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Large-Scale Estimation in Cyberphysical Systems
Using Streaming Data: A Case Study With
Arterial Traffic Estimation

Timothy Hunter, Tathagata Das, Matei Zaharia, Pieter Abbeel, and Alexandre M. Bayen

Abstract—Controlling and analyzing cyberphysical and robotics
systems is increasingly becoming a Big Data challenge. We study
the case of predicting drivers’ travel times in a large urban area
from sparse GPS traces. We present a framework that can accom-
modate a wide variety of traffic distributions and spread all the
computations on a cluster to achieve small latencies. Our frame-
work is built on Discretized Streams, a recently proposed approach
to stream processing at scale. We demonstrate the usefulness of
Discretized Streams with a novel algorithm to estimate vehicular
traffic in urban networks. Our online EM algorithm can estimate
traffic on a very large city network (the San Francisco Bay Area)
by processing tens of thousands of observations per second, with a
latency of a few seconds.

Note to Practitioners—This work was driven by the need to es-
timate vehicular traffic at a large scale, in an online setting, using
commodity hardware. Machine Learning algorithms combined
with streaming data are not new, but it still requires deep expertise
both in Machine Learning and in Computer Systems to achieve
large scale computations in a tractable manner. The Streaming
Spark project aims at providing an interface that abstracts out
all the technical details of the computation platform (cloud, HPC,
workstation, etc.).

As shown in this work, Streaming Spark is suitable for imple-
menting and calibrating nontrivial algorithms on a large cluster,
and provides an intuitive yet powerful programming interface. The
readers are invited to refer to the source code referred in this ar-
ticle for more examples.

This paper presents algorithms to sample and compute densi-
ties for Gamma random variables restricted to a hyperplane (i.e.,
distributions of the form 73| }_, a;T; = d with T}; independant
Gamma distributions). It is common in this case to use Gaussian
random variables because of closed-form solutions to solve. If one
considers positive valued distributions with heavy tails, our for-
mulas using gamma distributions may be more suitable.
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I. INTRODUCTION

RAFFIC congestion affects nearly everyone in the world

due to the environmental damage and transportation de-

lays it causes. The 2007 Urban Mobility Report [33] states that
traffic congestion causes 4.2 billion hours of extra travel in the
United States every year, which accounts for 2.9 billion extra
gallons of fuel and an additional cost of $78 billion. Providing
drivers with accurate traffic information reduces the stress as-
sociated with congestion and allows drivers to make informed
decisions, which generally increases the efficiency of the entire
road network [9]. Researchers on Traffic Information Systems
(TIS) broadly agree that accurate information is critical to in-
crease their usage [12]. So far however, it seems only a small
fraction of the drivers uses TIS [16]. In this scenario, we can con-
sider that revealing the true state of the traffic to the participants
will not change the dynamics of the overall phenomenon: the
informed drivers will optimize their routes or schedule without
changing (much) the global equilibrium of the other road users.!
Modeling highway traffic conditions has been well-studied
by the transportation community with work dating back to the
pioneering work of Lighthill et al. [25]. Recently, researchers
demonstrated that estimating highway traffic conditions can be
done using only GPS probe vehicle data [34]. Arterial roads,
which are major urban city streets that connect population cen-
ters within and between cities, provide additional challenges for
traffic estimation. Recent studies focusing on estimating real-
time arterial traffic conditions have investigated traffic flow re-
construction for single intersections using dedicated traffic sen-
sors. Dedicated traffic sensors are expensive to install, maintain
and operate, which limits the number of sensors that govern-
mental agencies can deploy on the road network. The lack of
sensor coverage across the arterial network thus motivates the
use of GPS probe vehicle data for estimating traffic conditions.
The specific problem we address in this use case is how to
extract travel time distributions from sparse, noisy GPS mea-
surements collected in real-time from vehicles, and over a very
large network. A probabilistic model of travel times on the ar-
terial network is presented along with an online Expectation
Maximization (EM) algorithm for learning the parameters of
this model (Section II). The algorithm is expensive due to the

A working draft of this paper was presented in [22]
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large dimension of the network and the complexity inherent
to the evolution of traffic. Furthermore, our EM algorithm has
no closed-form expression and requires sampling and nonlinear
optimization techniques. This is why the use of a distributed
system is appropriate.

This EM algorithm is the core of an estimation pipeline de-
ployed inside the Mobile Millennium traffic information system
[2], [23]. This engine gathers GPS observations from partici-
pating vehicles and produces estimates of the travel times on
the road network. Mobile Millennium is intended to work at
the scale of large metropolitan areas: the road network con-
sidered in this work is a real road network (a large portion of
the greater Bay Area, comprising 506,685 road links) and the
data for this work is collected from thousands of vehicles that
generate millions of observations per day. As a consequence of
these specifications and requirements, we employ highly scal-
able traffic algorithms. Furthermore, Mobile Millennium is a re-
search platform and can be used with various models of travel
times. The fundamental unit of estimation is the probability dis-
tribution of travel times over a single link of the road network.
As we will see, our framework can accommodate any distribu-
tion of travel times that provided they expose a few functional-
ities (sampling, parameter estimation from observations). This
should be of interest to the traffic researchers and practitioners
since our framework solves all the issues of using raw GPS sam-
ples to build traffic estimates at a very large scale with low la-
tency. Our framework has been released under an open-sources
license and is available for download [7].

More generally, our system presents a way to cope with large
amounts of data from automation systems in a principled way.
Industries such as genomic and astronomy have learned to cope
with extremely large datasets over the last decade. What makes
cyberphysical systems stand out amongst these applications is
the fast decay of the value of information: in robotics systems
for example, the data collected from sensors is usually fed into
a control system. Past information is often of limited or no
value, sometimes as fast as in the span of a few minutes or
tens of seconds. This is unlike genomic records which, rather
than being processed immediately, need to be stored reliably
for a long time. In essence, the incoming information in cyber-
physical systems needs to be considered as a stream, and not so
much as an ever-growing dataset. In this setting, the design of
the computing platform becomes critical to achieve both scal-
ability (which implies robustness to computer failures) and /a-
tency, which is all the more important as estimates are usually
part of a larger decision system. In this paper, we investigate the
use of Discretized Streams (D-Streams) [35], a novel computing
technique that process flows of incoming data on a cluster.

The present work is novel for three reasons.

