

Optimistic Concurrency Control for Distributed Learning

Xinghao Pan, Joseph Gonzalez, Stefanie Jegelka, Tamara Broderick, Michael I. Jordan

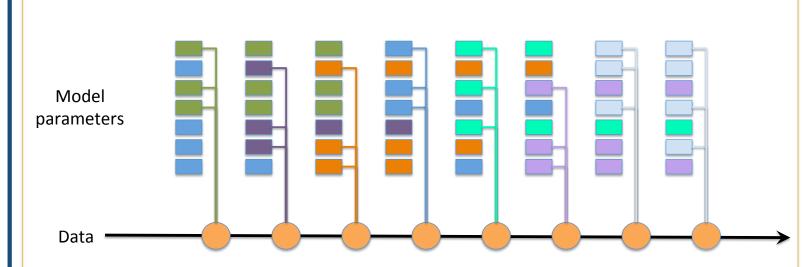
https://amplab.cs.berkeley.edu/projects/ccml/

Distributed Machine Learning

Big Data: need for distributed machine learning algorithms.

Challenge: dividing and coordinating computation across cores / machines

Algorithms access data and serially update shared state



Two prior approaches to parallelize algorithm design:

- 1. Mutual exclusion: Serializable but costly locking
- 2. Coordination free: Low contention but possible data corruption

Concurrency: most updates in parallel

→ fast algorithms

Correctness: result equivalent to some serial execution

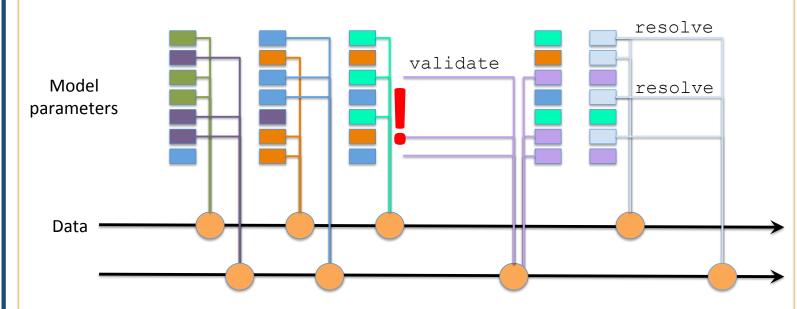
preserve theoretical properties

Objective: Provide high concurrency & correctness, through optimistic concurrency control

Optimistic Concurrency Control

View as a **transactional model**: Transaction ⇔ Operation

- 1. Read shared state and data
- 2. Validation: detect conflicts
- 3. Resolution: fix conflicts



Optimistic Concurrency Control (OCC) [1]:

- Assume low conflict rate, proceed optimistically, serially validate when needed
- Standard OCC validate by comparing read- and writesets, reject on conflict
- ☐ Rare conflicts, proceed optimistically
 - → High Concurrency
- ☐ Validation and Resolution mechanism
 - → Correctness

Example: Distributed Clustering

DP-means: Novel clustering algorithm [2]

- Extends popular K-means approach
- Cluster data without need to specify # of clusters
- Small variance asymptotic approx. to Dirichlet Process

Serial algorithm

- 1. Read data x_i and set of clusters, represented by centers $\{\mu_c\}$
- 2. Compute distance $d = \min_{c} ||x_i \mu_c||^2$ of x_i to centers $\{\mu_c\}$
- 3. If $d < \lambda$, assign x_i to nearest center; Otherwise, create new cluster with center at x_i

<u>Transaction</u> T_i for each data object x_i :

- L. **Read** cluster centers $\{\mu_c\}$
- 2. Compute distance $d = \min_c ||x_i \mu_c||$ of x_i to centers $\{\mu_c\}$
- 3. If $d < \lambda$, assign x_i to nearest center, **commit** immediately; Otherwise, create new cluster with center at x_i , **validate** x_i

Validate cluster creation for x_i

- I. Read cluster centers $\{\mu_k\}$ created since read phase of \mathbb{T}_+
- 2. Compute distance $d^* = \min_{\mathbf{k}} ||x_i \mu_k||^2$ of x_i to centers $\{\mu_k\}$
- 3. If $d^* < \lambda$, resolve: assign x_i to nearest new center; Otherwise, accept: create new cluster with center at x_i

Theorem 1a: Distributed DP-means is serially equivalent to DP-means.

