algorithms often assume a model in which clients
always contact the same logical replica(s) across subsequent oper-
ations, whereby each of the client’s prior operations (but not nec-
essarily other clients’ operations) are reflected in the database state
that they observe. As we will discuss in Section 5, clients can en-
sure continuity between operations (e.g., reading their prior updates
to a data item) by maintaining affinity or “stickiness” with a server
or set of servers [64]. In a fully replicated system, where all servers
are replicas for all data items, stickiness is simple: a client can
maintain stickiness by contacting the same server for each of its re-
quests. However, to stay “sticky” in a partially-replicated system,
where servers are replicas for subsets of the set of data items (which
we consider in this paper), a client must maintain stickiness with a
single logical copy of the database, which may consist of multiple
physical servers. We say that a system provides sticky availabil-
ity if, whenever a client’s transactions is executed against a copy
of database state that reflects all of the client’s prior operations, it
eventually receives a response, even in the presence of indefinitely
long partitions (where “reflects” is dependent on semantics). A
client may choose to become sticky available by acting as a server
itself; for example, a client might cache its reads and writes [11,
60, 67]. Any guarantee achievable in a highly available system is
achievable in a sticky high availability system but not vice-versa.

4.2 Transactional Availability
Until now, we have considered single-object, single-operation

availability. This is standard in the distributed systems literature
(e.g., distributed register models such as linearizability all concern
single objects [41]), yet the database literature largely focuses on
transactions: groups of multiple operations over multiple objects.
Accordingly, by itself, traditional definitions of high availability
are insufficient to describe availability guarantees for transactions.
Additionally, given the choice of commit and abort responses—
which signal transaction success or failure to a client—we must
take care in defining transactional availability.

We say that a transaction has replica availability if it can contact
at least one replica for every item it attempts to access; this may

2Under this definition from the distributed systems literature, systems that
require a majority of servers to be online are not available. Similarly, a sys-
tem which guarantees that servers provide a response with high probability
is not available. This admittedly stringent requirement matches the assump-
tions made in the CAP Theorem [35] and guarantees low latency [1].
3There is a further distinction between a fully replicated system, in which
all servers are replicas for all data items and a partially replicated system,
in which at least one server acts as a replica for a proper subset of all data
items. For generality, and, given the prevalence of these “sharded” or “par-
titioned” systems [21, 23, 25, 30, 42], we consider partial replication here.

result in “lower availability” than a non-transactional availability
requirement (e.g., single-item availability). Additionally, given the
possibility of system-initiated aborts, we need to ensure useful for-
ward progress: a system can trivially guarantee clients a response
by always aborting all transactions. However, this is an unsatisfac-
tory system because nothing good (transaction commit) ever hap-
pens; we should require a liveness property [54].

A system cannot guarantee that every transaction will commit—
transactions may choose to abort themselves—but we need to make
sure that the system will not indefinitely abort transactions on its
own volition. We call a transaction abort due to a transaction’s own
choosing (e.g., as an operation of the transaction itself or due to
a would-be violation of a declared integrity constraint) an internal
abort and an abort due to system implementation or operation an
external abort. We say that a system provides transactional avail-
ability if, given replica availability for every data item in a trans-
action, the transaction eventually commits (possibly after multiple
client retries) or internally aborts [9]. A system provides sticky
transactional availability if, given sticky availability, a transac-
tion eventually commits or internally aborts.

5 Highly Available Transactions
HAT systems provide transactions with transactional availability

or sticky transactional availability. They offer latency and avail-
ability benefits over traditional distributed databases, yet they can-
not achieve all possible semantics. In this section, we describe
ACID, distributed replica consistency, and session consistency lev-
els which can be achieved with high availability (Read Committed
isolation, variants of Repeatable Read, atomic reads, and many ses-
sion guarantees), those with sticky availability (read your writes,
PRAM and causal consistency). We also discuss properties that
cannot be provided in a HAT system (those preventing Lost Up-
date and Write Skew or guaranteeing recency). We present a full
summary of these results in Section 5.3.

As Brewer states, “systems and database communities are sep-
arate but overlapping (with distinct vocabulary)” [16]. With this
challenge in mind, we build on existing properties and definitions
from the database and distributed systems literature, providing a
brief, informal explanation and example for each guarantee. The
database isolation guarantees require particular care, since differ-
ent DBMSs often use the same terminology for different mech-
anisms and may provide additional guarantees in addition to our
implementation-agnostic definitions. We draw largely on Adya’s
dissertation [2] and somewhat on its predecessor work: the ANSI
SQL specification [5] and Berenson et al.’s subsequent critique [12].

For brevity, we provide an informal presentation of each guar-
antee here (accompanied by appropriate references) but give a full
set of formal definitions in our extended Technical Report [8]. In
our examples, we exclusively consider read and write operations,
denoting a write of value v to data item d as wd(v) and a read
from data item d returning v as rd(v). We assume that all data
items have the null value, �, at database initialization, and, unless
otherwise specified, all transactions in the examples commit.

5.1 Achievable HAT Semantics
To begin, we present well-known semantics that can be achieved

in HAT systems. In this section, our primary goal is feasibility, not
performance. As a result, we offer proof-of-concept highly avail-
able algorithms that are not necessarily optimal or even efficient:
the challenge is to prove the existence of algorithms that provide
high availability. However, we briefly study a subset of their per-
formance implications in Section 6.



5.1.1 ACID Isolation Guarantees

To begin, Adya captures Read Uncommitted isolation as PL-1.
In this model, writes to each object are totally ordered, correspond-
ing to the order in which they are installed in the database. In a
distributed database, different replicas may receive writes to their
local copies of data at different times but should handle concur-
rent updates (i.e., overwrites) in accordance with the total order for
each item. PL-1 requires that writes to different objects be ordered
consistently across transactions, prohibiting Adya’s phenomenon
G0 (also called “Dirty Writes” [12]). If we build a graph of trans-
actions with edges from one transaction to another and, when the
former overwrites the latter’s write to the same object, then, under
Read Uncommitted, the graph should not contain cycles [2]. Con-
sider the following example:

T1 ∶ wx(1) wy(1)

T2 ∶ wx(2) wy(2)

In this example, under Read Uncommitted, it is impossible for the
database to order T1’s wx(1) before T2’s wx(2) but order T2’s
wy(2) before T1’s wy(1). Read Uncommitted is easily achieved
by marking each of a transaction’s writes with the same timestamp
(unique across transactions; e.g., combining a client’s ID with a
sequence number) and applying a “last writer wins” conflict rec-
onciliation policy at each replica. Later properties will strengthen
Read Uncommitted.

