
Scaling the Mobile Millennium System in the Cloud

Timothy Hunter, Teodor Moldovan, Matei Zaharia, Samy Merzgui, Justin Ma,
Michael J. Franklin, Pieter Abbeel, Alexandre M. Bayen

University of California, Berkeley

ABSTRACT
We report on our experience scaling up the Mobile Millennium traf-
fic information system using cloud computing and the Spark cluster
computing framework. Mobile Millennium uses machine learning
to infer traffic conditions for large metropolitan areas from crowd-
sourced data, and Spark was specifically designed to support such
applications. Many studies of cloud computing frameworks have
demonstrated scalability and performance improvements for sim-
ple machine learning algorithms. Our experience implementing a
real-world machine learning-based application corroborates such
benefits, but we also encountered several challenges that have not
been widely reported. These include: managing large parameter
vectors, using memory efficiently, and integrating with the appli-
cation’s existing storage infrastructure. This paper describes these
challenges and the changes they required in both the Spark frame-
work and the Mobile Millennium software. While we focus on a
system for traffic estimation, we believe that the lessons learned are
applicable to other machine learning-based applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming.

General Terms
Algorithms, Performance, Experimentation.

1. INTRODUCTION
Cloud computing promises to democratize parallel data process-

ing by making large server farms available to organizations that
lack such resources in-house. However, scaling real-world applica-
tions raises issues that are often unexplored by cloud researchers.
To this end, we report our experience scaling one such application:
the Mobile Millennium traffic information system developed at UC
Berkeley [11].

Mobile Millennium is a traffic estimation and prediction system
that infers traffic conditions using GPS measurements from drivers
running cell phone applications, taxicabs, and other mobile and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11, October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

static data sources. The system was initially deployed in the San
Francisco Bay area and later extended to other locations such as
Sacramento and Stockholm. For San Francisco alone, the system
processes about 500,000 data points per day from taxicabs, in ad-
dition to data from various other sources.

Although we initially developed Mobile Millennium as a set of
single-node services, we recently decided to parallelize the costlier
stages of the system using the cloud to achieve three key bene-
fits: timelier predictions, scalability to larger road networks, and
the ability to use more accurate, but more computationally expen-
sive traffic models. This paper discusses lessons learned paralleliz-
ing one of the main algorithms in the system: an expectation max-
imization (EM) algorithm that estimates traffic conditions on city
roads.

We believe that our work will be of interest to cloud researchers
for several reasons. First, our EM algorithm is representative of a
large class of iterative machine learning algorithms, including clus-
tering, classification, and regression methods, for which popular
cloud programming frameworks like Hadoop and Dryad are often
inefficient [7, 10, 15]. Our lessons are likely applicable to these
applications too.

Second, although researchers have developed several specialized
programming models for iterative algorithms [10, 5, 28, 15, 21],
many of these systems have only been evaluated on simple appli-
cations. We found that our more complex real-world application
posed several challenges that have not been explored extensively,
such as disseminating large parameter vectors and utilizing mem-
ory efficiently.

Finally, our application had to function as a component of a large
existing system, leading to additional challenges integrating cloud
and non-cloud infrastructure. For example, one such bottleneck
was storage: Mobile Millennium uses a PostgreSQL server for com-
mon data, which performed surprisingly poorly under the bursty
request pattern generated by multiple worker nodes running in par-
allel.

We implemented the traffic estimation algorithm in Spark, a frame-
work for in-memory cluster computing that was designed specifi-
cally to support iterative algorithms [28]. The lessons from this
real-world application have provided valuable feedback into Spark’s
design, and as a result we derived optimizations that sped up the ap-
plication by 2–3× each.

Ultimately, we were able to achieve the scalability goals that
brought us to the cloud: our system scales to 160 cores and can
process data with a more accurate traffic model than the one we
initially used, at a rate faster than real-time.

From a traffic estimation perspective, one of the major advan-
tages of the work we report on here is the distribution of compu-
tation on cloud platforms in an efficient manner, without micro-

Figure 1: Schematic architecture of the Mobile Millennium sys-
tem.

management of the computation by the user. Because typical traf-
fic engineering systems require the partitioning of computational
resources into clusters that usually reflect geographic areas and/or
levels of data activity in specific segments of the transportation net-
work, engineers designing computational infrastructure to support
real-time traffic inference have to manually allocate nodes to tasks a
priori. The proposed framework using Spark enables the automated
allocation of these nodes at scale, with only minor parametrization
on the part of the user, a capability that has high potential impact in
the field of traffic monitoring.