Theorem 1b: Expected number of data points sent for validation is less than $Pb + \mathbf{E}[K]$, where P is the number of processors, b is the number of data points processed by each processor in one iteration, and K is the number of clusters.

Master Worker #1 Worker #2 Worker #3 T1.read T2.read T3.read T1.update T2.update T2.update T2.validate accept Conflict! T3.validate

Example: Feature Modeling

BP-means: Novel feature clustering algorithm [3]

- Allows membership in multiple clusters (features)
- Each data object represented as sum of features
- Small variance asymptotic approximation of Beta Process

Serial algorithm

- 1. Read current set of features $\{f_i\}$
- 2. Find best representation $x_i \approx \sum_{i}^{\infty} z_{ij} f_{ij}$, where $z_{ij} = 0$ or 1
- 3. If distance x_i to $\sum_j z_{ij} f_j < \lambda$, assign representation for x_i Otherwise, create new feature x_i $\sum_j z_{ij} f_j$

Transaction T_{i} for each data object x_{i} :

- 1. **Read** current set of features $\{f_j\}$
- 2. Find best representation $x_i \approx \sum_j z_{ij} f_j$, where $z_{ij} = 0$ or 1
- If distance x_i to $\sum_j z_{ij} f_j < \lambda$, **commit** immediately; Otherwise, create new feature $f_i^{new} = x_i - \sum_j z_{ij} f_j$, **validate** f_i^{new}

Validate feature creation for f_i^{new}

- 1. Read features $\{f_k\}$ created since read phase of \mathbb{T}_{i}
- 2. Find best representation $f_i^{new} \approx \sum_k z_{ik} f_k$, where z_{ik} = 0 or 1
- 3. If distance f_i^{new} to $\Sigma_k z_{ik} f_k < \lambda$, resolve: represent $x_i \approx \Sigma_j z_{ij} f_j + \Sigma_k z_{ik} f_k$;
 Otherwise, accept: create new feature f_i^{new} $\Sigma_k z_{ik} f_k$

Theorem 2: Distributed BP-means is serially equivalent to BP-means.

Example: Online Facility Location

Online Facility Location (OFL):

- Select facilities to min objective $\Sigma_i \min_c ||x_i \mu_c||^2 + \lambda^2 |\{\mu_c\}|$
- Stochastically choose data point x as facility in single pass

Serial algorithm

- 1. Read data x_i and set of facilities, represented by centers $\{\mu_c\}$
- 2. Compute distance $d=\min_c ||x_i-\mu_c||^2$ of x_i to centers $\{\mu_c\}$
- 3. With probability $1-\min(1, d^2/\lambda^2)$, assign x_i to nearest facility; Otherwise, create facility at x_i

<u>Transaction</u> T_i for each data object x_i :

