
GraphX:���
Unifying Data-Parallel and
Graph-Parallel Analytics 	

Presented by Joseph Gonzalez	

���
Joint work with Reynold Xin, Daniel Crankshaw, Ankur Dave,
Michael Franklin, and Ion Stoica	

	

Strata 2014	

*These slides are best viewed in PowerPoint with animation.	

Graphs are Central to Analytics	

Raw 	

Wikipedia 	

< / >!< / >!< / >!
XML!

Hyperlinks	

 PageRank	

 Top 20 Pages	

Title	

 PR	

Text	

Table	

Title	

 Body	

Topic Model	

(LDA)	

 Word Topics	

Word	

Topic	

Editor Graph	

Community	

Detection	

User 	

Community	

User	

 Com.	

Term-Doc	

Graph	

Discussion	

Table	

User	

 Disc.	

Community	

Topic	

Topic	

Com.	

Update ranks in parallel 	

Iterate until convergence	

Rank of
user i	

 Weighted sum of

neighbors’ ranks	

3	

R[i] = 0.15 +
X

j2Nbrs(i)

wjiR[j]

PageRank: Identifying Leaders	

The Graph-Parallel Pattern	

4	

Model / Alg.

State

Computation depends
only on the neighbors

Many Graph-Parallel Algorithms	

•  Collaborative Filtering	

–  Alternating Least Squares	

–  Stochastic Gradient Descent	

–  Tensor Factorization	

•  Structured Prediction	

–  Loopy Belief Propagation	

–  Max-Product Linear Programs	

–  Gibbs Sampling	

•  Semi-supervised ML	

–  Graph SSL 	

–  CoEM	

•  Community Detection	

–  Triangle-Counting	

–  K-core Decomposition	

–  K-Truss	

•  Graph Analytics	

–  PageRank	

–  Personalized PageRank	

–  Shortest Path	

–  Graph Coloring	

•  Classification	

–  Neural Networks	

5	

Graph-Parallel Systems	

6	

oogle

Expose specialized APIs to simplify graph
programming.	

	

Exploit graph structure to achieve orders-of-

magnitude performance gains over more general ���
data-parallel systems.	

PageRank on the Live-Journal Graph	

22	

354	

1340	

0	

 200	

 400	

 600	

 800	

 1000	

 1200	

 1400	

 1600	

GraphLab	

Naïve Spark	

Mahout/Hadoop	

Runtime (in seconds, PageRank for 10 iterations)	

GraphLab is 60x faster than Hadoop	

GraphLab is 16x faster than Spark	

Graphs are Central to Analytics	

Raw 	

Wikipedia 	

< / >!< / >!< / >!
XML!

Hyperlinks	

 PageRank	

 Top 20 Pages	

Title	

 PR	

Text	

Table	

Title	

 Body	

Topic Model	

(LDA)	

 Word Topics	

Word	

Topic	

Editor Graph	

Community	

Detection	

User 	

Community	

User	

 Com.	

Term-Doc	

Graph	

Discussion	

Table	

User	

 Disc.	

Community	

Topic	

Topic	

Com.	

Separate Systems to Support Each View	

Table View	

 Graph View	

Dependency Graph	

6. Before

8. After

7. After

Table	

Result	

Row	

Row	

Row	

Row	

Having separate systems ���
for each view is ���

difficult to use and inefficient	

10	

Difficult to Program and Use	

Users must Learn, Deploy, and Manage
multiple systems	

	

	

	

Leads to brittle and often ���
complex interfaces	

	

11	

Inefficient	

12	

Extensive data movement and duplication across ���
the network and file system	

< / >!< / >!< / >!
XML!

HDFS	
 HDFS	
 HDFS	
 HDFS	

Limited reuse internal data-structures ���
across stages	

Solution: The GraphX Unified Approach	

Enabling users to easily and efficiently
express the entire graph analytics pipeline	

New API	

Blurs the distinction between

Tables and Graphs	

New System	

Combines Data-Parallel
Graph-Parallel Systems	

Tables and Graphs are composable ���
views of the same physical data	

GraphX Unified	

Representation	

Graph View	

Table View	

Each view has its own operators that ���
exploit the semantics of the view 	

to achieve efficient execution	

View a Graph as a Table	

Id	

Rxin	

Jegonzal	

Franklin	

Istoica	

SrcId	

 DstId	

rxin	

 jegonzal	

franklin	

 rxin	

istoica	

 franklin	

franklin	

 jegonzal	

Property (E)	

Friend	

Advisor	

Coworker	

PI	

Property (V)	

(Stu., Berk.)	

(PstDoc, Berk.)	