* Our framework can work with a very large class of travel

time distributions proposed in the literature [17], [20], [26].
If a travel time distribution can perform some elemen-
tary operations described in Section II-D (conditional sam-
pling, maximum-likelihood estimation), then it can be used
in our highly scalable architecture. Thus, transportation re-
searchers can focus on designing good travel time distribu-
tions, leaving the system aspects aside should they wish to
deploy it on a real system.

e Our framework can accommodate complex distributions
and spread the computations across a large cluster. The nat-
ural baseline is Gaussian distributions, because a number
of important operations have close-formed solutions, un-
like other distributions. However, Gaussian distributions
are not adapted to represent traffic distributions: they are
not limited to the positive reals, and they lack a heavy tail
(i.e., they are sensitive to noise and outliers). These consid-
erations drive our use of another simple distribution: the
Gamma distribution. We present novel results regarding
the sampling from conditioned Gamma distributions.

* Building such a system is at the forefront of research in
large scale systems. Our algorithm (an EM algorithm on
streaming data) is representative of a large class of Ma-
chine Learning algorithms used in robotics and automa-
tion, and our overall design could be used as well for these
other algorithms and applications. This is why we present
and explain the design of our system, as we find there are
valuable lessons for practitioners.

We start by presenting our general approach to traffic estima-
tion and the Mobile Millennium framework in Section II. We
then present in details how a nontrivial distribution of travel
times (a Gamma distribution) can be used on the system. We
then present the system aspects and the overall design of the
system in Section IV. We finally evaluate our implementation
in Section V from the perspective of scalability (Section V-B)
and accuracy (Section V-C).

II. SCALABLE TRAFFIC ESTIMATION FROM STREAMING DATA

Most GPS data available today is generated at low frequen-
cies due to energy and bandwidth constraints. This data is ex-
tremely noisy and provides indirect observations of the travel
time distributions on each link of the road network. We intro-
duce here Mobile Millennium, a traffic information system that
is designed to process such data at low latencies and for very
large urban areas. In this section, we will discuss the overall ar-
chitecture of the arterial estimation pipeline. This pipeline make
few assumptions about the actual travel time distribution con-
sidered. This lets us define a highly scalable algorithm that is
amenable to distribution on cloud computing. In the next sec-
tion, we will present a particular choice of travel time distribu-
tion, along with some algorithms to perform the different steps.
It should be noted that the choice of the distribution can be made
independently from our framework: most distributions for travel
times can be plugged into our framework and yield a very scal-
able algorithm.

We define the road network as a graph D = (V, £), where
the set & will be referred to as the “links” of the road network
(streets) and £ as the “nodes” (road intersections). For each link
I € &, the algorithm outputs X7, the time it takes at time index
t to traverse link /. This time is described as a probability distri-
bution parametrized by a vector ;. Our goal is then to estimate
X't, the joint distribution of all link travel times across all links
in £, for each time index #. We assume that the traffic is varying
slowly enough that it can be considered a steady state between
each evaluation: our algorithm will consider that all the observa-
tions between two consecutive time steps have been generated
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Fig. 1. Schematic architecture of the Mobile Millennium system.

according to the same state. To simplify notations, we will con-
sider a single time interval and drop the reference to time: the
joint distribution of travel time is the multidimensional variable
X.

We will first give an overview of the GPS data that is commer-
cially available today, and an algorithm that converts raw GPS
points to map-matched trajectories with high accuracy: the Path
Inference Filter (PIF) [21]. We will then present our modeling
approach to infer the traffic conditions from these GPS obser-
vations. Then we will explain how the Mobile Millennium [23]
pipeline implements this algorithm using a computing cloud as
a computation backend.

A. Overview of the Mobile Millennium Pipeline

The Mobile Millennium system incorporates a complete
pipeline for receiving probe data, filtering it, distributing it to
estimation engines and displaying it, all in real-time. This soft-
ware stack, written in Java and Scala, evaluates probabilistic
distribution of travel times over the road links, and uses as input
the sparse, noisy GPS measurements from probe vehicles.

The most computation-intensive parts of this pipeline have
all been ported to a cloud environment. We briefly describe the
operations of the pipeline, pictured in Fig. 1.

The observations are grouped into time intervals and sent to
a traffic estimation engine, which runs the learning algorithm
described in the next section and returns distributions of travel
times for each link (Fig. 3).

The travel time distributions are then stored and broadcast to
clients and to a web interface. Examples of means of travel times
are shown in Fig. 6.

It is important to point out that Mobile Millennium is intended
to work at the scale of large metropolitan areas. The road net-
work considered in this work is a real road network (a large por-
tion of San Francisco downtown and of the greater Bay Area,
comprising 506,685 road links) and the data is collected from
the field (as opposed to simulated). A consequence of this set-
ting is the scalability requirement for the traffic algorithms we
employ. Thus, from the outset, our research has focused on de-
signing algorithms that could work for large urban areas with
hundreds of thousands of links and millions of observations.

24(17.0,end) + zg + o + - - + 22,(0,20.0) = d
0.5:10%l + x}lﬁ + x‘%og + -+ 0.8:1:‘1107 =d

Fig. 2. Example of observation. The green mark represents an initial GPS
reading, the orange mark represents a subsequent reading. The black line marks
the path of the vehicle, as reconstructed by the PIF between the two GPS points
and the numbers are the indexes of each road link covered by this observation.
Given a realization 2 of the travel time distribution at time ¢t = 4, all the
information on travel times encoded by this observation is summarized in the
equation above.

B. Map-Matching GPS Probe Data With the PIF

In order to reduce power consumption and transmission costs,
probe vehicles do not continuously report their location to the
base station. A high temporal resolution gives access to the com-
plete and precise trajectory of the vehicle, but this causes the
device to consume more power and communication bandwidth.
Also, such data is not available at large scale today, except in a
very fragmented portion of the private sector. A low temporal
resolution carries some uncertainty as to which trajectory was
followed. In the case of a high temporal resolution (typically, a
frequency greater than an observation per second), some highly
successful methods have been developed for continuous estima-
tion [15], [27], [32]. However, most data collected at large scale
today is generated by commercial fleet vehicles. It is primarily
used for tracking the vehicles and usually has a low temporal
resolution (1 to 2 min) [3], [10], [24], [31]. In the span of a
minute, a vehicle in a city can cover several blocks (see Fig. 2
for an example). Information on the precise path followed by
the vehicle is lost. Furthermore, due to GPS localization errors,
recovering the location of a vehicle that just sent an observation
is a nontrivial task: there are usually several streets that could
be compatible with any given GPS observation. Simple deter-
ministic algorithms to reconstruct trajectories fail due to mis-
projection or shortcuts. The PIF [21] is a probabilistic frame-
work that recovers trajectories and road positions from low-fre-
quency probe data in real time, and in a computationally effi-
cient manner.