We start with an overview of the Mobile Millennium system (Sec-
tion 2) and the traffic estimation algorithm (Section 3). We then
introduce the Spark framework and explain how we used it to par-
allelize the algorithm (Section 4). Next, we discuss the more sur-
prising bottlenecks we found in our cloud implementation and the
resulting optimizations (Section 5). We evaluate our implementa-
tion and these optimizations in Section 6. We survey related work
in Section 7 and conclude in Section 8.

2. THE MOBILE MILLENNIUM SYSTEM
Traffic congestion affects nearly everyone in the world due to the

environmental damage and transportation delays it causes. The 2007
Urban Mobility Report [23] states that traffic congestion causes 4.2
billion hours of extra travel in the United States every year, which
accounts for 2.9 billion extra gallons of fuel and an additional cost
of $78 billion. Providing drivers with accurate traffic information
reduces the stress associated with congestion and allows drivers to
make informed decisions, which generally increases the efficiency
of the entire road network [4].

Modeling highway traffic conditions has been well-studied by
the transportation community with work dating back to the pio-
neering work of Lighthill, Whitham and Richards [14]. Recently,
researchers demonstrated that estimating highway traffic conditions
can be done using only GPS probe vehicle data [25]. Arterial roads,
which are major urban city streets that connect population centers
within and between cities, provide additional challenges for traffic
estimation. Recent studies focusing on estimating real-time arte-
rial traffic conditions have investigated traffic flow reconstruction
for single intersections using dedicated traffic sensors. Dedicated
traffic sensors are expensive to install, maintain and operate, which
limits the number of sensors that governmental agencies can de-
ploy on the road network. The lack of sensor coverage across the

Figure 2: An example output of traffic estimates on the Mobile
Millennium visualizer

arterial network thus motivates the use of GPS probe vehicle data
for estimating traffic conditions.

The work we present represents one component of the UC Berke-
ley Mobile Millennium project [11]. One of the goals of the project
is to assess the capability of GPS-enabled mobile phones to provide
traffic data that can be used to estimate real-time conditions, fore-
cast future conditions, and provide optimal routing in a network
with stochastically varying traffic conditions. The project has re-
sulted in a real-time traffic estimation system that combines ded-
icated sensor data with GPS data from probe vehicles. The Mo-
bile Millennium project comprises more than eight million lines
of Java code and is supported by a professional team of engineers.
The software has been deployed on various architectures by indus-
try and academic partners who are part of this effort [11]. As such,
this work follows standard practices from industrial development
and represents a large effort.

The Mobile Millennium system incorporates a complete pipeline
for receiving probe data, filtering it, distributing it to estimation
engines and displaying it, all in in real-time, as pictured in Fig-
ure 1. This software stack, written in Java, evaluates probabilistic
distribution of travel times over the road links, and uses as input
the sparse, noisy GPS measurements from probe vehicles. A first
proof of concept of this stack was written in Python [12], and an
early cloud prototype was developed using the Hadoop interface to
Python. This prototype was then rewritten in Scala (a high-level
language for the Java VM) to accommodate the Spark program-
ming interface and to leverage the infrastructure of the Mobile Mil-
lennium system (which is in Java).

The most computation-intensive parts of this pipeline have all
been ported to a cloud environment. We briefly describe the opera-
tions of the pipeline, pictured in figure 3.
• We map each point of raw (and possibly noisy) GPS data to a

collection of nearby candidate projections on the road network
(Fig. 3(a)).

• For each vehicle, we reconstruct the most likely trajectory using
a Conditional Random Field [13] (Fig. 3(b)).

• Each segment of the trajectory between two GPS points is re-
ferred as an observation (Fig. 3(c)). An observation consists in
a start time, an end time and a route on the road network. This
route may span multiple road links, and starts and ends at some
offset within some links.

• The observations are grouped into time intervals and sent to
a traffic estimation engine, which runs the learning algorithm
described in the next section and returns distributions of travel
times for each link (Fig. 3(d)).

(a) GPS points and can-
didate projections

(b) Trajectory extraction

(c) Filtered observations (d) Traffic estimation al-
gorithm

Figure 3: Arterial traffic estimation process.

• The travel time distributions are then stored and broadcast to
clients and to a web interface shown in Figure 2.