(Prof., Berk)	

(Prof., Berk)	

R	

J	

F	

I	

Property Graph	

Vertex Property Table	

Edge Property Table	

Table Operators	

Table (RDD) operators are inherited from Spark:	

16	

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...

class Graph [V, E] {
 def Graph(vertices: Table[(Id, V)],
 edges: Table[(Id, Id, E)])

 // Table Views -----------------
 def vertices: Table[(Id, V)]
 def edges: Table[(Id, Id, E)]
 def triplets: Table [((Id, V), (Id, V), E)]
 // Transformations ------------------------------
 def reverse: Graph[V, E]
 def subgraph(pV: (Id, V) => Boolean,

 pE: Edge[V,E] => Boolean): Graph[V,E]
 def mapV(m: (Id, V) => T): Graph[T,E]
 def mapE(m: Edge[V,E] => T): Graph[V,T]
 // Joins --
 def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E]
 def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
 // Computation ----------------------------------
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)],
 reduceF: (T, T) => T): Graph[T, E]

}

Graph Operators	

17	

Triplets Join Vertices and Edges	

The triplets operator joins vertices and edges:	

The mrTriplets operator sums adjacent triplets.	

SELECT t.dstId, reduceUDF(mapUDF(t)) AS sum
FROM triplets AS t GROUPBY t.dstId

Triplets	

Vertices	

 Edges	

B	

A	

C	

D	

A	

 B	

A	

 C	

B	

 C	

C	

 D	

A	

 B	

A	

B	

 A	

 C	

B	

 C	

C	

 D	

F	

E	

Map Reduce Triplets	

Map-Reduce for each vertex	

D	

B	

A	

C	

 mapF()	

A	
 B	

 mapF()	

A	
 C	

A1	

A2	

 reduceF(,)	

A1	
 A2	
 A	

19	

F	

E	

Example: Oldest Follower	

D	

B	

A	

C	
 What is the age of the oldest
follower for each user?	

val oldestFollowerAge = graph
 .mrTriplets(
 e=> (e.dst.id, e.src.age),//Map
 (a,b)=> max(a, b) //Reduce
)
 .vertices

23	

 42	

30	

19	

 75	

16	

20	

We express the Pregel and GraphLab ���
abstractions using the GraphX operators���

in less than 50 lines of code!	

21	

By composing these operators we can ���
construct entire graph-analytics pipelines.	

DIY Demo this Afternoon	

GraphX System Design	

Part. 2	

Part. 1	

Vertex
Table

(RDD)	

B	

 C	

A	

 D	

F	

 E	

A	

 D	

Distributed Graphs as Tables (RDDs)	

D	

Property Graph	

B	

 C	

D	

E	

A	

A	

F	

Edge Table 	

(RDD)	

A	

 B	

A	

 C	

C	

 D	

B	

 C	

A	

 E	

A	

 F	

E	

 F	

E	

 D	

B	

C	

D	

E	

A	

F	

Routing	

Table

(RDD)	

B	

C	

D	

E	

A	

F	

1	

2	

1	
 2	

1	
 2	

1	

2	

2D Vertex Cut Heuristic	

Vertex
Table

(RDD)	

Caching for Iterative mrTriplets	

Edge Table 	

(RDD)	

A	

 B	

A	

 C	

C	

 D	

B	

 C	

A	

 E	

A	

 F	

E	

 F	

E	

 D	

Mirror	

Cache	

B	

C	

D	

A	

Mirror	

Cache	

D	

E	

F	

A	

B	

C	

D	

E	

A	

F	

B	

C	

D	

E	

A	

F	

A	

D	

Vertex
Table

(RDD)	

Edge Table 	

(RDD)	

A	

 B	

A	

 C	

C	

 D	

B	

 C	

A	

 E	

A	

 F	

E	

 F	

E	

 D	

Mirror	

Cache	

B	

C	

D	

A	

Mirror	

Cache	

D	

E	

F	

A	

Incremental Updates for Iterative mrTriplets	

B	

C	

D	

E	

A	

F	

Change	

 A	

A	

Change	

 E	

Scan	

Vertex
Table

(RDD)	

Edge Table 	

(RDD)	

A	

 B	

A	

 C	

C	

 D	

B	

 C	

A	

 E	

A	

 F	

E	

 F	

E	

 D	

Mirror	

Cache	

B	

C	

D	

A	

Mirror	

Cache	

D	

E	

F	

A	

Aggregation for Iterative mrTriplets	

B	

C	

D	

E	

A	

F	

Change	

Change	

Scan	

Change	

Change	

Change	

Change	

Local	

Aggregate	

Local	

Aggregate	

B	

C	

D	

F	

Reduction in Communication
Due to Cached Updates	

0.1	

1	

10	

100	

1000	

10000	

0	

 2	

 4	

 6	

 8	

 10	

 12	

 14	

 16	

N
et

w
or

k
Co

m
m

. (
M

B)
	

Iteration	

Connected Components on Twitter Graph	

Most vertices are within 8 hops���
of all vertices in their comp.	