Read Committed isolation is particularly important in practice
as it is the default isolation level of many DBMSs (Section 3). Cen-
tralized implementations differ, with some based on long-duration
exclusive locks and short-duration read locks [38] and others based
on multiple versions. These implementations often provide recency
and monotonicity properties beyond what is implied by the name
“Read Committed” and what is captured by the implementation-
agnostic definition: under Read Committed, transactions should
not access uncommitted or intermediate versions of data items.
This prohibits both “Dirty Writes”, as above, and also “Dirty Reads”
phenomena. This isolation is Adya’s PL-2 and is formalized by
prohibiting Adya’s G1{a-c} (or ANSI’s P1, or “broad” P1 [2.2]
from Berenson et al.). For instance, in the example below, T3

should never see a = 1, and, if T2 aborts, T3 should not read a = 3:

T1 ∶ wx(1) wx(2)

T2 ∶ wx(3)

T3 ∶ rx(a)

It is fairly easy for a HAT system to prevent “Dirty Reads”: if each
client never writes uncommitted data to shared copies of data, then
transactions will never read each others’ dirty data. As a simple
solution, clients can buffer their writes until they commit, or, al-
ternatively, can send them to servers, who will not deliver their
value to other readers until notified that the writes have been com-
mitted. Unlike a lock-based implementation, this implementation
does not provide recency or monotonicity guarantees but it satisfies
the implementation-agnostic definition.

Several different properties have been labeled Repeatable Read
isolation. As we will show in Section 5.2.1, some of these are
not achievable in a HAT system. However, the ANSI standard-
ized implementation-agnostic definition [5] is achievable and di-
rectly captures the spirit of the term: if a transaction reads the same
data more than once, it sees the same value each time (preventing
“Fuzzy Read,” or P2). In this paper, to disambiguate between other
definitions of “Repeatable Read,” we will call this property “cut
isolation,” since each transaction reads from a non-changing cut,
or snapshot, over the data items. If this property holds over reads

from discrete data items, we call it Item Cut Isolation, and, if we
also expect a cut over predicate-based reads (e.g., SELECT WHERE;
preventing Phantoms [38], or Berenson et al.’s P3/A3), we have
the stronger property of Predicate Cut-Isolation. In the example
below, under both levels of cut isolation, T3 must read a = 1:

T1 ∶ wx(1)

T2 ∶ wx(2)

T3 ∶ rx(1) rx(a)

It is possible to satisfy Item Cut Isolation with high availability by
having transactions store a copy of any read data at the client such
that the values that they read for each item never changes unless
they overwrite it themselves. These stored values can be discarded
at the end of each transaction and can alternatively be accomplished
on (sticky) replicas via multi-versioning. Predicate Cut Isolation is
also achievable in HAT systems via similar caching middleware
or multi-versioning that track entire logical ranges of predicates in
addition to item based reads.

5.1.2 ACID Atomicity Guarantees
Atomicity, informally guaranteeing that either all or none of trans-

actions’ effects should succeed, is core to ACID guarantees. Al-
though, at least by the ACID acronym, atomicity is not an “isola-
tion” property, atomicity properties also restrict the updates visible
to other transactions. Accordingly, here, we consider the isola-
tion effects of atomicity, which we call Monotonic Atomic View
(MAV) isolation. Under MAV, once some of the effects of a trans-
action Ti are observed by another transaction Tj , thereafter, all ef-
fects of Ti are observed by Tj . That is, if a transaction Tj reads
a version of an object that transaction Ti wrote, then a later read
by Tj cannot return a value whose later version is installed by Ti.
Together with item cut isolation, MAV prevents Read Skew anoma-
lies (Berenson et al.’s A5A) and is useful in several contexts such
as maintaining foreign key constraints, consistent global secondary
indexing, and maintenance of derived data. In the example below,
under MAV, because T2 has read T1’s write to y, T2 must observe
b = c = 1 (or later versions for each key):

T1 ∶ wx(1) wy(1) wz(1)

T2 ∶ rx(a) ry(1) rx(b) rz(c)

T2 can also observe a = �, a = 1, or a later version of x. In
the hierarchy of existing isolation properties, we place MAV below
Adya’s PL-2L (as it does not necessarily enforce transitive read-
write dependencies) but above Read Committed (PL−2). Notably,
MAV requires disallows reading intermediate writes (Adya’s G1b):
observing all effects of a transaction implicitly requires observing
the final (committed) effects of the transaction as well.

Perplexingly, discussions of MAV are absent from existing treat-
ments of weak isolation. This is perhaps again due to the single-
node context in which prior work was developed: on a single server
(or a fully replicated database), MAV is achievable via lightweight
locking and/or local concurrency control over data items [26, 43].
In contrast, in a distributed environment, MAV over arbitrary groups
of non-co-located items is considerably more difficult to achieve
with high availability.

As a straw man, replicas can store all versions ever written to
each data item. Replicas can gossip information about versions
they have observed and construct a lower bound on the versions that
can be found on every replica (which can be represented by either a
list of versions, or, more realistically, a vector clock). At the start of
each transaction, clients can choose a read timestamp that is lower
than or equal to the this global lower bound, and, during transaction
execution, replicas return the latest version of each item that is not



greater than the client’s chosen timestamp. If this lower bound is
advanced along transactional boundaries, clients will observe MAV.
This algorithm has several variants in the literature [20, 67], and
older versions can be asynchronously garbage collected.

We have developed a more efficient MAV algorithm, which we
sketch here and provide greater detail in our extended Technical
Report [8]. We begin with our Read Committed algorithm, but
replicas wait to reveal new writes to readers until all of the replicas
for the final writes in the transaction have received their respective
writes (are pending stable). Clients include additional metadata
with each write: a single timestamp for all writes in the transaction
(e.g., as in Read Uncommitted) and a list of items written to in
the transaction. When a client reads, the return value’s timestamp
and list of items form a lower bound on the versions that the client
should read for the other items. When a client reads, it attaches
a timestamp to its request representing the current lower bound for
that item. Replicas use this timestamp to respond with either a write
matching the timestamp or a pending stable write with a higher
timestamp. Servers keep two sets of writes for each data item: the
write with the highest timestamp that is pending stable and a set of
writes that are not yet pending stable. This is entirely master-less
and operations never block due to replica coordination.

5.1.3 Session Guarantees
A useful class of safety guarantees refer to real-time or client-

centric ordering within a session, “an abstraction for the sequence
of...operations performed during the execution of an application” [60].
These “session guarantees” have been explored in the distributed
systems literature [60, 64] and sometimes in the database litera-
ture [27]. For us, a session describes a context that should persist
between transactions: for example, on a social networking site, all
of a user’s transactions submitted between “log in” and “log out”
operations might form a session.

Several session guarantees can be made with high availability:

Monotonic reads requires that, within a session, subsequent reads
to a given object “never return any previous values”; reads from
each item progress according to a total order (e.g., the order from
Read Uncommitted).

Monotonic writes requires that each session’s writes become visi-
ble in the order they were submitted. Any order on transactions (as
in Read Uncommitted isolation) should also be consistent with any
precedence that a global observer would see.

Writes Follow Reads requires that, if a session observes an effect
of transaction T1 and subsequently commits transaction T2, then
another session can only observe effects of T2 if it can also observe
T1’s effects (or later values that supersede T1’s); this corresponds
to Lamport’s “happens-before” relation [46]. Any order on trans-
actions should respect this transitive order.