It is important to point out that MM is intended to work at the
scale of large metropolitan areas. The road network considered
in this work is a real road network (a large portion of San Fran-
cisco downtown and of the greater Bay Area, comprising 25000
road links) and the data is collected from the field (as opposed to
simulated). A consequence of this setting is the scalability require-
ment for the traffic algorithms we employ. Thus, from the outset,
our research has focused on designing algorithms that could work
for large urban areas with hundreds of thousands of links and mil-
lions of observations.

3. TRAFFIC ESTIMATION ALGORITHM
The goal of the traffic estimation algorithm is to infer how con-

gested the links are in an arterial road network, given periodic GPS
readings from vehicles moving through the network. We model the
network as a graph (V,E), where V are the vertices (road intersec-
tions) and E are the links (streets). For each link e ∈ E, where n
is the total number of links in the network, the algorithm outputs
the time it takes to traverse the link as a probability distribution. To
make the inference problem tractable, we model the link traversal
times for each link e as an independent Gamma distribution with
parameters θe (as shorthand, we let θe represent the two values that
parametrize a Gamma distribution).1

The algorithm inputs are the road network (V,E), as well as the

1We experimented with a few standard distributions from the lit-
erature (Gamma, Normal and Log-normal). Based on our ex-
periments, the Gamma distribution fit the data best. Computing
the most likely Gamma distribution from a set of samples has no
closed-form solution and is more expensive than in the case of the
Normal or Log-normal distributions, but was deemed worthwhile
for the added accuracy.

Y1 Y2 Y3 · · · Ym

S1 S2 S3 · · · Sm

X1 · · · Xn

θ1 · · · θn

database Broadcast road network and
load observations

Draw samples for each observa-
tions and weigh them by their
likelihood (E step)

Collect samples by link (Shuffle
step)

Compute maximum likelihood
estimate of parameters based on
samples (M step)

Broadcast link distribution pa-
rameters and iterate

Figure 4: Data flow in the importance sampling EM algorithm
we employed. The algorithm iterates through the E, shuffle and
M steps until it converges.

observed trajectories of GPS-equipped vehicles Y . Each observa-
tion Yi describes the i-th trajectory’s travel time and path (which
consists of one or more road links) as inferred by earlier stages of
the Mobile Millennium pipeline. Physical properties of the road
network, such as speed limits and link lengths, are also taken into
account.

Estimating the travel time distributions is made difficult by the
fact that we do not observe travel times for individual links. In-
stead, each observation only specifies the total travel time for an
entire list of links traveled. To get around this problem, we use
an iterative expectation maximization (EM) algorithm [8, 19]. The
central idea of the algorithm is to randomly partition the total travel
time among links for each observation, then weigh the partitions by
their likelihood according to the current estimate of travel time dis-
tributions. Next, given the weighted travel time samples produced
for each link, we update the travel time distribution parameters for
the link to maximize the likelihood of these weighted samples. By
iteratively repeating this process, the algorithm converges to a set
of travel time distribution parameters that fit the data well. The
sample generation stage is called the expectation (E) step, while
the parameter update stage is called the maximization (M) step.

Figure 4 shows the data flow in the algorithm in more detail. In
the E-step, we generate per-link travel time samples from whole
trajectories; specifically, for each trajectory Yi, we produce a set of
samples Si = {(sei ,wei)}ei∈Yi by randomly dividing Yi’s observed
travel time among its constituent links (producing a travel time sei

for each edge ei ∈ Yi), and we assign a weight wei as the likelihood
of travel time sei according to e’s current travel time distribution
θe. In the shuffle step, we regroup the samples in the Si’s by link,
so that each link e now has samples Xe = {(sei ,wei)} from all the
trajectories that go over it. In the M-step, we recompute the param-
eters θe to fit link e’s travel time distribution to the samples Xe.

The model needs to be configured with several free parameters,
such as the number of samples and a regularization prior. We chose
these based on test runs with a small dataset.

Next, we describe how we parallelized the algorithm using Spark
(Section 4), and the challenges that we encountered in executing
algorithm efficiently in the cloud (Section 5).

