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Graphs are Central to Analytics	
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Update ranks in parallel 	



Iterate until convergence	



Rank of 
user i	

 Weighted sum of 

neighbors’ ranks	
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R[i] = 0.15 +
X

j2Nbrs(i)

wjiR[j]

PageRank: Identifying Leaders	





The Graph-Parallel Pattern	
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Model / Alg. 

State


Computation depends 
only on the neighbors




Many Graph-Parallel Algorithms	


•  Collaborative Filtering	



–  Alternating Least Squares	


–  Stochastic Gradient Descent	


–  Tensor Factorization	



•  Structured Prediction	


–  Loopy Belief Propagation	


–  Max-Product Linear Programs	


–  Gibbs Sampling	



•  Semi-supervised ML	


–  Graph SSL 	


–  CoEM	



•  Community Detection	


–  Triangle-Counting	


–  K-core Decomposition	


–  K-Truss	



•  Graph Analytics	


–  PageRank	


–  Personalized PageRank	


–  Shortest Path	


–  Graph Coloring	



•  Classification	


–  Neural Networks	
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Graph-Parallel Systems	
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oogle 

Expose specialized APIs to simplify graph 
programming.	



	


Exploit graph structure to achieve orders-of-

magnitude performance gains over more general ���
data-parallel systems.	





PageRank on the Live-Journal Graph	
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Runtime (in seconds, PageRank for 10 iterations)	



GraphLab is 60x faster than Hadoop	


GraphLab is 16x faster than Spark	





Graphs are Central to Analytics	
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Separate Systems to Support Each View	


Table View	

 Graph View	



Dependency Graph	



6. Before

8. After

7. After
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Having separate systems ���
for each view is ���

difficult to use and inefficient	
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Difficult to Program and Use	



Users must Learn, Deploy, and Manage 
multiple systems	



	


	


	



Leads to brittle and often ���
complex interfaces	
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Inefficient	
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Extensive data movement and duplication across ���
the network and file system	



< / >!< / >!< / >!
XML!

HDFS	
   HDFS	
   HDFS	
   HDFS	
  

Limited reuse internal data-structures ���
across stages	





Solution: The GraphX Unified Approach	



Enabling users to easily and efficiently 
express the entire graph analytics pipeline	



New API	


Blurs the distinction between 

Tables and Graphs	



New System	


Combines Data-Parallel 
Graph-Parallel Systems	





Tables and Graphs are composable ���
views of the same physical data	



GraphX Unified	


Representation	



Graph View	

Table View	



Each view has its own operators that ���
exploit the semantics of the view 	



to achieve efficient execution	





View a Graph as a Table	
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Property Graph	


Vertex Property Table	



Edge Property Table	





Table Operators	


Table (RDD) operators are inherited from Spark:	
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map 

filter 

groupBy 

sort 

union 

join 

leftOuterJoin 

rightOuterJoin 

reduce 

count 

fold 

reduceByKey 

groupByKey 

cogroup 

cross 

zip 

sample 

take 

first 

partitionBy 

mapWith 

pipe 

save 

... 



class Graph [ V, E ] { 
   def Graph(vertices: Table[ (Id, V) ],  
             edges: Table[ (Id, Id, E) ]) 

 // Table Views ----------------- 
 def vertices: Table[ (Id, V) ] 
 def edges: Table[ (Id, Id, E) ] 
 def triplets: Table [ ((Id, V), (Id, V), E) ] 
 // Transformations ------------------------------ 
 def reverse: Graph[V, E] 
 def subgraph(pV: (Id, V) => Boolean,  

                pE: Edge[V,E] => Boolean): Graph[V,E] 
 def mapV(m: (Id, V) => T ): Graph[T,E]  
 def mapE(m: Edge[V,E] => T ): Graph[V,T] 
 // Joins ---------------------------------------- 
 def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E ] 
 def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)] 
 // Computation ---------------------------------- 
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)], 
       reduceF: (T, T) => T): Graph[T, E] 

} 
 

Graph Operators	
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Triplets Join Vertices and Edges	


The triplets operator joins vertices and edges:	



The mrTriplets operator sums adjacent triplets.	


SELECT t.dstId, reduceUDF( mapUDF(t) ) AS sum  
FROM triplets AS t GROUPBY t.dstId 

Triplets	

Vertices	

 Edges	
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Map Reduce Triplets	



Map-Reduce for each vertex	



D	
  

B	
  

A	
  

C	
  

 mapF(               )	

A	
   B	
  

 mapF(               )	

A	
   C	
  

A1	
  

A2	
  

 reduceF(     ,      )	

A1	
   A2	
   A	
  

19	





F	
  

E	
  

Example: Oldest Follower	



D	
  

B	
  

A	
  

C	
  What is the age of the oldest 
follower for each user?	



val oldestFollowerAge = graph 
  .mrTriplets( 
    e=> (e.dst.id, e.src.age),//Map      
    (a,b)=> max(a, b) //Reduce  
  ) 
  .vertices 
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We express the Pregel and GraphLab ���
abstractions using the GraphX operators���

in less than 50 lines of code!	
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By composing these operators we can ���
construct entire graph-analytics pipelines.	