The above guarantees can be achieved by forcing servers to wait
to reveal new writes (say, by buffering them in separate local stor-
age) until each write’s respective dependencies are visible on all
replicas. This mechanism effectively ensures that all clients read
from a globally agreed upon lower bound on the versions written.
This is highly available because a client will never block due to
inability to find a server with a sufficiently up-to-date version of a
data item. However, it does not imply that transactions will read
their own writes or, in the presence of partitions, make forward
progress through the version history. The problem is that under
non-sticky availability, a system must handle the possibility that,
under a partition, an unfortunate client will be forced to issue its
next requests against a partitioned, out-of-date server.

A solution to this conundrum is to forgo high availability and
settle for sticky availability. Sticky availability permits three ad-
ditional guarantees, which we first define and then prove are un-
achievable in a generic highly available system:

Read your writes requires that whenever a client reads a given data
item after updating it, the read returns the updated value (or a value
that overwrote the previously written value).

PRAM (Pipelined Random Access Memory) provides the illusion
of serializing each of the operations (both reads and writes) within
each session and is the combination of monotonic reads, monotonic
writes, and read your writes [41].

Causal consistency [3] is the combination of all of the session
guarantees [17] (alternatively, PRAM with writes-follow-reads) and
is also referred to by Adya as PL-2L isolation [2]).

Read your writes is not achievable in a highly available system.
Consider a client that executes the following two transactions:

T1 ∶ wx(1)

T2 ∶ rx(a)

If the client executes T1 against a server that is partitioned from
the rest of the other servers, then, for transactional availability, the
server must allow T1 to commit. If the same client subsequently
executes T2 against the same (partitioned) server in the same ses-
sion, then it will be able to read its writes. However, if the network
topology changes and the client can only execute T2 on a different
replica that is partitioned from the replica that executed T1, then
the system will have to either stall indefinitely to allow the client
to read her writes (violating transactional availability) or will have
to sacrifice read your writes guarantees. However, if the client re-
mains sticky with the server that executed T1, then we can disal-
low this scenario. Accordingly, read your writes, and, by proxy,
causal consistency and PRAM require stickiness. Read your writes
is provided by default in a sticky system. Causality and PRAM
guarantees can be accomplished with well-known variants [3, 11,
48, 60, 67] of the prior session guarantee algorithms we presented
earlier: only reveal new writes to clients when their (respective,
model-specific) dependencies have been revealed.
5.1.4 Additional HAT Guarantees

In this section, we briefly discuss two additional kinds of guar-
antees that are achievable in HAT systems.

Consistency A HAT system can make limited application-level
consistency guarantees. It can often execute commutative and log-
ically monotonic [4] operations without the risk of invalidating
application-level integrity constraints and can maintain limited cri-
teria like foreign key constraints (via MAV). We do not describe
the entire space of application-level consistency properties that are
achievable (see Section 7) but we specifically evaluate TPC-C trans-
action semantics with HAT guarantees in Section 6.

Convergence Under arbitrary (but not infinite delays), HAT sys-
tems can ensure convergence, or eventual consistency: in the ab-
sence of new mutations to a data item, all servers should eventu-
ally agree on the value for each item [49, 64]. This is typically
accomplished by any number of anti-entropy protocols, which pe-
riodically update neighboring servers with the latest value for each
data item [31]. Establishing a final convergent value is related to
determining a total order on transaction updates to each item, as in
Read Uncommitted.
5.2 Unachievable HAT Semantics

While there are infinitely many HAT models (Section 7), at this
point, we have largely exhausted the range of achievable, previ-



ously defined (and useful) semantics that are available to HAT sys-
tems. Before summarizing our possibility results, we will present
impossibility results for HATs, also defined in terms of previously
identified isolation and consistency anomalies. Most notably, it is
impossible to prevent Lost Update or Write Skew in a HAT system.

5.2.1 Unachievable ACID Isolation
In this section, we demonstrate that preventing Lost Update and

Write Skew—and therefore providing Snapshot Isolation, Repeat-
able Read, and one-copy serializability—inherently requires fore-
going high availability guarantees.

Berenson et al. define Lost Update as when one transaction T1
reads a given data item, a second transaction T2 updates the same
data item, then T1 modifies the data item based on its original read
of the data item, “missing” or “losing” T2’s newer update. Con-
sider a database containing only the following transactions:

T1 ∶ rx(a) wx(a + 2)

T2 ∶ wx(2)

If T1 reads a = 1 but T2’s write to x precedes T1’s write operation,
then the database will end up with a = 3, a state that could not have
resulted in a serial execution due to T2’s “Lost Update.”

It is impossible to prevent Lost Update in a highly available en-
vironment. Consider two clients who submit the following T1 and
T2 on opposite sides of a network partition:

T1 ∶ rx(100) wx(100 + 20 = 120)

T2 ∶ rx(100) wx(100 + 30 = 130)

Regardless of whether x = 120 or x = 130 is chosen by a replica,
the database state could not have arisen from a serial execution of
T1 and T2.4 To prevent this, either T1 or T2 should not have com-
mitted. Each client’s respective server might try to detect that an-
other write occurred, but this requires knowing the version of the
latest write to x. In our example, this reduces to a requirement for
linearizability, which is, via Gilbert and Lynch’s proof of the CAP
Theorem, provably at odds with high availability [35].

Write Skew is a generalization of Lost Update to multiple keys.
It occurs when one transaction T1 reads a given data item x, a
second transaction T2 reads a different data item y, then T1 writes
to y and commits and T2 writes to x and commits. As an example
of Write Skew, consider the following two transactions:

T1 ∶ ry(0) wx(1)

T2 ∶ rx(0) wy(1)

As Berenson et al. describe, if there was an integrity constraint
between x and y such that only one of x or y should have value
1 at any given time, then this write skew would violate the con-
straint (which is preserved in serializable executions). Write skew
is a somewhat esoteric anomaly—for example, it does not appear
in TPC-C [34]—but, as a generalization of Lost Update, it is also
unavailable to HAT systems.

Consistent Read, Snapshot Isolation (including Parallel Snap-
shot Isolation [59]), and Cursor Stability guarantees are all un-
available because they require preventing Lost Update phenomena.
Repeatable Read (defined by Gray [38], Berenson et al. [12], and
Adya [2]) and One-Copy Serializability [6] need to prevent both
Lost Update and Write Skew. Their prevention requirements mean
that these guarantees are inherently unachievable in a HAT system.

4In this example, we assume that, as is standard in modern databases, repli-
cas accept values as they are written (i.e., register semantics). This particu-
lar example could be made serializable via the use of commutative updates
(Section 6) but the problem persists in the general case.

5.2.2 Unachievable Recency Guarantees
Distributed data storage systems often make various recency guar-

antees on reads of data items. Unfortunately, an indefinitely long
partition can force an available system to violate any recency bound,
so recency bounds are not enforceable by HAT systems [35]. One
of the most famous of these guarantees is linearizability [41], which
states that reads will return the last completed write to a data item,
and there are several other (weaker) variants such as safe and regu-
lar register semantics. When applied to transactional semantics, the
combination of one-copy serializability and linearizability is called
strong (or strict) one-copy serializability [2] (e.g., Spanner [25]).
It is also common, particularly in systems that allow reading from
masters and slaves, to provide a guarantee such as “read a version
that is no more than five seconds out of date” or similar. None of
these guarantees are HAT-compliant.
5.2.3 Durability

A client requiring that its transactions’ effects survive F server
faults requires that the client be able to contact at least F + 1 non-
failing replicas before committing. This affects availability and,
according to the Gilbert and Lynch definition we have adopted, F >

1 fault tolerance is not achievable with high availability.