4. SPARK FRAMEWORK
We parallelize our EM algorithm using Spark [27, 28], a cluster

computing framework developed at Berkeley. Spark offers several

// Load observations into memory as a cached RDD
observations = spark.textFile(“hdfs://...”)
 .map(parseObservation).cache()

params = // Initialize parameter values

while (!converged) {
 // E-step: generate (linkId, sampledVals) pairs
 samples = observations.map(
 ob => generateSamples(ob, params))

 // Shuffle and M-step: group samples for each link,
 // update params, and return them to the master
 params = samples.groupByKey().map(
 (linkId, vals) => updateParam(linkId, vals)
).collect()
}

Figure 5: Simplified Spark code for the EM algorithm. Spark
ships the Scala code fragments passed to each map operation
transparently to the cluster, along with any variables they de-
pend on.

benefits. First, it provides a high-level programming model using a
language-integrated syntax similar to DryadLINQ [26], saving sub-
stantial development time over lower-level frameworks like MPI.
Second, Spark programs are written in Scala [3], a high-level lan-
guage for the JVM, which allows us to integrate with the Java code-
base of Mobile Millennium. Third, Spark is explicitly designed to
support iterative algorithms, such as EM, more efficiently than data
flow frameworks like MapReduce and Dryad.

Spark’s programming model centers on parallel collections of
objects called resilient distributed datasets (RDDs). Users can de-
fine RDDs from files in a storage system and transform them through
data-parallel operations such as map, filter, and reduce, similar to
how programmers manipulate data in DryadLINQ and Pig [20].
However, unlike in these existing systems, users can also control
the persistence of an RDD, to indicate to the system that they will
reuse an RDD in multiple parallel operations. In this case, Spark
will cache the contents of the RDD in memory on the worker nodes,
making reuse substantially faster. At the same time, Spark tracks
enough information about how the RDD was built to reconstruct it
efficiently if a node fails. This in-memory caching is what makes
Spark faster than MapReduce or Dryad for iterative computations:
in existing systems, iterative applications have to be implemented
as a series of independent MapReduce or Dryad jobs, each of which
reads state from disk and writes it back out to disk, incurring sub-
stantial I/O and object serialization overhead.

To illustrate the programming model, we show simplified Spark
code for the EM algorithm in Figure 5. Recall that the EM algo-
rithm consists of the E-step, where we generate random travel time
samples for each link in each trajectory observed, the shuffle step,
where we group these samples by link, and the M-step, where we
use the grouped values to estimate the new per-link travel distribu-
tion parameters. These steps can readily be expressed as a MapRe-
duce computation, which we implement in Spark using the map and
groupByKey operations. Note, however, that each iteration of the
EM algorithm will reuse the same dataset of original observations.
The code thus starts by loading the observations into an in-memory
cached RDD, by passing a text file through a parseObservation
function that reads each line of text into a Scala class representing
the observation. We then reuse this RDD to update the link param-
eters.

We found this in-memory caching capability crucial for perfor-
mance in both EM and other iterative machine learning algorithms.
In the Mobile Millennium application, caching provided a 2.8×
speedup. In other, less CPU-intensive applications, we have seen
speedups as large as 30× [27]. Other cluster computing frame-
works, such as Twister [10] and Piccolo [21], have also been built
around in-memory storage for the same reason, and our results cor-
roborate their findings.

5. OPTIMIZATIONS AND LESSONS
Although the EM algorithm can readily be expressed using Spark

(as well as other frameworks) and benefits substantially from in-
memory storage, we found that several other optimizations that
are less studied in the literature were necessary to achieve good
performance and scalability. We now discuss three of these opti-
mizations: efficient memory utilization, efficient broadcast of large
objects, and optimized access to the application’s storage system.

5.1 Memory Utilization
Several recent cluster computing frameworks, including Twister

[10], Piccolo [21], and Spark, are designed explicitly to support it-
erative applications by providing in-memory storage. As discussed
in the previous section, our results validate the benefit of this fea-
ture: in our application, it can yield a 2.8× speedup. Nonetheless,
we found that simply having in-memory storage facilities available
in the framework was insufficient to achieve good performance in
a complex application like traffic estimation.

One of the main challenges we encountered was efficient utiliza-
tion of memory. Unlike simpler machine learning applications that
cache and operate on large numeric vectors, our application cached
data structures representing paths traveled by vehicles or sets of
links parameters. When we first implemented these data structures
using idiomatic Java constructs, such as linked lists and hashtables,
we quickly exhausted the memory on our machines, consuming
more than 4× the size of the raw data on disk. This happened be-
cause the standard data structures, especially pointer-based ones,
incur considerable storage overhead per item. For example, in a
Java LinkedList, each entry costs 24 bytes (for an object header
and pointers to other entries) [18], whereas the values we stored in
these lists were often 4-byte ints or floats. With this much over-
head, running an algorithm in memory can be much costlier than
anticipated; indeed, our first attempts to use caching ran slower
than a disk-based version because they were constantly garbage-
collecting.