This algorithm first projects the raw points onto candidate
projections on the road network and then builds candidate
trajectories to link these candidate projections. An observation
model and a driver model are then combined in a Conditional
Random Field to find the most probable trajectories, using the
Viterbi algorithm. More precisely, the algorithm performs the
following steps.

* We map each point of raw (and possibly noisy) GPS data

to a collection of nearby candidate projections on the road
network [21, Fig. 2-1].
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Fig. 3. Map-matching algorithm: the raw GPS readings a first projected onto
candidate points on the road network (Step 1). Then, all feasible paths between
each pair of candidate points are computed (Step 2). A dynamic programing al-
gorithm then finds the most likely trajectory, using a Conditional Random Field
(Step 3). Trajectory measurements are the input to the EM algorithm. This al-
gorithm outputs distributions of travel times (Step 4).

* For each vehicle, we reconstruct the most likely trajectory
using a Conditional Random Field [21, Fig. 2-2].

» Each segment of the trajectory between two GPS points is
referred as an trajectory measurement [21, Fig. 2-3]. A tra-
jectory measurement consists in a start time, an end time
and a route on the road network. This route may span mul-
tiple road links, and starts and ends at some offset within
some links.

At the output of the PIF, we have transformed sequences of GPS
readings into sequences of trajectory readings. These readings
are the input for our travel time estimation algorithm.

C. Fundamental Generative Model

Estimating the travel time distributions is made difficult by
the fact that we do not observe travel times for individual links.
Instead, each reading only specifies the total travel time for an
entire list of links traveled. We formally describe our estimation
task as a maximum likelihood estimation problem.

We consider one reading, described by an offset on a first road
link 04:art, an offset on a last link oanq, a list of m visited links
Iy -+ -1y, a start time, and a travel duration d (see Fig. 2 for an
example of a reading). The observed travel time is a sum of
(unobserved) travel times on the visited links

Xll (Ostarta L(l)) + Xlg + - Xl + le (()» Oend) =d.

m—1

We are going to introduce two assumptions: independence
and scaling. The first one is critical to our framework, and is
widely used in practice. The scaling assumption is not neces-
sary, but offers some convenience for the development of the
discussion. When working with more sophisticated distributions
and with enough data, it could easily be dispensed with.

887

Independence Assumption: To make the inference problem
tractable, we model the link travel times for each link / as a
univariate distribution with parameter vector ; = (k;,6;), and
we assume these distributions are pairwise independent. The in-
dependence assumption is standard in the transportation liter-
ature [18], [19] and it also leads to a highly scalable estima-
tion algorithm. We will discuss the validity of this assumption
in Section V-C.

Scaling Assumption: The distribution of travel time X;(a, b)
between two offsets @ and b of a road link / can be significantly
different in shape from the distribution X; over the full link. We
simplify the problem by assuming that the partial travel time
from the start of a road link to some offset o is proportional to
the distribution over the full link

Xpartial(ostarM Oend) = fl(Osta,rta Oend)Xl

where f; is a function in values between 0 and 1. In our imple-
mentation, we make the use of the following function:

f (0starts Oend. L{1)) = (%)T _ (?t@r)t)r

for some r > 0. It is well-known that the travel time on a part of
a road link is not proportional to the travel time over the com-
plete link [19]. The function f captures some of this nonlin-
earity. The factor r is selected by cross-validation and was set
to be 2.1. In all generality, this assumption may not be represen-
tative of empirical data, and it is a convenient way to consider
partial travel times without introducing additional parameters
to the model. However, in our streaming setting, the updates
happen at high frequency (every few second), and there is not
enough observation to fully update the distributions, which may
lead to some overfitting. As we will see in the next section, this
assumption may be dispensed with when more complex traffic
distributions are considered.

Using the two assumptions outlined above, the duration d of
a travel is the linear combination of realizations of travel times
on the different links of the road network

d= Z all)x;

lef

where the vector « € [0, 1]™ is defined as follows2:

O‘(ll) = fl (OstartvL(ll))
Ot(lm) = fl(o Oend)
a(l;y=1forie[2...m—1]

and «(!) = 0 for all other links /. The vector « is called the
path activation vector for this reading. Note that fewer than ten
links are covered in a typical trajectory measurement, so the path
activation vectors are extremely sparse (the fill-in factor is less
than 0.001%). We will use this fact to achieve very good scaling
of our algorithm.

2In practice, the definition of & needs to be adapted when an observation
spans a only single link.
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Fig. 4. Directed (Bayesian) graph of the travel time model. Grey nodes are ob-
served variables, white nodes are hidden variables. The arrows represent con-
ditional dependencies between the variables. Boxes encode plates, i.e., a fac-
torization of repeating variables. (Right) an expansion of a few elements of the
plates.

For a given time interval, we can completely represent a tra-
jectory reading by an observation Y = («.d) € (R)" x R%.
Each observation Y = ("), D(")) describes the +th tra-
jectory’s travel time D™ and path o) as inferred by earlier
stages of the Mobile Millennium pipeline. The travel time D(")
is the time interval between consecutive GPS observations and
is roughly one minute for our source of data.