DIY Demo this Afternoon	





GraphX System Design	





Part. 2	



Part. 1	
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Distributed Graphs as Tables (RDDs)	
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Property Graph	
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Caching for Iterative mrTriplets	


Edge Table 	
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Incremental Updates for Iterative mrTriplets	



B	



C	



D	



E	



A	



F	



Change	

 A	

A	



Change	

 E	



Scan	





Vertex 
Table 

(RDD)	



Edge Table 	


(RDD)	



A	

 B	



A	

 C	



C	

 D	



B	

 C	



A	

 E	



A	

 F	



E	

 F	



E	

 D	



Mirror	


Cache	



B	


C	


D	



A	



Mirror	


Cache	



D	


E	


F	



A	



Aggregation for Iterative mrTriplets	
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Reduction in Communication 
Due to Cached Updates	
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Iteration	



Connected Components on Twitter Graph	



Most vertices are within 8 hops���
of all vertices in their comp.	





Benefit of Indexing Active Edges	
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Connected Components on Twitter Graph	
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Join Elimination	


Identify and bypass joins for unused triplets fields	


» Example: PageRank only accesses source attribute	
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PageRank on Twitter	

 Three Way Join	



Join Elimination	



Factor of 2 reduction in communication	





Additional Query Optimizations	



Indexing and Bitmaps:	


» To accelerate joins across graphs	


» To efficiently construct sub-graphs	



Substantial Index and Data Reuse:	


» Reuse routing tables across graphs and sub-graphs	


» Reuse edge adjacency information and indices	
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Performance Comparisons	
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GraphX is roughly 3x slower than GraphLab	



Live-Journal: 69 Million Edges	





GraphX scales to larger graphs	
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GraphX is roughly 2x slower than GraphLab	


» Scala + Java overhead: Lambdas, GC time, …	


» No shared memory parallelism: 2x increase in comm.	



Twitter Graph: 1.5 Billion Edges	





PageRank is just one stage….    ���
���

      What about a pipeline?	





HDFS	

HDFS	



Compute	

Spark Preprocess	

 Spark Post.	



A Small Pipeline in GraphX	



Timed end-to-end GraphX is faster than GraphLab	
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The GraphX Stack���
(Lines of Code)	
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Status	


Alpha release as part of Spark 0.9	



	



 	



	



	



	



	



Seeking collaborators and feedback	





Conclusion and Observations	


Domain specific views:  Tables and Graphs	


» tables and graphs are first-class composable objects	


» specialized operators which exploit view semantics	



Single system that efficiently spans the pipeline	


» minimize data movement and duplication	


» eliminates need to learn and manage multiple systems	



Graphs through the lens of database systems	


» Graph-Parallel Pattern à Triplet joins in relational alg.	


» Graph Systems à Distributed join optimizations	
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Active Research	


Static Data à Dynamic Data	


» Apply GraphX unified approach to time evolving data	


» Model and analyze relationships over time	



	



Serving Graph Structured Data	


» Allow external systems to interact with GraphX	


» Unify distributed graph databases with relational 

database technology	
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Thanks!	



ankurd@eecs.berkeley.edu	


crankshaw@eecs.berkeley.edu	



rxin@eecs.berkeley.edu	


jegonzal@eecs.berkeley.edu	



http://amplab.github.io/graphx/ 
 



Graph Property 1���
Real-World Graphs	
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AltaVista WebGraph1.4B Vertices, 6.6B Edges	



Degree	



More than 108 vertices ���
have one neighbor.	
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Graph Property 2���
Active Vertices	
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Number of Updates	



51% updated only once!	


PageRank on Web Graph	





Graphs are Essential to Data 
Mining and Machine Learning	


	



Identify influential people and information	



Find communities	



Understand people’s shared interests	



Model complex data dependencies	





Ratings
 Items


Recommending Products

Users




Low-Rank Matrix Factorization:	
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Predicting User Behavior
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Conditional Random Field!
Belief Propagation!



Count triangles passing through each vertex:

"





Measures “cohesiveness” of local community
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Finding Communities




Preprocessing	

 Compute	

 Post Proc.	



Example Graph Analytics Pipeline	
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