Solution and Lessons Learned: We improved our memory utiliza-
tion by switching to array-backed data structures where possible for
the objects we wanted to cache and minimizing the number of data
structures that contained small objects and many pointers. One dif-
ficult part of the problem was simply recognizing the cause of the
bloat: Java (and Scala) programmers are typically unaware of the
overhead of simple collection types. However, switching to more
compact data representations did not come for free: we lost some
of the convenience of working with idiomatic data types in a high-
level language in the process. In general, one of the main reasons
why programmers use tools like Hadoop and DryadLINQ is that
they can program in a high-level language (e.g., Java or C#). While
the memory overhead of these languages did not matter for systems
that stream records from disk, such as MapReduce and Dryad, it
becomes important for in-memory computing frameworks.

We believe that framework designers can do a lot to help users
utilize memory efficiently. In particular, it would be useful for
frameworks to provide libraries that expose an idiomatic collec-

net = readRoadNetwork()

observations.map(
 ob => process(ob, net)
)

net = readRoadNetwork()
bv = spark.broadcast(net)

observations.map(
 ob => process(ob, bv.get())
)

a) Original b) With Broadcast Variables

Figure 6: Example Spark syntax showing how to use broadcast
variables to wrap a large object (net) that should only be sent
to each node once.

tion interface but pack data efficiently, and tools for pinpointing
the sources of overhead. We are developing both types of tools for
Spark. For example, the system now supports a “serializing” ver-
sion of the cache that marshals each object cached into a byte ar-
ray using a fast serialization format similar to Protocol Buffers [1],
which can save space even for simple data like strings and integers.

5.2 Broadcast of Large Parameter Vectors
Parallel machine learning algorithms often need to broadcast data

to the worker nodes, either at the beginning of the job or at each it-
eration. For example, in our traffic estimation algorithm, we needed
to broadcast the road network to all the nodes at the start of the job,
as well as the updated parameters computed after each iteration.

In the simple machine learning algorithms commonly evaluated
in the systems literature, such as k-means and logistic regression,
these broadcast values are small (hundreds of bytes each). In our
application, they were considerably larger: about 38 MB for the
road network of the Bay Area. We have seen even larger parameter
vectors in other Spark applications: for example, the spam classi-
fier in [22] had a parameter vector hundreds of MB in size, with a
feature for each of several million terms, and this vector needed to
be re-broadcast after each iteration.

Initially, our application performed poorly because we packaged
the parameter vectors needed with each task (i.e., partition of a job)
sent to the cluster, which was the default behavior in Spark. The
master node’s bandwidth became a bottleneck, capping the rate at
which tasks could be launched and limiting our scalability.

Solution and Lessons Learned: To mitigate the problem of large
parameter vectors, we added an abstraction called broadcast vari-
ables to Spark, which allows a programmer to send a piece of data
to each slave only once, rather than with every task that uses the
data [28]. To the programmer, broadcast variables look like wrap-
per objects around a value, with a get() method that can be called
to obtain the value. The variable’s value is written once to a dis-
tributed file system, from which it is read once by each node the
first time that a task on the node calls get(). We illustrate the syn-
tax for broadcast variables in Figure 6.

We used broadcast variables to send both static data that is used
throughout the job, such as the road vector, and the new parame-
ter vectors computed on each iteration. As we show in Section 6,
broadcast variables improved the performance of our data loading
phase by about 4.6×, and the speed of the overall application by
1.6×.

For larger parameter vectors, such as the approximately 100 MB
vector in the spam classification job above, even reading the data
once per node from a distributed file system is a bottleneck. This
led us to implement more efficient broadcast methods in Spark,
such as a BitTorrent-like mechanism optimized for datacenter net-
works called Cornet [6].2 Because many real-world machine learn-
2The main optimizations in Cornet are a topology-aware data

ing applications have large parameter vectors (with features for
each word in a language, each link in a graph, etc.), we believe
that efficient broadcast primitives will be essential to support them.