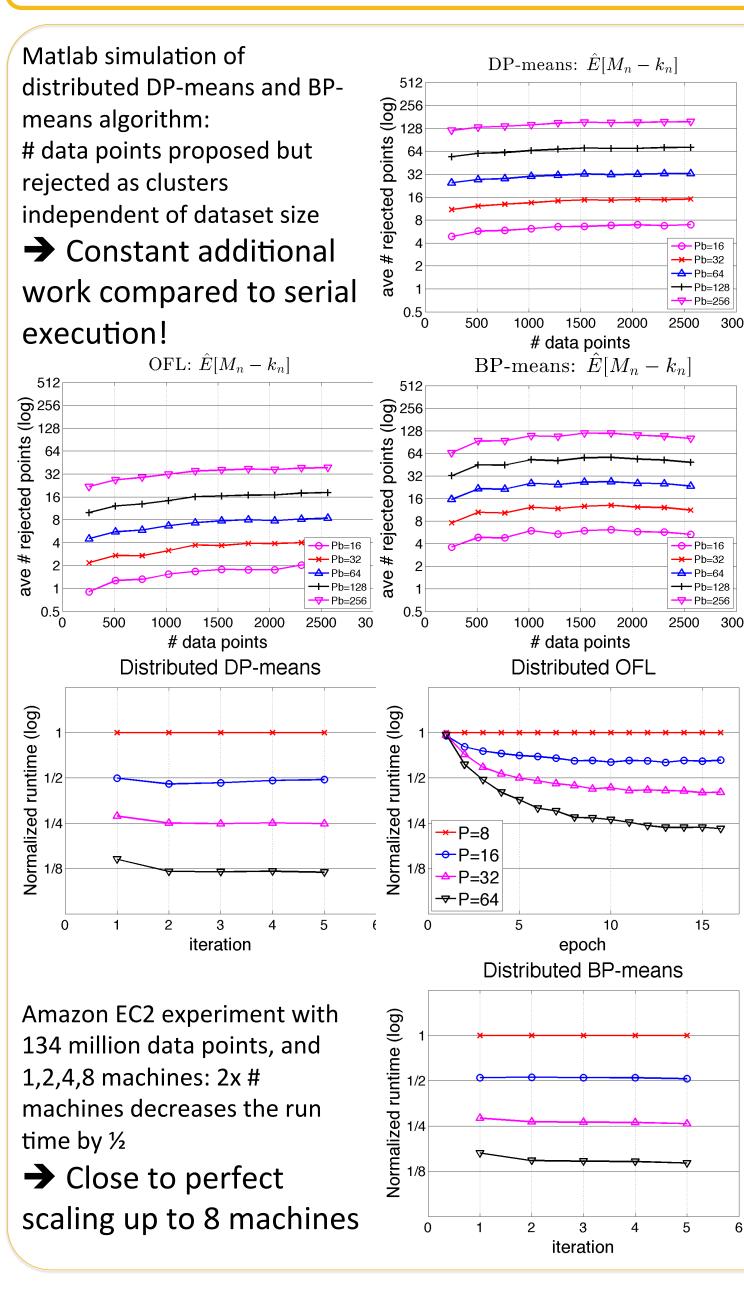
- .. **Read** facility centers $\{\mu_c\}$
- 2. Compute distance $d=\min_c ||x_i-\mu_c||^2$ of x_i to centers $\{\mu_c\}$
- 3. w.p. $1-\min(1, d^2/\lambda^2)$, assign x_i to nearest facility, **commit**; Otherwise, create new facility at x_i , **validate** (x_i, d)

Validate facility creation for (x_i, d)

- 1. Read facility centers $\{\mu_k\}$ created since read phase of $\mathbb{T}_{\mathtt{i}}$
- 2. Compute distance $d^* = \min_k ||x_i \mu_k||^2$ of x_i to centers $\{\mu_k\}$
- 3. w.p. 1-min(1, d^{*2}/d^2), **resolve**: assign x_i to nearest new facility; Otherwise, **accept**: create new facility at x_i

Theorem 3a: Distributed OFL is serially equivalent to OFL. **Corollary 3b**: If the data is randomly ordered, then the distributed OFL algorithm provides a constant-factor approximation for the DP-means objective.

Experiments



Discussion & Future Work

Optimistic Concurrency Control can be usefully employed in design of distributed machine learning algorithms

- → Preserves correctness, theoretical properties
- → Provides high concurrency and parallelism

<u>Future work</u>

- Probabilistic acceptance / validation preserving statistical correctness and invariants
- Extension to other distributed ML algorithms
- LDA / HDP Collapsed Gibbs sampling
- Submodular maximization

References

[1] Hsiang-Tsung Kung and John T Robinson. On optimistic methods for concurrency control. ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981.
[2] Brian Kulis and Michael I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics. I Proceedings of 23rd International Conference on Machine Learning, 2012.

[3] Tamara Broderick, Brian Kulis and Michael I. Jordan. MAD-Bayes: MAP-based Asymptotic Derivations from Bayes. *Proceedings of the 30th International Conference on Machine Learning*, 2013.