5.3 Summary
As we summarize in Table 3, a wide range of isolation levels are

achievable in HAT systems. With sticky availability, a system can
achieve read your writes guarantees and PRAM and causal consis-
tency. However, many other prominent semantics, such as Snap-
shot Isolation, One-Copy Serializability, and Strong Serializability
cannot be achieved due to the inability to prevent Lost Update and
Write Skew phenomena.

We illustrate the hierarchy of available, sticky available, and un-
available consistency models we have discussed in Figure 2. Many
models are simultaneously achievable, but we find several particu-
larly compelling. If we combine all HAT and sticky guarantees, we
have transactional, causally consistent snapshot reads (i.e., Causal
Transactional Predicate Cut Isolation). If we combine MAV and
P-CI, we have transactional snapshot reads. We can achieve RC,
MR, and RYW by simply sticking clients to servers. We can also
combine unavailable models—for example, an unavailable system
might provide PRAM and One-Copy Serializability [27].

To the best of our knowledge, this is the first unification of trans-
actional isolation, distributed consistency, and session guarantee
models. Interestingly, strong one-copy serializability entails all
other models, while considering the (large) power set of all com-
patible models (e.g., the diagram depicts 144 possible HAT com-
binations) hints at the vast expanse of consistency models found
in the literature. This taxonomy is not exhaustive (Section 8), but
we believe it lends substantial clarity to the relationships between
a large subset of the prominent ACID and distributed consistency
models. Additional read/write transaction semantics that we have
omitted should be classifiable based on the available primitives and
HAT-incompatible anomaly prevention we have already discussed.

In light the of current practice of deploying weak isolation levels
(Section 3), it is perhaps surprising that so many weak isolation lev-
els are achievable as HATs. Indeed, isolation levels such as Read
Committed expose and are defined in terms of end-user anomalies
that could not arise during serializable execution. However, the
prevalence of these models suggests that, in many cases, applica-
tions can tolerate these their associated anomalies. Given our HAT-
compliance results, this in turn hints that–despite idiosyncrasies
relating to concurrent updates and data recency–highly available
database systems can provide sufficiently strong semantics for many
applications. Indeed, HAT databases may expose more anomalies



HA Read Uncommitted (RU), Read Committed
(RC), Monotonic Atomic View (MAV), Item
Cut Isolation (I-CI), Predicate Cut Isolation (P-
CI), Writes Follow Reads (WFR), Monotonic
Reads (MR), Monotonic Writes (MW)

Sticky Read Your Writes (RYW), PRAM, Causal
Unavailable Cursor Stability (CS)†, Snapshot Isolation (SI)†,

Repeatable Read (RR)†‡, One-Copy Serializ-
ability (1SR)†‡, Recency⊕, Safe⊕, Regular⊕,
Linearizability⊕, Strong 1SR†‡⊕

Table 3: Summary of highly available, sticky available, and un-
available models considered in this paper. Unavailable models are
labeled by cause of unavailability: preventing lost update†, prevent-
ing write skew‡, and requiring recency guarantees⊕.

I-CI

P-CIRC

RU

MAV

MR MWWFR RYW recency

safe

regular

linearizable

causal

PRAM

CS

RR

SI

1SR
Strong-1SR

Figure 2: Partial ordering of HAT, sticky available (in boxes, blue),
and unavailable models (circled, red) from Table 3. Directed edges
represent ordering by model strength. Incomparable models can be
simultaneously achieved, and the availability of a combination of
models has the availability of the least available individual model.

than a single-site database operating under weak isolation (par-
ticularly during network partitions). However, for a fixed isola-
tion level (which, in practice, can vary across databases and may
differ from implementation-agnostic definitions in the literature),
users of single-site database are subject to the same (worst-case)
application-level anomalies as a HAT implementation. The nec-
essary (indefinite) visibility penalties (i.e., the right side of Fig-
ure 2) and lack of support for preventing concurrent updates (via
the upper left half of Figure 2) mean HATs are not well-suited for
all applications (see Section 6): these limitations are fundamental.
However, common practices such as ad-hoc, user-level compen-
sation and per-statement isolation “upgrades” (e.g., SELECT FOR
UPDATE under weak isolation)—commonly used to augment weak
isolation—are also applicable in HAT systems (although they may
in turn compromise availability).

6 HAT Implications
With an understanding of which semantics are HAT-compliant,

in this section, we analyze the implications of these results for ex-
isting systems and briefly study HAT systems on public cloud in-
frastructure. Specifically:

1. We revisit traditional database concurrency control with a focus
on coordination costs and on high availability.

2. We examine the properties required by an OLTP application based
on the TPC-C benchmark.

3. We perform a brief experimental evaluation of HAT versus non-
HAT properties on public cloud infrastructure.

6.1 HA and Existing Algorithms
While we have shown that many database isolation levels are

achievable as HATs, many traditional concurrency control mech-
anisms do not provide high availability—even for HAT-compliant

isolation levels. Existing mechanisms often presume (or are adapted
from) single-server non-partitioned deployments or otherwise fo-
cus on serializability as a primary use case. In this section, we
briefly discuss design decisions and algorithmic details that pre-
clude high availability.

Serializability To establish a serial order on transactions, algo-
rithms for achieving serializability of general-purpose read-write
transactions in a distributed setting [14, 28] require at least one RTT
before committing. As an example, traditional two-phase locking
for a transaction of length T may require T lock operations and
will require at least one lock and one unlock operation. In a dis-
tributed environment, each of these lock operations requires coor-
dination, either with other database servers or with a lock service.
If this coordination mechanism is unavailable, transactions cannot
safely commit. Similarly, optimistic concurrency control requires
coordinating via a validation step, while deterministic transaction
scheduling [56] requires contacting a scheduler. Serializability un-
der multi-version concurrency control requires checking for update
conflicts. All told, the reliance on a globally agreed total order ne-
cessitates a minimum of one round-trip to a designated master or
coordination service for each of these classic algorithms. As we
saw in Section 2, is will be determined by the deployment environ-
ment; we will further demonstrate this in Section 6.3.

Non-serializability Most existing distributed implementations of
weak isolation are not highly available. Lock-based mechanisms
such as those in Gray’s original proposal [38] do not degrade grace-
fully in the presence of partial failures. (Note, however, that lock-
based protocols do offer the benefit of recency guarantees.) While
multi-versioned storage systems allow for a variety of transactional
guarantees, few offer traditional weak isolation (e.g., non-“tentative
update” schemes) in this context. Chan and Gray’s read-only trans-
actions have item-cut isolation with causal consistency and MAV
(session PL-2L [2]) but are unavailable in the presence of coordina-
tor failure and assume serializable update transactions [20]; this is
similar to read-only and write-only transactions more recently pro-
posed by Eiger [48]. Brantner’s S3 database [15] and Bayou [60]
can all provide variants of session PL-2L with high availability, but
none provide this HAT functionality without substantial modifica-
tion. Accordingly, it is possible to implement many guarantees
weaker than serializability—including HAT semantics—and still
not achieve high availability. We view high availability as a core
design consideration in future concurrency control designs.