5.3 Access to On-Site Storage System
One of the more surprising bottlenecks we encountered was ac-

cess to our application’s storage system. Following standard prac-
tices, Mobile Millennium uses a PostgreSQL database to host infor-
mation shared throughout our pipeline (including the road network
and the observations received over time). We chose PostgreSQL
for its combination of reliability, convenience, and support for ge-
ographic data through PostGIS [2]. Cloud storage solutions were
not widespread at the time of the choice, but we soon realized that
our common storage solution was ill-suited to cloud computations.
Indeed, while PostgreSQL had served our on-site pipeline without
problems, it performed very poorly under the access pattern of our
parallel algorithm: the application initially spent more than 75% of
its time waiting on the database.

The problem behind this slowdown was the burstiness of the ac-
cess pattern of the parallel application. The database had to service
a burst of hundreds of clients reading slices of the observation data
when the application started, as well as a similar burst of writes
when we finished computing. The total volume of data we read
and wrote was not large—about 800 MB—so it should have been
within the means of a single server. However, the contention be-
tween the simultaneous queries slowed them down dramatically.

Solution and Lessons Learned: We ultimately worked around the
problem by periodically exporting the data from PostgreSQL to a
Hadoop file system (HDFS) instance on EC2. We still use the Post-
greSQL database as the primary storage of the system, however,
due to its richer feature set (e.g., geographic queries with PostGIS)
and wider accessibility through SQL-based interfaces. Therefore,
although the HDFS caching approach removed the bottleneck, it
introduced new management challenges, as we must keep HDFS
consistent with the database. Mobile Millennium receives new data
every few minutes—eventually, we would prefer a solution that lets
us access new data from the cloud as soon as it arrives.

We believe that database implementers can do a lot to support
the bursty patterns of requests from workers in parallel applica-
tions. Neither the amount of data we read nor the amount of data
we wrote was beyond the means of a single server (both were sev-
eral hundred MB), but the bursty access pattern was simply not
well-supported by the engine. Most likely, database engines will
need to recognize the parallel query workload introduced by dis-
tributed applications, either through hints in the queries or heuris-
tics that watch for similar requests, and to order the requests in
an efficient manner to avoid excessive disk seeks. In general, en-
abling developers to use the same storage system for both on-site
and cloud applications would be a key step in making the cloud
more widely accessible for parallel data processing, and given the
near-ubiquitous use of RDBMSes in existing applications, they are
a natural place to start.

6. PERFORMANCE EVALUATION
In this section, we evaluate how much the cloud implementa-

tion and its associated memory, broadcast and storage optimiza-
tions (Section 5) helped with scaling the Mobile Millennium EM
traffic estimation algorithm.

As mentioned in Section 2, we originally designed and proto-
typed the algorithm in the Python programming language, to work

dissemination scheme and large block sizes suitable for high-
bandwidth, low-latency networks.

20 40 80 160
0

2,000

4,000

Number of cores

R
un

tim
e

(s
)

M step
Shuffle step

E step

(a) Amazon EC2

16 80 160 320 640
0

2,000

4,000

Number of cores

R
un

tim
e

(s
)

M step
Shuffle step

E step

(b) NERSC Cluster

Figure 7: Running time experiments on different clusters. See section 5 for details.

on a single node. However, working on a single computer quickly
revealed its limitations: the code would take 40 minutes per itera-
tion to process a single 30 minute time interval of data! Moreover,
the amount of memory available on a single machine would limit
the number of observations considered, as well as the number of
samples generated. Distributing the computation across machines
provides a twofold advantage: each machine can perform compu-
tations in parallel, and the overall amount of memory available is
much greater. To understand how restricted the single-machine de-
ployment was, we could only generate 10 samples for each obser-
vation in the E-step in order for the computation to stay within the
machine’s 10 GB limit. Because the single-node implementation
could not generate enough E-step samples to create a good approx-
imation of the travel time distribution, the accuracy of the algorithm
was limited as well. By contrast, using a 20-node cluster and letting
the E-step generate 300 samples per observation, the computation
was an order of magnitude faster, and the accuracy of the predicted
models increased significantly.

Scaling. First, we evaluated how the runtime performance of the
EM job could improve with an increasing number of nodes/cores.
The job was to learn the historical traffic estimate for San Francisco
downtown for a half-hour time-slice. This data included 259,215
observed trajectories, and the network consisted of 15,398 road
links. We ran the experiment on two cloud platforms: the first was
using Amazon EC2 m1.large instances with 2 cores per node, and
the second was a cloud managed by the National Energy Research
Scientific Computing Center (NERSC) with 4 cores per node. Fig-
ure 7(a) shows near-linear scaling on EC2 until 80–160 cores. Fig-
ure 7(b) shows near-linear scaling for all the NERSC experiments.
The limiting factor for EC2 seems to have been network perfor-
mance. In particular, some tasks were lost due to repeated connec-
tion timeouts.