The dependencies between the observations and the param-
eter vector v can be represented as a Bayesian graphical model,
which encodes all the dependencies between the variables in a
very compact form (Fig. 4). We now formalize the problem of
estimating the set of parameters » = (1), for a set of observa-
tions (Y(T) }r=1.-.r as a learning problem. We consider that the
current estimate of the traffic is completely described by inde-
pendent distributions (parametrized by some vectors v;) of the
travel times over each road link. These travel times are indirectly
observed through a set of observations Y ") = (a("), d(")). The
set of parameters that maximizes the likelihood of these obser-
vations is solution to the maximum likelihood problem

Hy,vy = Zlogﬂ' (D(T)|oc(r); I/) (1

max
v

with 7(D)]a("); v) the probability of observing the duration
d =Y ,(a(l))x; when z; is generated according to the distribu-
tion 7(-; ;) of the variable X;. This likelihood can be decom-
posed using the relations of independence between variables

T (D(")|a("); V) = /7r (D("'>|X, a(i)) m(X;v)dX

X

= /‘7r <D(T)|X, (k(i))

X

<1

(™) (1)>0

/7r (D<”’>|X,a<'i>)

X

<1

Lalm) (1)>0

T(Xl;ul)Xm
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Fig. 5. System workflow of the EM algorithm. In the E-step, we generate per-
link travel time samples from whole observations; specifically, for each obser-
vation Y (") = (a'(’), d‘")), we produce a set of U weighted samples X (") =
{(xlr) =N}, 2, each sample #("™*) produced by randomly d1v1d1ng
travel time d(*) among its constituent links (producing a travel time 1(' “) for
each edge I; € «{™). We assign a weight w:(™*) as the likelihood of travel
time 2("*) according to the current distribution parameters 1. In the shuffle
step, we reg;roup the samples X (") by link, so that each link / now has samples
X, = {(s;"*, w!{™™))},  from all the observations # that go over it. In the
M-step, we rqcompute the parameters ; to fit link I’s travel time distribution to
the samples X;.

Estimating the travel time distributions is made difficult by the
fact that we do not observe travel times X for individual links.
Instead, each observation only specifies the total travel time D
for an entire list v of links traveled. To get around this problem,
we use the EM algorithm [13], [29]. The EM algorithm operates
in two phases: In the E-step it considers each travel time mea-
surement and computes a distribution over allocations of travel
time to each of the links. In the M-step it computes the link pa-
rameters that maximizes the likelihood of the travel times for the
allocations made in the E-step. By iterating this process the EM
algorithm converges to a set of link parameters that are a local
maximum of the likelihood of the data. In our setting, we run
the EM algorithm in an online fashion: for each time step, we
use the previous time step as a value, perform a few (iterations
and we monitor the convergence through the expected complete
log-likelihood. This form of online EM gives good results for
our application (Section V).

D. Dataflow of the Algorithm

Fig. 5 shows the data flow in the algorithm in more detail.
In the E-step, we generate per-link travel time samples from
whole observations; specifically, for each observation Y (") =

o) d(”)) we produce a set of U weighted samples X(") =
{(z( ) ,w )}, _1 17, each sample 2" produced by ran-
domly d1v1d1ng travel time d(") among its constituent links (pro-
ducing a travel time :1,',:"”') for each edge I; € a{")). We assign
a weight w("") as the likelihood of travel time :("*) according
to the current distribution parameters . In the shuffle step, we
regroup the samples X (") by link, so that each link  now has
samples X; = {(s; (r) wl(r U))}r.u from all the observations r
that go over it. In the M-step, we recompute the parameters v
to fit link {’s travel time distribution to the samples X;.

So far, we have not introduced a particular distribution for the
travel times X;. This will be the subject of the next section. We
require only few operations on a distribution of travel times:
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o Sampling under a constraint: The Expectation step
involves sampling X;--- Xy under some constraint
a’ X = d. We will show in the next section how this
operation can be performed efficiently in the case of
Gamma distributions. For more complicated distributions,
importances sampling may be used. This technique in turn
only requires the knowledge of the unnormalized pdf of
the distribution, which is usually not a concern.

* solving the maximum-likelihood problem: in the M-step,
for each of the links, we solve a problem of the form
max, . @ log 7(£®: 1) given a set of weighted sam-
ples (@, ®);. This problem can be solved approxi-
mately, using gradient descent for example. If the number
of parameters is small (typically less than 4), grid search
may even yield an appropriate solution in a reasonable
time.

As one can see, the minimum requirements for travel time dis-
tributions are very mild and may satisfy complex, multi-modal
distributions. However, using complex distributions involves
learning a large number of parameters and may lead to overfit-
ting when data is scarce. Since our goal is to study the validity
of the framework for very large networks and datasets, we will
consider in our discussion simple distributions. It will be inter-
esting to compare in the future with some other more realistic
distributions.

III. MODELING TRAVEL TIMES WITH GAMMA DISTRIBUTIONS

The Gamma distribution is a simple unimodal, heavy-tailed
distribution with a mean and a scale parameter. In this section,
we show how it can be used as a travel time distribution and
how it fits into our framework.

Gamma distributions substantially complicate the Expecta-
tion step, because sums of independent Gamma distributions
have no closed form. This is why we approximate the condi-
tional expectation X (") |(a("))TX(") = D™ by sampling from
this distribution. As we will see, there is a surprisingly simple
algorithm in the case of Gamma distributions. While not strictly
necessary, it is also useful to compute the value of the marginal
likelihood of each observation P( (") )TX () = D)) in order
to track the converge of the EM algorithm. Since the computa-
tions are independent for each of the observations, they are good
candidates for cloud computing.

This section is self contained and does not make use of con-
cepts from the other sections. We introduce it to show how a
nontrivial distribution can be incorporated into the rest of the
framework, and what computations are necessary to fit in the
framework presented is Section III-B. We present the main re-
sults in Section III-A. Since the justification of these results re-
quires some measure-theoretic technicalities, the proofs are de-
rived in the subsequent sections. These justifications will require
introducing a new statistical distribution: the Gamma-Dirichlet
distribution.

A. Learning With Gamma Distributions

Consider a set of n independent Gamma distributions 7; ~
I'(k;,0;) with k € (R%)" and § € (R%)", a n-dimensional

vector of positive numbers o € (R%)" and d > 03 Call T
the joint distribution of all 7;s. The purpose of this paragraph
is to present some practical formulas to sample and compute
the density function of the sum ; T, which is a univariate
distribution.