6.2 Application Requirements
Thus far, we have largely ignored the question of when HAT se-

mantics are useful (or otherwise are too weak). As we showed in
Section 5, the main cost of high availability and low latency comes
in the inability to prevent Lost Update, Write Skew, and provide re-
cency bounds. To better understand the impact of HAT-compliance
in an application context, we consider a concrete application: the
TPC-C benchmark. In brief, we find that four of five transactions
can be executed via HATs, while the fifth requires unavailability.

TPC-C consists of five transactions, capturing the operation of
a wholesale warehouse, including sales, payments, and deliver-
ies. Two transactions—Order-Status and Stock-Level—are read-
only and can be executed safely with HATs. Clients may read stale
data, but this does not violate TPC-C requirements and clients will
read their writes if they are sticky-available. Another transaction
type, Payment, updates running balances for warehouses, districts,
and customer records and provides an audit trail. The transaction is
monotonic—increment- and append-only—so all balance increase
operations commute, and MAV allows the maintenance of foreign-
key integrity constraints (e.g., via UPDATE/DELETE CASCADE).



New-Order and Delivery. While three out of five transactions are
easily achievable with HATs, the remaining two transactions are
not as simple. The New-Order transaction places an order for a
variable quantity of data items, updating warehouse stock as needed.
It selects a sales district, assigns the order an ID number, adjusts the
remaining warehouse stock, and writes a placeholder entry for the
pending order. The Delivery transaction represents the fulfillment
of a New-Order: it deletes the order from the pending list, updates
the customer’s balance, updates the order’s carrier ID and delivery
time, and updates the customer balance.

IDs and decrements. The New-Order transaction presents two chal-
lenges: ID assignment and stock maintenance. First, each New-
Order transaction requires a unique ID number for the order. We
can create a unique number by, say, concatenating the client ID
and a timestamp. However, the TPC-C specification requires or-
der numbers to be sequentially assigned within a district, which
requires preventing Lost Update. Accordingly, HATs cannot pro-
vide compliant TPC-C execution but can maintain uniqueness con-
straints. Second, the New-Order transaction decrements inventory
counts: what if the count becomes negative? Fortunately, New-
Order restocks each item’s inventory count (increments by 91) if
it would become negative as the result of placing an order. This
means that, even in the presence of concurrent New-Orders, an
item’s stock will never fall below zero. This is TPC-C compli-
ant, but a HAT system might end up with more stock than in an
unavailable implementation with synchronous coordination.

TPC-C Non-monotonicity. The Delivery transaction is challenging
due to non-monotonicity. Each Delivery deletes a pending order
from the New-Order table and should be idempotent in order to
avoid billing a customer twice; this implies a need to prevent Lost
Update. This issue can be avoided by moving the non-monotonicity
to the real world—the carrier that picks up the package for an or-
der can ensure that no other carrier will do so—but cannot provide
a correct execution with HATs alone. However, according to dis-
tributed transaction architects [40], these compensatory actions are
relatively common in real-world business processes.

Integrity Constraints. Throughout execution, TPC-C also requires
the maintenance of several integrity constraints. For example, Con-
sistency Condition 1 (3.3.2.1) requires that each warehouse’s sales
count must reflect the sum of its subordinate sales districts. This
integrity constraint spans two tables but, given the ability to update
rows in both tables atomically via MAV, can be easily maintained.
Consistency Conditions 4 through 12 (3.3.2.4-12) can similarly be
satisfied by applying updates atomically across tables. Consistency
Conditions 2 and 3 (3.3.2.2-3) concern order ID assignment and
are problematic. Finally, while TPC-C is not subject to multi-key
anomalies, we note that many TPC-E isolation tests (i.e., simulta-
neously modifying a product description and its thumbnail) are also
achievable using HATs.

Summary. Many—but not all—TPC-C transactions are well served
by HATs. The two problematic transactions, New-Order and Pay-
ment, rely on non-monotonic state update. The former can be mod-
ified to ensure ID uniqueness but not sequential ID ordering, while
the latter is inherently non-monotonic, requiring external compen-
sation or stronger consistency protocols. Based on these experi-
ences and discussions with practitioners, we believe that HAT guar-
antees can provide useful semantics for a large class of application
functionality, while a (possibly small) subset of operations will re-
quire stronger, unavailable properties.

6.3 Experimental Costs
To demonstrate the performance implications of HAT guarantees

in a real-world environment, we implemented a HAT database pro-
totype. We verify that, as Section 2.2’s measurements suggested,
“strongly consistent” algorithms incur substantial latency penalties
(over WAN, 10 to 100 times higher than their HAT counterparts)
compared to HAT-compliant algorithms, which scale linearly. Our
goal is not a complete performance analysis of HAT semantics but
instead a proof-of-concept demonstration of a small subset of the
HAT space on real-world infrastructure.

Implementation. Our prototype database is a partially replicated
(hash-based partitioned) key-value backed by LevelDB and imple-
mented in Java using Apache Thrift. It currently supports eventual
consistency (hereafter, eventual; last-writer-wins RU with stan-
dard all-to-all anti-entropy between replicas) and the efficient HAT
MAV algorithm as sketched in Section 5.1.2. (hereafter, MAV). We
support non-HAT operation whereby all operations for a given key
are routed to a (randomly) designated master replica for each key
(guaranteeing single-key linearizability, as in Gilbert and Lynch’s
CAP Theorem proof [35] and in PNUTS [23]’s “read latest” oper-
ation; hereafter, master) as well as distributed two-phase locking.
Servers are durable: they synchronously write to LevelDB before
responding to client requests, while new writes in MAV are syn-
chronously flushed to a disk-resident write-ahead log.

Configuration. We deploy the database in clusters—disjoint sets of
database servers that each contain a single, fully replicated copy of
the data—typically across datacenters and stick all clients within a
datacenter to their respective cluster (trivially providing read-your-
writes and monotonic reads guarantees). By default, we deploy
5 Amazon EC2 m1.xlarge instances as servers in each cluster.
For our workload, we link our client library to the YCSB bench-
mark [24], which is well suited to LevelDB’s key-value schema,
grouping every eight YCSB operations from the default workload
(50% reads, 50% writes) to form a transaction. We increase the
number of keys in the workload from the default 1,000 to 100,000
with uniform random key access, keeping the default value size of
1KB, and running YCSB for 180 seconds per configuration.

Geo-replication. We first deploy the database prototype across an
increasing number of datacenters. Figure 3A shows that, when op-
erating two clusters within a single datacenter, mastering each data
item results in approximately half the throughput and double the la-
tency of eventual. This is because HAT models are able to utilize
replicas in both clusters instead of always contacting the (single)
master. RC—essentially eventual with buffering—is almost iden-
tical to eventual, while MAV—which incurs two writes for every
client-side write (i.e., new writes are sent to the WAL then subse-
quently moved into LevelDB once stable)—achieves 75% of the
throughput. Latency increases linearly with the number of YCSB
clients due to contention within LevelDB.