Individual optimizations. We evaluated the effects of the in-
dividual optimizations discussed in Section 5. For these experi-
ments we ran the experiments on a 50-node Amazon EC2 cluster
of m1.large instances, and used a data set consisting of 45× 106

observations split into 800 subtasks.
With respect to the data loading (Section 5.3) we looked at three

configurations: (a) connecting to the main database of Mobile Mil-
lennium which stores the master copy of the data, (b) connect-
ing to a cloud-hosted version of the Mobile Millennium DB, and
(c) caching data from the main DB to the cloud’s HDFS. Table 1
shows the throughput for loading data under each configuration,
and shows that our final solution (c) shows a three orders of mag-
nitude improvement over the original implementation using (a).3

To evaluate the benefit of in-memory computation (Section 5.1),
we compared the run times of the EM job without caching (i.e.,

3Although we do not report the extraction and preprocessing over-
head for (c), this initial cost is amortized over the number of repe-
titions we perform for the experiments.

Table 1: Data loading throughput for various storage configu-
rations.

Configuration Throughput
Connection to on-site DB 239 records/sec
Connection to cloud-hosted DB 6,400 records/sec
Main DB data cached in HDFS 213,000 records/sec

Table 2: Comparison of EM runtimes with different settings:
a single-core version, a parallel version with all our optimiza-
tions, and parallel versions with no caching and no broadcast.

Configuration Load time E step Shuffling M step
Single core 4073 6276 18578 7550
Parallel 468 437 774 936
No caching 0 2382 2600 835
No broadcast 2148 442 740 1018

reloading data from HDFS on each iteration) and with in-memory
caching (Table 2). Without caching, the runtime was 5,800 sec-
onds. With caching, the runtime was reduced to 2,100 seconds,
providing a nearly 3× speedup. Most of this improvement comes
from reducing the runtime of the E-step and the shuffle step since
they read the cached observations. The M-step does not improve
because it reads newly-generated per-link samples (which have to
be regenerated on each iteration as per Section 3), and the current
implementation of shuffle writes its outputs to disk to help with
fault tolerance.

Finally, we explore the benefit of broadcasting parameters (Sec-
tion 5.2). A copy of the road network graph must be available to
every worker node as it loads and parses the observation data, so
broadcast is crucial. To this end, we evaluated how long it took
to load 45 million observations over a 50-node cluster when (1) a
copy of the road network graph is bundled with each task and (2)
the network graph is broadcast ahead of time. The network graph
for the Bay Area was 38 MB, and it took 8 minutes to parse the
observations using a broadcast network graph — by contrast, the
loading time was 4.5 times longer without broadcasting.

7. RELATED WORK
There has recently been great interest in running sophisticated

machine learning applications in the cloud. Chu et al. showed that
MapReduce can express a broad class of parallel machine learning
algorithms, and that it provides substantial speedups on multicore
machines [7]. However, as we discussed in this article, these algo-
rithms encounter scaling challenges when we want to expand be-
yond a single machine and run them on a public cloud. The main
remedies to these challenges involve exploiting data locality and
reducing network communication between nodes.

In the systems literature, Twister, Spark, HaLoop and Piccolo

provide MapReduce-like programming models for iterative compu-
tations using techniques such as in-memory storage [10, 28, 5, 21].
GraphLab and Pregel also store data in memory, but provide a
message-passing model for graph computations [15, 16]. While
these systems enable substantial speedups, we found that issues
other than in-memory storage, such as broadcast of large param-
eter vectors, also posed challenges in our application. We wish to
highlight these challenges by describing a more complex real-world
application than the simple benchmarks commonly employed.

Recent work in large-scale machine learning has addressed some
of the algorithmic issues in scaling applications to the cloud. Mc-
Donald et al. [17] discuss distributed training strategies over MapRe-
duce where data is partitioned across nodes, and nodes perform
local gradient descent before averaging their model parameters be-
tween iterations. Other studies about distributed dual averaging op-
timization methods [9] and distributed EM [24] explored the net-
work bandwidth savings, and some optimization algorithms that
restrict the communication topology of the worker nodes.