Marginal Likelihood: Call U = . «a;T;. Call § =
min; o;6; and & = >, k;. The probability density function of
U is an infinite series [8], [28]

fuld) = QEH(O%@:')*EZ Sufr(dik +1,0)

i =0

in which fr is the density function olf the Gamma distribu-
tionfr(x;a,b) = ['(a) b~ %2 Le™® ® and (6;); aseries de-
fined by the recursive formula

§o =1
{ b= %Zin:(] o (Z:‘L:l ki (1 - aiaflﬁ)lim) ’

This result is a direct application of [28], using the scaling prop-
erty of the Gamma distribution: «;T; ~ I'(k;, «;6;) for e; > 0.
Sampling From Conditional Gamma Distributions:

Algorithm 1: Sampler for Gamma distributions conditioned
on a hyperplane

n

Given o € (R%)" and d > 0.
Generate n independent samples a; ~ U'(k;, d "L a;0;)
5 = doi Ma/ Ty ar)

Thenz ~ T|a’T = d

Our algorithm must provide values from the conditional distri-
bution Z ~ T|a®T = d. While this distribution has a complex
shape (in particular, it is defined over a zero-measure hyperplane
of the space of variable), there happens to exist a remarkably
simple procedure to sample values from the conditional Gamma
distribution Z: sample n independent values from Gamma dis-

tributions
«;0;
Aj~T kB, —2 .
(=7)

Then, a suitably rescaled value of A; follows the distribution of
Z:

2

d A
¢ aiZlAl.

To our knowledge, this is a new result regarding Gamma
distributions. We present the proof of correctness in the next
section. The proof requires some technical arguments that may
be skipped in a first reading. The algorithm is presented in
Algorithm 1.

(€))

B. The Gamma-Dirichlet Distribution

In order to show that (2) and (3) give the correct distribution
for Z, we formally introduce a generalization of the Dirichlet

3The bivariate function I'(-, -) will refer to the Gamma distribution and the
univariate function I'(-) will refer to the Gamma function. Which one is used
should be clear from the context.
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distribution, which we call the Gamma-Dirichlet distribution.*
This distribution can be sampled using a closed for solution. We
show in a second step that its pdf is the same as the pdf of the
conditional distribution 7| >". 7; = 1. We then generalize to
arbitrary positive combinations.

The Gamma-Dirichlet Distribution: The regular simplex
S" C R™ is the convex hull of the elementary vertices
(€i);e[1.n)- Givena vector k € (RT)" and a vector f € (R*)",
we define the Gamma-Dirichlet distribution

X ~TD(k,0)

with values over the regular simplex S™ as the normalized sum
of n elements drawn from independent Gamma distributions

Y;
X, = —
>
with
Y ~T'(ki 0;) 4)

and Y; all pairwise independent. The Gamma-Dirichlet distribu-
tion is a simple of the Dirichlet distribution: if # = al for some
a > (0, this is the Dirichlet distribution of the nth order. The def-
inition gives a straightforward procedure to sample some values
from X.

Density: Note first that one needs to be careful in defining
the underlying o-algebra of our probability space, as the
values of X are located in an embedding of R” of measure
0 (a hyperplane). Consider the rn-dimensional hyperplane
H™ = {x|271 = 1}. This hyperplane includes the sim-
plex 8. The Lebesgue measure of this set in R™ is zero.
However, we can consider the Lebesgue measure & defined
over R”~! and the transform: ¢ : R™"~! — H" defined by
d(u) = (u— 1Tu)T. This transform is a linear mapping and
it defines a new measure [ for the space H"™ based on /i.
Under this measure, the measure of the simplex &™ is positive.
Call s the measure defined over 8" by u(-) = A(8") " a(-).
Consider the conditional distribution Z; = ¥;| > ;Y; =1 with
Y, defined in (4). The density function of this distribution is 0
over R™ nearly everywhere, however, it has nonzero measure
over the regular simplex S™.

Call frp(z) the pdf of the Gamma-Dirichlet distribution over
S™. Then, we have

fro(@) o [] fr(wis ki, 6:)
i=1

with fr(z; k, §) defined above.

a) Proof: This proof is adapted from a similar proof [14]
for the Dirichlet distribution. Using the same notations as above,
defineY = Zj Y; and X; = Y;/Y for¢ < n. The joint density
for the Y’s is

f(y) X H’yfiile—zei_lyi.

4To our knowledge, the following results have not been presented in the lit-
erature so far.

Define the transform ¢ : R” — R™ by: g = >, 6, 1y; and
T = gj‘19;1y1¢ for i < n — 1. We are going to show that the
joint density of Z and 7 can be written as ¢(&, ) = a(Z)b(y),
which implies that the variables # and g are independent. This
mapping is invertible and its Jacobian at i is (T, #; ' )¢. Thus,
the joint density of (g, &) is

This shows that the variables y and # are independent. Fur-
thermore, from the expression above, the distribution of % is a
Dirichlet distribution and the distribution of ¢ is a Gamma dis-
tribution. The marginal for = writes

n—1 ki —1 n—1
g(7) o (1 -3 T> kit

i=1 i=1

Now, we consider a change of variables for the joint variables
y to remove the conditional constraint ), y; = 1. Define the
transform ¢ : § = >, y; and &; = §~'y; for k < m — 1. This
mapping is also invertible, with Jacobin 4* . The joint density of
(§,%2) is

n—1 n—1
g(g«i) x [(1 o Zfiz> k,—1 H i,ilcq‘—l‘| I:QZ’ kifle—enfl} .
i=1 i=1
By identification, we get: g(zly = 1) = g(A 1%)
with A the diagonal matrix defined by A;; = #6,. Since
¢ 1(A"1E,1)") = &, the result ensues. ]

The previous result proves that the sampling procedure in
Algorithm I is correct for the simplex &™ (i.e. d = 1). We
can then use the scaling transform of the Gamma distribution
to show it is also correct for other values of d. Indeed, the
constraint T = d is also equivalent to > ¥; = 1 with
Y, = d ', T; ~ T'{k; ,d 'a;0;). We can perform the condi-
tional sampling on the variables Y;, and then rescale the values
obtained to get the correct distribution.

b) Proof: Consider a set of n independent Gamma dis-
tributions 7; ~ T'(k;,#6;), a n-dimensional vector of positive
numbers « € (R’ )" and ¢ > 0. The purpose of this section is
to present some practical formulas to sample and compute the
density function of the conditional distribution

Z=TY T =d

We define this distribution over the n-dimensional simplex
Soa = {T € (RM)|a’z = d} .