In contrast, when the two clusters are deployed across the conti-
nental United States (Figure 3B), the average latency of master in-
creases to 300ms (a 278–4257% latency increase; average 37ms la-
tency per operation). For the same number of YCSB client threads,
master has substantially lower throughput than the HAT config-
urations. Increasing the number of YCSB clients does increase
the throughput of master, but our Thrift-based server-side connec-
tion processing did not gracefully handle more than several thou-
sand concurrent connections. In contrast, across two datacenters,
the performance of eventual, RC, and MAV are near identical to a
single-datacenter deployment.

When five clusters (as opposed to two, as before) are deployed
across the five EC2 datacenters with lowest communication cost



Eventual RC MAV Master

A.) Within us-east (VA)

0 200 400 600 800 1000
0

20
40
60
80

100
120

A
vg

. L
at

en
cy

 (
m

s)

0 200 400 600 800 1000
Number of YCSB Clients

0
2
4
6
8

10
12
14
16
18

T
ot

al
 T

hr
ou

gh
pu

t
(1

00
0 

T
xn

s/
s)

B.) Between us-east (CA) and us-west-2 (OR)

0 200 400 600 800 1000
100

101

102

103

A
vg

. L
at

en
cy

 (
m

s)

0 200 400 600 800 1000
Number of YCSB Clients

0
2
4
6
8

10
12
14
16
18

T
ot

al
 T

hr
ou

gh
pu

t
(1

00
0 

T
xn

s/
s)

C.) Between us-east (VA), us-west-1 (CA),
us-west-2 (OR), eu-west (IR), ap-northeast (SI)

0 500 1000 1500 2000 2500
100

101

102

103

A
vg

. L
at

en
cy

 (
m

s)

0 500 1000 1500 2000 2500
Number of YCSB Clients

0
5

10
15
20
25
30
35
40

T
ot

al
 T

hr
ou

gh
pu

t
(1

00
0 

T
xn

s/
s)

Figure 3: YCSB performance for two clusters of five servers each
deployed within a single datacenter and cross-datacenters.

(Figure 3C), the trend continues: master latency increases to nearly
800ms per transaction. As an attempt at reducing this overhead, we
implemented and benchmarked a variant of quorum-based replica-
tion as in Dynamo [30], where clients sent requests to all replicas,
which completed as soon as a majority of servers responded (guar-
anteeing regular semantics [41]); this strategy (not pictured) did not
substantially improve performance due to the network topology and
because worst-case server load was unaffected. With five clusters,
MAV’s relative throughput decreased: every YCSB put operation re-

Eventual RC MAV Master

1 2 4 8 16 32 64 128
Transaction Length

0
20
40
60
80

100
120

T
ot

al
 T

hr
ou

gh
pu

t
(1

00
0 

O
ps

/s
)

Figure 4: Transaction length versus throughput.

0.0 0.2 0.4 0.6 0.8 1.0
Write Proportion

0
5

10
15
20
25
30

T
ot

al
 T

hr
ou

gh
pu

t
(1

00
0 

T
xn

s/
s)

Figure 5: Proportion of reads and writes versus throughput.

10 15 20 25 30 35 40 45 50
Total Number of Servers

0
10
20
30
40
50
60
70

T
ot

al
 T

hr
ou

gh
pu

t
(1

00
0 

T
xn

s/
s)

Figure 6: Scale-out of MAV, Eventual, and RC.

sulted in four put operations on remote replicas and, accordingly,
the cost of anti-entropy increased (e.g., each server processed four
replicas’ anti-entropy as opposed to one before, reducing the oppor-
tunity for batching and decreasing available resources for incoming
client requests). This in turn increased garbage collection activity
and, more importantly, IOPS when compared to eventual and RC,
causing MAV throughput to peak at around half of eventual. With
in-memory persistence (i.e., no LevelDB or WAL), MAV throughput
was within 20% of eventual.

We have intentionally omitted performance data for two-phase
locking. master performed far better than our textbook implemen-
tation, which, in addition to requiring a WAN round-trip per oper-
ation, also incurred substantial overheads due to mutual exclusion
via locking. We expect that, while techniques like those recently
proposed in Calvin [61] can reduce the overhead of serializable
transactions by avoiding locking, our mastered implementation and
the data from Section 2.2 are reasonable lower bounds on latency.

Transaction length. As shown in Figure 4 (clusters in Virginia and
Oregon), throughput of eventual, RC, and master operation are
unaffected by transaction length. In contrast, MAV throughput de-
creases linearly with increased transaction length: with 1 opera-
tion per transaction, MAV throughput is within 18% of eventual
(34 bytes overhead), and with 128 operations per transaction, MAV
throughput is within 60% (1898 bytes overhead). This reflects our
MAV algorithm’s metadata requirements, which are proportional to
transaction length and consume IOPS and network bandwidth. We
are currently investigating alternative HAT algorithms that do not
incur this overhead.

Read proportion. Our default (equal) proportion of reads and writes
is fairly pessimistic: for example, Facebook reports 99.8% reads
for their workload [48]. As shown in Figure 5 (clusters in Virginia
and Oregon), with all reads, MAV is within 4.8% of eventual; with
all writes, MAV is within 33%, and the throughput of eventual de-



creases by 288.8% compared to all reads. At 99.8% reads, MAV
incurs a 7% overhead (5.8% for in-memory storage).

Scale-out. One of the key benefits of our HAT algorithms is that
they are shared-nothing, meaning they should not compromise scal-
ability. Figure 6 shows that varying the number of servers across
two clusters in Virginia and Oregon (with 15 YCSB clients per
server) results in linear scale-out for eventual, RC, and MAV. RC and
eventual scale linearly: increasing the number of servers per clus-
ter from 5 to 25 yields an approximately 5x throughput increase.
For the same configurations, MAV scales by 3.8x, achieving over
260,000 operations per second. MAV suffers from contention in
LevelDB—with a memory-backed database, MAV scales by 4.25x
(not shown)—and MAV-related performance heterogeneity across
servers (Calvin’s authors report similar heterogeneity on EC2 [61]).
Initial experiments with a newer prototype including more efficient
(non-Thrift) RPC and connection pooling suggest that this scalabil-
ity can be substantially improved.

Summary. Our experimental prototype confirms our earlier analyt-
ical intuitions. HAT systems can provide useful semantics with-
out substantial performance penalties. In particular, our MAV al-
gorithm can achieve throughput competitive with eventual consis-
tency at the expense of increased disk and network utilization. Per-
haps more importantly, all HAT algorithms circumvent high WAN
latencies inevitable with non-HAT implementations. Our results
highlight Deutsch’s observation that ignoring factors such as la-
tency can “cause big trouble and painful learning experiences” [32]—
in a single-site context, paying the cost of coordination may be ten-
able, but, especially as services are geo-replicated, costs increase.

7 Related Work
We have discussed traditional mechanisms for distributed coor-

dination and several related systems in Section 6.1, but, in this sec-
tion, we further discuss related work. In particular, we discuss re-
lated work on highly available semantics, mechanisms for concur-
rency control, and techniques for scalable distributed operations.