8. CONCLUSIONS
We have presented our experience scaling up the Mobile Mil-

lennium traffic information algorithm in the cloud and identified
lessons that we believe will also apply to other complex machine
learning applications. Our work affirmed the value of in-memory
computation for iterative algorithms, but also highlighted three chal-
lenges that have been less studied in the systems literature: efficient
memory utilization, broadcast of large parameter vectors, and in-
tegration with off-cloud storage systems. All three factors were
crucial for performance. We hope that these lessons will be of in-
terest to designers of cloud programming frameworks and storage
systems. Our experiences with Mobile Millennium have already
influenced the design of the Spark framework.

Acknowledgements
This research is supported in part by gifts from Google, SAP, Ama-
zon Web Services, Cloudera, Ericsson, Huawei, IBM, Intel, Mark
Logic, Microsoft, NEC Labs, Network Appliance, Oracle, Splunk
and VMWare, by DARPA (contract #FA8650-11-C-7136), and by
the National Sciences and Engineering Research Council of Canada.
The generous support of the US Department of Transportation and
the California Department of Transportation is gratefully acknowl-
edged. We also thank Nokia and NAVTEQ for the ongoing part-
nership and support through the Mobile Millennium project.

References
[1] Kryo – Fast, efficient Java serialization. http://code.

google.com/p/kryo.
[2] PostGIS. http://postgis.refractions.net.
[3] Scala programming language. http://scala-lang.org.
[4] X. Ban, R. Herring, J. Margulici, and A. Bayen. Optimal sen-

sor placement for freeway travel time estimation. Proceed-
ings of the 18th International Symposium on Transportation
and Traffic Theory, July 2009.

[5] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient iterative data processing on large clusters. In VLDB,
2010.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica.
Managing data transfers in computer clusters with Orchestra.
In SIGCOMM, 2011.

[7] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y.
Ng, and K. Olukotun. Map-reduce for machine learning on
multicore. In NIPS, 2007.

[8] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the

Royal Statistical Society. Series B (Methodological), pages 1–
38, 1977.

[9] J. Duchi, A. Agarwal, and M. Wainwright. Distributed dual
averaging in networks. In NIPS, 2010.

[10] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox. Twister: a runtime for iterative mapre-
duce. In HPDC ’10, 2010.

[11] Mobile Millennium Project. http://traffic.berkeley.
edu.

[12] T. Hunter, R. Herring, A. Bayen, and P. Abbeel. Path and
travel time inference from gps probe vehicle data. In NIPS
Analyzing Networks and Learning with Graphs, 2009.

[13] T. Hunter, R. Herring, A. Bayen, and P. Abbeel. Trajectory
reconstruction of noisy GPS probe vehicles in arterial traffic.
In preparation for IEEE Transactions on Intelligent Transport
Systems, 2011.

[14] M. Lighthill and G. Whitham. On kinematic waves. II. A
theory of traffic flow on long crowded roads. Proceedings
of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 229(1178):317–345, May 1955.

[15] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Graphlab: A new parallel framework for
machine learning. In UAI, 2010.

[16] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-
scale graph processing. In SIGMOD, 2010.

[17] R. T. McDonald, K. Hall, and G. Mann. Distributed training
strategies for the structured perceptron. In Conference of the
North American Chapter of the Association of Computation
Linguistics, pages 456–464, 2010.

[18] N. Mitchell and G. Sevitsky. Building memory-efficient Java
applications: Practices and challenges. PLDI 2009 Tutorial.

[19] R. Neal and G. Hinton. A view of the em algorithm that
justifies incremental, sparse, and other variants. Learning in
graphical models, 89:355–368, 1998.

[20] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In
SIGMOD, 2008.

[21] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In OSDI, 2010.

[22] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design
and evaluation of a real-time url spam filtering service. In
IEEE Symposium on Security and Privacy, May 2011.

[23] TTI. Texas Transportation Institute: Urban Mobility In-
formation: 2007 Annual Urban Mobility Report. http:
//mobility.tamu.edu/ums/, 2007.

[24] J. Wolfe, A. Haghighi, and D. Klein. Fully distributed EM for
very large datasets. In ICML, 2008.

[25] D. Work, S. Blandin, O. Tossavainen, B. Piccoli, and
A. Bayen. A traffic model for velocity data assimilation. Ap-
plied Mathematics Research eXpress, 2010(1):1, 2010.

[26] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In OSDI, 2008.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. Technical Report UCB/EECS-2011-82,
EECS Department, University of California, Berkeley, Jul
2011.

[28] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. In
HotCloud, 2010.