As before, we define a new measure over the hyperplane defined
by oTz = d by an isomorphism from R™~!, and use it as our
base measure dz for Z. We call f the probability density func-
tion of variable Z with respect to this measure. With respect to
this measure, the probability density function of Z is that of a
Gamma-Dirichlet distribution

J(2)  fro(y; k. 6).
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with

IV. DISCRETIZED STREAMS: LARGE-SCALE REAL-TIME
PROCESSING OF DATA STREAMS

We now describe the design of the data processing pipeline
of the Mobile Millennium system. This framework takes as an
input streams of raw GPS data from various sources, and outputs
states of traffic, in the form of parameters of travel time distri-
butions. We had the followivsk —12ng requirements, which are
shared with most automation system.

* Low latency: We wanted to investigate update rates as high

as every few seconds.

 Scalability and high throughput: The system should be able
to handle tens or hundreds of thousands of measurements
per second

* Robustness to failures: The failure of machines should
have a limited impact on the performance of the system

» Testing multiple scenarios: The GPS data needs to go
through some complex filtering process (map-matching
and trajectory reconstruction) before it can be used for
estimation, and the ability to perform cross-validation is a
prerequisite to tuning these algorithms. Thus, we needed
to rerun or even run multiple instances of our algorithm in
parallel.

» Flexible deployment solution: From the outset, our goal
was to deploy our framework on a generic cloud solution
such as Amazon EC2. This implies limited control over the
topology of the computer network and over the character-
istics of the computers.

Streams of hundreds of thousands of elements per second are
common in cloud-based environment. However, in our appli-
cation, the Expectation step of the EM algorithm generates a
large number of samples for each observation. This multiplies
the internal throughput rate by a factor of 1000 to 10,000. Single
computers cannot work at this rate, and a cloud-based solution
is required. Furthermore, these samples are ephemeral and can
be deterministically recreated from an observation: there is no
need to store them. The novelty of our application lies in com-
bining the competing requirements of the different stages: the
initial and final steps have average throughput and their respec-
tive inputs and outputs require fault-tolerant storage, while the
intermediate computation steps must have high throughput and
be resilient to individual node failures.

In particular, since this is a research platform, we needed
the ability to test and monitor complex iterative algorithms. In
this section, we will present the notion of Discretized Streams,
a concept recently introduced [35] and implemented in the
Spark computing framework. We will present how the design
of D-Stream lets users build cyberphysical systems at scale.

A. Limitations of Current Techniques

Current techniques to process large amounts of live streaming
data can be broadly classified into the following two categories.
* Using traditional streaming processing  systems:
Streaming databases like StreamBase [6] and Telegraph
[11], and stream processing systems like Storm [30] have

been used to meet such processing requirements. While
they do achieve low latencies, they either have limited
fault-tolerance properties (data lost on machine failure) or
limited scalability (cannot be run on large clusters).

o Using traditional batch processing systems: The live data
is stored reliably in a replicated file system like HDFS
[1] and later processed in large batches (minutes to hours)
using traditional batch processing frameworks like Hadoop
[1]. By design, these systems can process large volumes of
data on large clusters in a fault-tolerant manner, but they
can only achieve latencies of minutes at best. Furthermore,
the processing model is too low level to conveniently ex-
press complex stream computations.

B. D-Streams—A Programming Model for Stream Processing

D-Streams execute deterministic computations similar to
those in MapReduce for fault tolerance, but they do so at a
much lower latency than previous systems, by keeping state
in memory, as opposed to saving it on disk between each step.
The input data received from various input sources (e.g., web-
services, sensors, etc.) during each interval is stored reliably
across the cluster to form an input dataset for that interval.
Once the time interval completes, this dataset is processed via
deterministic parallel operations (like mapping transformations
or filtering) to produce new datasets representing program out-
puts or intermediate states. Finally, these datasets can be saved
to external source such as databases. The advantage of this
model is that it provides the developer a convenient high-level
programming model to easily express complex stream compu-
tations while allowing the underlying system to process the data
in small batches thus achieving excellent fault-tolerance prop-
erties. D-Streams support the same stateless transformations
available in typical batch frameworks, including map, reduce,
groupBy, and join. In addition, D-Streams also provide stateful
operators like windowing and moving average operators that
share data across time intervals. All the intermediate data
computed using D-Streams are by design fault-tolerant, that is,
no data is lost if any machine fails. This is achieved by treating
each batch of data (and each new batch derived through trans-
forms of the original dataset) as a dataset distributed across the
machines. Each dataset maintains a lineage of operations that
was used to create it from the raw input data (stored reliably by
the system by automatic replication) [36]. Hence, in the event
of computer failure, if any partition is lost, it can be recomputed
from raw input data using the lineage. As these operations are
deterministic, the recomputation can be done using fine-grained
tasks in parallel. This ensures fast recovery minimizing the
effect of the failure on the stream processing system. This novel
technique is called parallel-recovery and sets this abstraction
apart from existing stream processing systems, that need to
write intermediate steps to disk or implement complex recovery
mechanisms.

To implement D-Stream, we use Spark, an existing open-
source, batch processing framework, to create Spark Streaming.
Spark is a fast, in-memory batch processing framework, and we
naturally extend this framework to implement D-Streams. Both
these systems are implemented in Scala [4] (a language based
on the Java Virtual Machine), which allows them integrate well
with existing Java and Scala libraries for linear algebra, machine
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learning, etc. Furthermore, the compact syntax of the Scala lan-
guage hides all the complexities of distribution, replication and
data access pattern behind an intuitive programming interface.
A relevant portion of the code of the algorithm is provided in the
Appendix. This code instantiates a D-Stream with the raw data
and derives some other D-Streams that correspond to each step
of the algorithm. As can be seen, this code leverages the func-
tional API of Spark and Scala to express stream transformations
in a very natural way. Spark Streaming can scale to hundreds of
cores while achieving latencies as low as hundreds of millisec-
onds. We use this system to implement our traffic estimation
algorithms, which we shall explain next.

C. Lessons Learned

In the process of designing this framework, we experienced
several challenges and we made several design decisions that
we feel should be taken into consideration when considering
building a large system for cyberphysical computations.

Computing in memory: Keeping the computations in
memory leads to dramatic performance improvements, as the
processes do not need to seek or write data on the disk. We
found that this improves both the throughput and the latency.
The fault recovery is provided by the lineage information, and
is typically fast enough (a few seconds) for our experiments.