Weak consistency and high availability have been well studied.
Serializability has long been known to be unachievable [28] and
Brewer’s CAP Theorem has attracted considerable attention [35].
Recent work on PACELC expands CAP by considering connec-
tions between “weak consistency” and low latency [1], while sev-
eral studies examine weak isolation guarantees [2, 12]. There are a
wide range of coordination-avoiding “optimistic replication” strate-
gies [55] and several recent efforts at further understanding these
strategies in light of current practice and the proliferation of “even-
tually consistent” stores [10, 13]. Notably, Bernstein and Das [13]
specifically highlight the importance of stickiness [60, 64]—which
we formalize in Section 4.1. Aside from our earlier workshop
paper discussing transactional availability, real-world ACID, and
HAT RC and I-CI [9]—which this work expands with additional
semantics, algorithms, and analysis—we believe this paper is the
first to explore the connections between transactional semantics,
data consistency, and (Gilbert and Lynch [35]) availability.

There has been a recent resurgence of interest in distributed multi-
object semantics, both in academia [15, 26, 48, 59, 61, 67] and in-
dustry [19, 25]. As discussed in Section 3, classic ACID databases
provide strong semantics but their lock-based and traditional multi-
versioned implementations are unavailable in the presence of par-
titions [14, 38]. Notably, Google’s Spanner provides strong one-
copy serializable transactions. While Spanner is highly special-
ized for Google’s read-heavy workload, it relies on two-phase com-
mit and two-phase locking for read/write transactions [25]. As we

have discussed, the penalties associated with this design are fun-
damental to serializability. For users willing to tolerate unavail-
ability and increased latency, Spanner, or similar “strongly consis-
tent” systems [65]—including Calvin [61], G-Store [26], HBase,
HStore [42], Orleans [19], Postgres-R [43], Walter [59], and a
range of snapshot isolation techniques [27]—reasonable choices.

With HATs, we seek an alternative set of transactional semantics
that are still useful but do not violate requirements for high avail-
ability or low latency. Recent systems proposals such as Swift [67],
Eiger [48], and Bolt-on Causal Consistency [11] provide transac-
tional causal consistency guarantees with varying availability and
represent a new class of sticky HAT systems. There are infinitely
many HAT models (i.e., always reading value 1 is incomparable
with always returning value 2), but a recent report from UT Austin
shows that no model stronger than causal consistency is achievable
in a sticky highly available, one-way convergent system [49]. This
result is promising and complementary to our results for general-
purpose convergent data stores. Finally, Burkhardt et al. have con-
currently developed an axiomatic specification for eventual consis-
tency; their work-in-progress report contains alternate formalism
for several HAT guarantees [18].

8 Conclusions and Future Work
The current state of database software offers uncomfortable and

unnecessary choices between availability and transactional seman-
tics. Through our analysis and experiments, we have demonstrated
how goals of high availability will remain a critical aspect of many
future data storage systems. We expose a broad design space of
Highly Available Transactions (HATs), which can offer the key
benefits of highly available distributed systems—“always on” op-
eration during partitions and low-latency operations (often orders
of magnitude lower than non-compliant)—while also providing a
family of transactional isolation levels and replica semantics that
have been adopted in practice. We also identify many semantic
guarantees that are unachievable with high availability, including
Lost Update and Write Skew anomaly prevention, concurrent up-
date prevention, and bounds on data recency. Despite these limita-
tions, and somewhat surprisingly, many of the default (and some-
times strongest) semantics provided by today’s traditional database
systems are achievable as HATs, hinting that distributed databases
need not compromise availability, low latency, or scalability in or-
der to serve many existing applications.

In this paper, we have largely focused on previously defined iso-
lation and data consistency models from the consistency from the
database and distributed systems communities. Their previous defi-
nitions and, in many cases, widespread adoption hints at their utility
to end-users. However, we believe there is considerable work to be
done to improve the programmability of highly available systems.
Isolation and data consistency are means by which application-
level consistency is achieved but are typically not end goals for
end-user applications. Our results hint that a mix of HAT and non-
HAT semantics (the latter used sparingly) is required for practical
applications, but the decision to employ each and the system ar-
chitectures for a hybrid approach remain open problems. While
we have studied the analytical and experiment behavior of several
HAT models, there is substantial work in further understanding the
performance and design of systems within the large set of HAT
models. Weakened failure assumptions as in escrow or in the form
of bounded network asynchrony could enable richer HAT seman-
tics at the cost of general-purpose availability. Alternatively, there
is a range of possible solutions providing strong semantics during
partition-free periods and weakened semantics during partitions.
Based on our understanding of what is desired in the field and new-



found knowledge of what is possible to achieve, we believe HATs
represent a large and useful design space for exploration.

Acknowledgments We would like to thank Peter Alvaro, Neil Con-
way, Evan Jones, Adam Oliner, Aurojit Panda, Shivaram Venkatara-
man, and the HotOS and VLDB reviewers for their helpful feed-
back on this work. This research was supported in part by the Air
Force Office of Scientic Research (grant FA95500810352), DARPA
XData Award FA8750-12-2-0331, the National Science Foundation
(grants CNS-0722077, IIS-0713661, and IIS-0803690), NSF CISE
Expeditions award CCF-1139158, the National Science Founda-
tion Graduate Research Fellowship (grant DGE-1106400), and by
gifts from Amazon Web Services, Google, SAP, Cisco, Clearstory
Data, Cloudera, Ericsson, Facebook, FitWave, General Electric,
Hortonworks, Huawei, Intel, Microsoft, NetApp, Oracle, Samsung,
Splunk, VMware, WANdisco, and Yahoo!.

9 References
[1] D. J. Abadi. Consistency tradeoffs in modern distributed database system

design: CAP is only part of the story. IEEE Computer, 45(2), 2012.
[2] A. Adya. Weak consistency: a generalized theory and optimistic

implementations for distributed transactions. PhD thesis, MIT, 1999.
[3] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. Hutto. Causal memory:

Definitions, implementation and programming. Dist. Comp., 9(1), 1995.
[4] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak. Consistency

analysis in Bloom: a CALM and collected approach. In CIDR 2011.
[5] ISO/IEC 9075-2:2011 Information technology – Database languages – SQL –

Part 2: Foundation (SQL/Foundation).
[6] R. Attar, P. A. Bernstein, and N. Goodman. Site initialization, recovery, and

backup in a distributed database system. IEEE Trans. Softw. Eng.,
10(6):645–650, Nov. 1984.

[7] AWS. Summary of the Amazon EC2 and Amazon RDS Service Disruption in
the US East Region. http://tinyurl.com/6ab6el6, April 2011.

[8] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Highly Available Transactions: Virtues and Limitations (Extended).
arXiv:1302.0309.

[9] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. HAT, not CAP:
Introducing Highly Available Transactions. In HotOS 2013.

[10] P. Bailis and A. Ghodsi. Eventual Consistency today: Limitations, extensions,
and beyond. ACM Queue, 11(3), March 2013.

