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Distributed Machine Learning

Big Data: need for distributed machine learning algorithms.

Challenge: dividing and coordinating computation across
cores / machines

Algorithms access data and serially update shared state
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Two prior approaches to parallelize algorithm design:

1. Mutual exclusion: Serializable but costly locking

2. Coordination free: Low contention but possible data
corruption

Concurrency: most updates in parallel
=» fast algorithms

Correctness: result equivalent to some serial execution
=>» preserve theoretical properties

Objective: Provide high
concurrency & correctness, through
optimistic concurrency control

Optimistic Concurrency Control

View as a transactional model: Transaction <> Operation
1. Read shared state and data

2. Validation: detect conflicts

3. Resolution: fix conflicts
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Optimistic Concurrency Control (OCC) [1]:

- Assume low conflict rate, proceed optimistically, serially
validate when needed

- Standard OCC validate by comparing read- and write-
sets, reject on conflict

J Rare conflicts, proceed optimistically
=» High Concurrency
J Validation and Resolution mechanism
\ =>» Correctness

Optimistic Concurrency Control for Distributed Learning
Xinghao Pan, Joseph Gonzalez, Stefanie Jegelka, Tamara Broderick, Michael I. Jordan

https://amplab.cs.berkeley.edu/projects/ccml/

Example: Distributed Clustering

DP-means: Novel clustering algorithm [2]

* Extends popular K-means approach

e Cluster data without need to specify # of clusters
 Small variance asymptotic approx. to Dirichlet Process

Serial algorithm
1. Read data x; and set of clusters, represented by centers {u_}
2. Compute distance d = min, ||x-u. ||° of x; to centers {u. }
3. Ifd <4, assign x; to nearest center;
Otherwise, create new cluster with center at x;

Transaction T, for each data object x;:

1. Read cluster centers {u_}

2. Compute distance d = min,, ||x;-u || of x; to centers {u_}

3. Ifd <4, assign x; to nearest center, commit immediately;
Otherwise, create new cluster with center at x,, validate x;

Validate cluster creation for x;

1. Read cluster centers {u,} created since read phase of T

2. Compute distance d"=min,||x;,]|° of x; to centers {u,}

3. Ifd" <], resolve: assign x; to nearest new center;
Otherwise, accept: create new cluster with center at x;,

Theorem 1a: Distributed DP-means is serially equivalent to
DP-means.

Theorem 1b: Expected number of data points sent for
validation is less than Pb + E[K], where P is the number of
processors, b is the number of data points processed by
each processor in one iteration, and K is the number of
clusters.

Example: Feature Modeling

BP-means: Novel feature clustering algorithm [3]

* Allows membership in multiple clusters (features)

e Each data object represented as sum of features
 Small variance asymptotic approximation of Beta Process

Serial algorithm

1. Read current set of features {f;}

2. Find best representation x; = Ejz,-j];, where Z; = Oor1l

3. [Ifdistance x; to %,z f; </, assign representation for x;
Otherwise, create new feature x; - Xz, f;

Transaction T, for each data object x;:
1. Read current set of features {f;}
2. Find best representationx; ~ %,z f, where z, =0 or 1
3. If distance x; to ZJ.ZZ.J.]? </, commit immediately;
Otherwise, create new feature /" = x, - %, z, f,, validate "

Validate feature creation for /"
1. Read features {f,} created since read phase of T
2. Find best representation /" =%, z, f,, wherez, =0or 1
3. Ifdistancef"to X, z, f. <4,
resolve: represent x; = Xz, f. + X, z, f;
Otherwise, accept: create new feature /" - X, z,. f,

Theorem 2: Distributed BP-means is serially equivalent to
BP-means.
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Example: Online Facility Location

Online Facility Location (OFL):
* Select facilities to min objective £, min,, |jx -z ||? + A7 {u.} |
e Stochastically choose data point x as facility in single pass

Serial algorithm

1. Read data x; and set of facilities, represented by centers {u_}

2. Compute distance d=min_||x-x ||? of x; to centers {u. }

3.  With probability 1-min(1, d?/4), assign x, to nearest facility;
Otherwise, create facility at x;

Transaction T, for each data object x;:

1. Read facility centers {u .}

2. Compute distance d=min_||x-u, ||’ of x, to centers {u_}

3.  w.p. I-min(1, d?/4°), assign x; to nearest facility, commit;
Otherwise, create new facility at x,, validate (x,d)

Validate facility creation for (x, d)

1. Read facility centers {x,} created since read phase of T

2. Compute distance d*=min, ||x-,||’ of x, to centers {u,}

3. w.p. I-min(1, d"?/d?), resolve: assign x, to nearest new facility;
Otherwise, accept: create new facility at x;

Theorem 3a: Distributed OFL is serially equivalent to OFL.
Corollary 3b: If the data is randomly ordered, then the
distributed OFL algorithm provides a constant-factor
approximation for the DP-means objective.
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Distributed BP-means

Amazon EC2 experiment with
134 million data points, and
1,2,4,8 machines: 2x #
machines decreases the run
time by %

=>» Close to perfect
scaling up to 8 machines T
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Discussion & Future Work

Optimistic Concurrency Control can be usefully employed in
design of distributed machine learning algorithms

=» Preserves correctness, theoretical properties

=>» Provides high concurrency and parallelism

Future work

* Probabilistic acceptance / validation preserving statistical
correctness and invariants

* Extension to other distributed ML algorithms

- LDA / HDP Collapsed Gibbs sampling

- Submodular maximization
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