Interfacing with databases: One of the bottlenecks that
came to us as a surprise is the interaction with our primary
storage (an Oracle database). After map-matching, the data is
written to the database. The nodes of the computing cloud then
open a connection periodically to read the new data at every
beat. However, the database could not keep up with hundreds
of queries at the same time. Replicating the database in the
cluster did not lead to much improvement. Our solution was
to use the database as a end point that would not be queried
by the cloud computers: at the end of the map-matching step,
the stream of map-matched observations is not only pushed to
the database, but also to the Hadoop filesystem (HDFS) that is
spread on the cluster. We found the insertion mechanism to be
fast enough for this pattern.

Using immutable, stateless transforms: Working with im-
mutable distributed datasets called for a different programming
style that emphasizes function-based transforms of data. In this
style, a filter would be implemented as a function that takes a
state and some observations, and creates a new object that con-
tains the updated state: the original state object is not modi-
fied. We found this style to be a significant departure from the
common practices in control and automation. Thus, a stream is
defined as a sequence of transforms on a dataset. The Scala pro-
gramming language provides an elegant interface for expressing
these transformations (see Annex). The immutability is a key
factor in performing operations in memory and in a fault-tol-
erant way. We found that in practice, we did not experience per-
formance bottleneck from using this programming style.

V. A CASE STUDY: TAXIS IN THE SAN FRANCISCO BAY AREA

Having now described an algorithm for computing travel time
distributions in real time on a road network, we describe our val-
idation experiments. These experiments explore two settings.

* The raw performance of the machine learning algorithm,

given a limited amount of data and a computational budget,
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Fig. 6. An example output of traffic estimates from our algorithm: mean travel
times on different road links in the business district of San Francisco during a
complete day.

¢ The performance of the Streaming Spark framework in
distributing computations across a cluster, and the com-
putational performance improvement gained by additional
hardware.
The performance of the algorithm is computed by asking the
model to give travel time distributions on unseen trajectories,
slightly in the future. The observed travel time of the trajectory
is then compared with the distribution provided by the model.
We measured the L1 and L2 losses between the observed travel
time and the distribution mean, and the likelihood of the ob-
served travel time with respect to the predicted travel time distri-
bution. This is done with different amount of data and different
time horizons.

The computational efficiency of the algorithm is validated
in two steps. First, we demonstrate that our algorithm scales
well: given twice as many computation nodes, it perform the
same task about twice as fast. We also see that this algorithm is
bounded by computations. Then, we demonstrate that it can sus-
tain massive data flow rates under strict scheduling constraints:
we fix a completion time of a few seconds for each time step,
and we find the maximum flow rate under a given computational
budget.

A. Taxis in San Francisco

Our implementation was run on a road network that corre-
sponds to the greater San Francisco Bay Area (506,685 road
links), using some taxi data provided by the Cabspotting project
[10]. This dataset contains GPS samples of a few thousand taxi-
cabs emitted every minute, for more than a year. All in all, it
represents hundred of millions of GPS points. We ran our algo-
rithm on a typical day (August 12, 2010, a Tuesday) with dif-
ferent settings. An example of input data is given in Fig. 7. A
typical output of travel times provided by the algorithm is given
in Fig. 6.

B. Good Scalability Results Using a Large Cluster

In this section, we evaluate how much the cloud implemen-
tation helped with scaling the Mobile Millennium EM traffic
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Fig.7. Anexample of dataset available to Mobile Millennium and processed by
the PIF: taxicabs in San Francisco from the Cabspotting program. Large circles
in red show the position of the taxis at a given time and small dots (in black)
show past positions (during the last 5 h) of the fleet. The position of each vehicle
is observed every minute.

estimation algorithm. Distributing the computation across ma-
chines provides a twofold advantage: each machine can perform
computations in parallel, and the overall amount of memory
available is much greater.

Scaling: First, we evaluated how the runtime performance
of the EM job could improve with an increasing number of
nodes/cores. The job was to learn some historical traffic estimate
for San Francisco downtown for a half-hour time-slice, using a
large portion of the data split in one-hour intervals. This data in-
cluded 259,215 observed trajectories, and the network consisted
of 15,398 road links. We ran the experiment on two cloud plat-
forms: the first was using Amazon EC2 m1.large instances
with 2 cores per node, and the second was a cloud managed
by the National Energy Research Scientific Computing Center
(NERSC) with 4 cores per node. Fig. 8 (bottom) shows near-
linear scaling on EC2 until 80-160 cores. Fig. 8 (top) shows
near-linear scaling for all the NERSC experiments. The lim-
iting factor for EC2 seems to have been network performance.
In particular, some tasks were lost due to repeated connection
timeouts.

Scaling on Streaming Spark: After having found the bot-
tlenecks in the Spark program, we wrote another version in
Streaming Spark. The two programs are strikingly similar (see
program listing in Appendix B). We then benchmarked the ap-
plication. We ported this application to Spark Streaming using
an online version of the EM algorithm that merges in new data
every five seconds. The implementation was about 200 lines of
Spark Streaming code, and wrapped the existing map and reduce
functions in the offline program. In addition, we found that only
using the real-time data could cause overfitting, because the data
received in 5 s is so sparse. We took advantage of D-Streams to
also combine this data with historical data from the same time
during the past ten days to resolve this problem. Fig. 9 shows
the performance of the algorithm on up to 80 quad-core EC2
nodes. The algorithm scales almost perfectly, largely because it
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Fig. 8. Experiments with Spark to build historical estimates of traffic, on
NERSC (top) and Amazon EC2 (bottom).
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Fig. 9. Experiments with Streaming Spark: rate of observation processing for
different cluster sizes.

is so CPU-bound, and provides answers an order of magnitude
faster than the previous implementation.

C. Our Algorithm Can be Adjusted for Tradeoffs Between
Amount of Data, Computational Resources, and Quality of
the Output

We now study the accuracy of our algorithm in estimating the
traffic. Even if we receive a large number of observations per
day, this number is not sufficient to cover properly in real time
all the road network: indeed, some sections of the road network
are much less traveled than the busy downtown areas. We use
several strategies to mitigate this spatial discrepancy.

* We use a prior on the Gamma distribution, itself a Gamma
distribution since the Gamma is in the exponential family
and conjugate with itself. The parameters of this prior are
to 70% of the speed limit in mean and 1 min or 50% of the
travel time in standard deviation, whichever is greater.