[11] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal consistency.
In SIGMOD 2013.

[12] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A
critique of ANSI SQL isolation levels. In SIGMOD 1995.

[13] P. Bernstein and S. Das. Rethinking eventual consistency. In SIGMOD, 2013.
[14] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and

recovery in database systems, volume 370. Addison-wesley New York, 1987.
[15] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a

database on S3. In SIGMOD 2008.
[16] E. Brewer. Towards robust distributed systems. Keynote at PODC 2000.
[17] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to

causal consistency. In PDP 2004.
[18] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual consistency.

Technical Report MSR-TR-2013-39. http://tinyurl.com/bqty9yz.
[19] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin. Orleans:

cloud computing for everyone. In SOCC 2011.
[20] A. Chan and R. Gray. Implementing distributed read-only transactions. IEEE

Transactions on Software Engineering, (2):205–212, 1985.
[21] F. Chang, J. Dean, S. Ghemawat, et al. Bigtable: A distributed storage system

for structured data. In OSDI 2006.
[22] G. Clarke. The Register: NoSQL’s CAP theorem busters: We don’t drop ACID.

http://tinyurl.com/bpsug4b, November 2012.
[23] B. Cooper et al. PNUTS: Yahoo!’s hosted data serving platform. In VLDB 2008.
[24] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with YCSB. In ACM SOCC 2010.
[25] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, et al.

Spanner: Google’s globally-distributed database. In OSDI 2012.
[26] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable data store for

transactional multi key access in the cloud. In SOCC 2010, pages 163–174.
[27] K. Daudjee and K. Salem. Lazy database replication with ordering guarantees.

In ICDE 2004, pages 424–435.
[28] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned

networks. ACM CSUR, 17(3):341–370, 1985.

[29] J. Dean. Designs, lessons and advice from building large distributed systems.
Keynote at LADIS 2009.

[30] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, et al.
Dynamo: Amazon’s highly available key-value store. In SOSP 2007.

[31] A. Demers et al. Epidemic algorithms for replicated database maintenance. In
PODC, 1987.

[32] P. Deutsch. The eight fallacies of distributed computing.
http://tinyurl.com/c6vvtzg, 1994.

[33] R. Dillet. Update: Amazon Web Services down in North Virginia Reddit,
Pinterest, Airbnb, Foursquare, Minecraft and others affected. TechCrunch
http://tinyurl.com/9r43dwt, October 2012.

[34] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making
snapshot isolation serializable. ACM TODS, 30(2):492–528, June 2005.

[35] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[36] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data
centers: measurement, analysis, and implications. In SIGCOMM 2011.

[37] J. Gray. The transaction concept: Virtues and limitations. In VLDB 1981.
[38] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks and degrees of

consistency in a shared data base. Technical report, IBM, 1976.
[39] J. Hamilton. Stonebraker on CAP Theorem and Databases.

http://tinyurl.com/d3gtfq9, April 2010.
[40] P. Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR

2007.
[41] M. Herlihy and N. Shavit. The art of multiprocessor programming. 2008.
[42] R. Kallman et al. H-store: a high-performance, distributed main memory

transaction processing system. In VLDB 2008.
[43] B. Kemme. Database replication for clusters of workstations. PhD thesis,

EPFL, 2000.
[44] K. Kingsbury and P. Bailis. The network is reliable. June 2013.

http://aphyr.com/posts/288-the-network-is-reliable.
[45] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of internet stability

and backbone failures. In FTCS 1999.
[46] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, July 1978.
[47] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: Fault tolerant

engineered networks. In NSDI 2013.
[48] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger

semantics for low-latency geo-replicated storage. In NSDI 2013.
[49] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, convergence.

Technical Report TR-11-22, CS Department, UT Austin, May 2011.
[50] A. Markopoulou et al. Characterization of failures in an operational IP

backbone network. IEEE/ACM TON, 16(4).
[51] D. McCullagh. How Pakistan knocked YouTube offline (and how to make sure

it never happens again). CNET, http://tinyurl.com/c4pffd, February 2008.
[52] R. McMillan. Research experiment disrupts internet, for some. Computerworld,

http://tinyurl.com/23sqpek, August 2010.
[53] P. P. S. Narayan. Sherpa update. YDN Blog, http://tinyurl.com/c3ljuce,

June 2010.
[54] F. Pedone and R. Guerraoui. On transaction liveness in replicated databases. In

Pacific Rim International Symposium on Fault-Tolerant Systems, 1997.
[55] Y. Saito and M. Shapiro. Optimistic replication. ACM Comput. Surv., 37(1),

Mar. 2005.
[56] A. Schiper and M. Raynal. From group communication to transactions in

distributed systems. CACM, 39(4), 1996.
[57] L. Segall. Internet routing glitch kicks millions offline. CNNMoney,

http://tinyurl.com/cmqqac3, November 2011.
[58] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study

of convergent and commutative replicated data types. INRIA TR 7506, 2011.
[59] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for

geo-replicated systems. In SOSP, pages 385–400, 2011.
[60] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, et al.

Session guarantees for weakly consistent replicated data. In PDIS 1994.
[61] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. Abadi. Calvin: Fast

distributed transactions for partitioned database systems. In SIGMOD 2012.
[62] D. Turner, K. Levchenko, J. C. Mogul, S. Savage, and A. C. Snoeren. On failure

in managed enterprise networks. HP Labs HPL-2012-101, 2012.
[63] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. California fault lines:

understanding the causes and impact of network failures. SIGCOMM 2011.
[64] W. Vogels. Eventually consistent. CACM, 52(1):40–44, Jan. 2009.
[65] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database

replication techniques: A three parameter classification. In SRDS 2000.
[66] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: avoiding long tails in the

cloud. In NSDI, 2013.
[67] M. Zawirski, A. Bieniusa, V. Balegas, N. Preguica, S. Duarte, M. Shapiro, and

C. Baquero. Geo-replication all the way to the edge. Personal communication
and draft under submission. http://tinyurl.com/cp68svy.

http://tinyurl.com/6ab6el6
http://tinyurl.com/bqty9yz
http://tinyurl.com/bpsug4b
http://tinyurl.com/c6vvtzg
http://tinyurl.com/9r43dwt
http://tinyurl.com/d3gtfq9
http://aphyr.com/posts/288-the-network-is-reliable
http://tinyurl.com/c4pffd
http://tinyurl.com/23sqpek
http://tinyurl.com/c3ljuce
http://tinyurl.com/cmqqac3
http://tinyurl.com/cp68svy

	Introduction
	Why High Availability?
	Network Partitions at Scale
	Latency and Planet Earth

	ACID in the Wild
	High Availability
	Sticky Availability
	Transactional Availability

	Highly Available Transactions
	Achievable HAT Semantics
	ACID Isolation Guarantees
	ACID Atomicity Guarantees
	Session Guarantees
	Additional HAT Guarantees

	Unachievable HAT Semantics
	Unachievable ACID Isolation
	Unachievable Recency Guarantees
	Durability

	Summary

	HAT Implications
	HA and Existing Algorithms
	Application Requirements
	Experimental Costs

	Related Work
	Conclusions and Future Work
	References