* We incorporate some data from the same day before
the current time step, weighted by an exponential decay
scheme: the traffic in the arterial network is assumed to
change slowly enough.

* We also incorporate some data from previous days, corre-
sponding to the same day of the week (Monday, Tuesday,
etc.). Traffic is expected to follow a weekly pattern during
the same month.
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Fig. 10. L1 residuals for different settings and for different travel times. The dashed lines indicate the 95% confidence interval. On the » axis, the travel time of
the observations considered for this metric.

To summarize, a large number of observations are lumped to-  The half-time decaying factors Atg., and Atq.eel are set so that
gether and weighted according to the formula the corresponding weight is 0.2 at the end of the window.
Since the EM learning algorithm is not linear in the obser-

Afr;l,(fobs*tcurrent) YN (weekobs —weekeurrent ) . . .
ay € "lweek vations, we cannot reduce each observation to some sufficient

w=e
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Fig. 11. L2 residuals for different settings and for different travel times. The dashed lines indicate the 95% confidence interval.

statistics. As the algorithm moves forward in time, each obser- Our EM algorithm can be adjusted in several ways.

vation will appear at different time steps with a different weight * The number of weeks of data to look back (between 1 and
and needs to be reprocessed. This is a significant limitation 10).

from this approach, but it makes for a good testing ground of * The time window to consider before the current observa-

Streaming Spark.

tion (between 20 min and 2 h).
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Fig. 12. Log-likelihood of unobserved trajectories, for different trajectory lengths and different settings. The median is presented on the left, while the mean is

presented on the right.

e The number of samples generated during the E-steps
(10-100).

e The number of EM iterations (1-5).

e The duration of each time step (5 s—15 min)

The observations we process all have a duration of one minute,
but travel times experienced by users are usually much longer
(10 min to a few hours). As such, a good metric for assessing the
quality of a model should not be on predicting travel times for
1-min observations, but on longer distances. Hour-long travels
are very likely to go be spent mostly on highways, which is not
the scope of this study, and taxicabs usually make small trips
(10-30 min). This is why we focus our attention to travel times
between one minute (the observations) and 30 min (typical du-
rations for taxi rides). As far as we know, this study of dif-
ferent durations is seldom done in the study of traffic, which
limits any attempt to compare the performance between dif-
ferent algorithms.

The longer trajectories are obtained from the PIF. They are
then cuts into different pieces of the same length (1 min, 5 min,
10 min, 20 min). Each piece of trajectory is considered as an
independent piece of trajectory for the purpose of travel time
prediction.

We ran the algorithm with four different settings.

+ SlidingBig: the most expensive setting (10 weeks of data, 2

h of data, 100 EM samples, 5 EM iterations, 15 time steps),
used as the baseline for comparison. Travel time estimates
are produced every 20 min.

+ SlidingBig: uses less data (40 min of data).

+ SlidingBig2: uses less data (10 days).

+ SlidingBig3: uses the same amount of data, but performs
only a single EM iteration every 4 min instead of 5 EM
iterations every 20 min.

« SlidingBig4: uses the same amount of data, but generates
only ten EM samples for each observation.

For all these experiments, the prior was fixed.

We now compare the results obtained with the different ex-

periments. We first turn our attention to the L1 loss in Fig. 10.

As expected, the best performance is obtained for experiment
SlidingBig, which uses the most data. Interestingly enough, the
best performance is obtained for travels of medium length (4—11
min), and not for short trajectories. This can be explained by
the conversion step that transforms trajectory readings on par-
tial links into weighted observations on complete links. The re-
lation between link travel time and location on a link is more
complex than a linear weighting. Nevertheless, the model gives
relatively good performance by this simple transform. When a
vehicle is stopped at a red light, it does not travel along the link
but still has a nonzero travel time. In this case, the weight of an
observation is taken to be half of the total travel time of the link.
In particular, the relative error increases as the duration (and the
length) of travels increases. Performance is not too different be-
tween experiments, which suggests some even smaller amount
of data could be considered.

The results for the L2 loss, presented in Fig. 11, provide some
similar, if more acute, results. The RMSE is lowest for small to
medium travels (in the range of 3—10 min).

A probabilistic metric (the log-likelihood) gives a different
insight, as shown in Fig. 12. The model best explains the data for
very short travel times (similar to what is was trained on) but its
precision falls down as the length of trajectories increases. All
in all, this results should not be unexpected: this model with in-
dependent links cannot take into account the correlations that
occur due to light synchronizations or drivers’ behavior. As
such, the probability density of a longer travel rapidly dilutes
as the number of links increases As we saw with our study of
L1 and L2 errors, the mean travel time becomes the only sig-
nificant value of interest for longer travel times. In the light of
this result, there seems to be little to gain by modeling travel
time with physically realistic, link-based, independent distribu-
tions, as the independence assumption will strongly weigh on
the quality of the travel time for longer travels. Instead, we rec-
ommend focusing effort on simpler models of travel times that
take into account the correlations between links. We also present
in Fig. 12 (right) the mean of the log-likelihood. As one can see
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in this plot, the Gaussian distribution is significantly worse than
the Gamma distribution: from inspection of the data, we could
conclude that it performs very badly with long tail observations
(unusually long stops at red lights). Furthermore, its symmetric
nature causes a significant portion of the probabilistic mass to
be assigned to negative travel times: a Gaussian distribution
cannot at the same time have a small mean, a high standard devi-
ation and mostly positive values. This experiment should serve
as another confirmation that modelling travel time noise with a
normal distribution is not only unrealistic, but also leads to er-
ratic results in the face of real data.

VI. CONCLUSION

As datasets grow in size, some new strategies are required to
perform meaningful computations in a short amount of time. We
explored the implementation of a large-scale state estimation in
near-real-time using D-Streams, a recently proposed streaming
technique. Our traffic algorithm is an EM algorithm that com-
putes travel time distributions of traffic by incremental online
updates. This approach was validated with a large dataset of
GPS traces. This algorithm seems to compare favorably with
the state of the art and shows some attractive features from an
implementation perspective. When distributed on a cluster, this
algorithm scales to very large road networks (half a million road
links, tens of thousands of observations per second) and can up-
date traffic state in a few seconds.

In order to foster research in systems and in traffic, the au-
thors have released the code of Spark Streaming [5], the code
of the EM traffic algorithm [7], and the dataset used for these
experiments [7].
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