Benefit of Indexing Active Edges	

0	

5	

10	

15	

20	

25	

30	

0	

 2	

 4	

 6	

 8	

 10	

 12	

 14	

 16	

Ru
nt

im
e

(S
ec

on
ds

)	

Iteration	

Connected Components on Twitter Graph	

Scan	

Indexed	

Scan All Edges	

Index of “Active” Edges	

Join Elimination	

Identify and bypass joins for unused triplets fields	

» Example: PageRank only accesses source attribute	

30	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

0	

 5	

 10	

 15	

 20	

Co
m

m
un

ica
tio

n
(M

B)
	

Iteration	

PageRank on Twitter	

 Three Way Join	

Join Elimination	

Factor of 2 reduction in communication	

Additional Query Optimizations	

Indexing and Bitmaps:	

» To accelerate joins across graphs	

» To efficiently construct sub-graphs	

Substantial Index and Data Reuse:	

» Reuse routing tables across graphs and sub-graphs	

» Reuse edge adjacency information and indices	

31	

Performance Comparisons	

22	

68	

207	

354	

1340	

0	

 200	

 400	

 600	

 800	

 1000	

 1200	

 1400	

 1600	

GraphLab	

GraphX	

Giraph	

Naïve Spark	

Mahout/Hadoop	

Runtime (in seconds, PageRank for 10 iterations)	

GraphX is roughly 3x slower than GraphLab	

Live-Journal: 69 Million Edges	

GraphX scales to larger graphs	

203	

451	

749	

0	

 200	

 400	

 600	

 800	

GraphLab	

GraphX	

Giraph	

Runtime (in seconds, PageRank for 10 iterations)	

GraphX is roughly 2x slower than GraphLab	

» Scala + Java overhead: Lambdas, GC time, …	

» No shared memory parallelism: 2x increase in comm.	

Twitter Graph: 1.5 Billion Edges	

PageRank is just one stage…. ���
���

 What about a pipeline?	

HDFS	

HDFS	

Compute	

Spark Preprocess	

 Spark Post.	

A Small Pipeline in GraphX	

Timed end-to-end GraphX is faster than GraphLab	

Raw Wikipedia 	

< / >!< / >!< / >!
XML!

Hyperlinks	

 PageRank	

 Top 20 Pages	

342	

1492	

0	

 200	

 400	

 600	

 800	

 1000	

 1200	

 1400	

 1600	

GraphLab + Spark	

GraphX	

Giraph + Spark	

Spark	

Total Runtime (in Seconds)	

605	

375	

The GraphX Stack���
(Lines of Code)	

GraphX (3575)	

Spark	

Pregel (28) + GraphLab (50)	

PageRank
(5)	

Connected
Comp. (10)	

Shortest
Path (10)	

ALS	

(40)	

 LDA	

(120)	

K-core	

(51)	

 Triangle	

Count	

(45)	

SVD	

(40)	

Status	

Alpha release as part of Spark 0.9	

	

 	

	

	

	

	

Seeking collaborators and feedback	

Conclusion and Observations	

Domain specific views: Tables and Graphs	

» tables and graphs are first-class composable objects	

» specialized operators which exploit view semantics	

Single system that efficiently spans the pipeline	

» minimize data movement and duplication	

» eliminates need to learn and manage multiple systems	

Graphs through the lens of database systems	

» Graph-Parallel Pattern à Triplet joins in relational alg.	

» Graph Systems à Distributed join optimizations	

38	

Active Research	

Static Data à Dynamic Data	

» Apply GraphX unified approach to time evolving data	

» Model and analyze relationships over time	

	

Serving Graph Structured Data	

» Allow external systems to interact with GraphX	

» Unify distributed graph databases with relational

database technology	

39	

Thanks!	

ankurd@eecs.berkeley.edu	

crankshaw@eecs.berkeley.edu	

rxin@eecs.berkeley.edu	

jegonzal@eecs.berkeley.edu	

http://amplab.github.io/graphx/

Graph Property 1���
Real-World Graphs	

41	

100 102 104 106 108
100

102

104

106

108

1010

degree

co
un
t

Top 1% of vertices are
adjacent to	

50% of the edges!	

N
um

be
r o

f V
er

tic
es
	

AltaVista WebGraph1.4B Vertices, 6.6B Edges	

Degree	

More than 108 vertices ���
have one neighbor.	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

2008	

 2009	

 2010	

 2011	

 2012	

Ra

tio
 o

f E
dg

es
 to

 Ve
rt

ice
s	

Year	

Facebook	

Power-Law Degree Distribution	

 Edges >> Vertices	

Graph Property 2���
Active Vertices	

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

100000000	

0	

 10	

 20	

 30	

 40	

 50	

 60	

 70	

N
um

-V
er

tic
es
	

Number of Updates	

51% updated only once!	

PageRank on Web Graph	

Graphs are Essential to Data
Mining and Machine Learning	

	

Identify influential people and information	

Find communities	

Understand people’s shared interests	

Model complex data dependencies	

Ratings
 Items

Recommending Products

Users

Low-Rank Matrix Factorization:	

45	

r13	

r14	

r24	

r25	

f(1)	

f(2)	

f(3)	

f(4)	

f(5)	

U
se

r F
ac

to
rs

 (U
)	

M
ovie Factors (M

)	

U

se
rs
	

 Movies	

Netflix	

U

se
rs
	

≈	

x	

Movies	

f(i)	

f(j)	

Iterate:	

f [i] = arg min
w2Rd

X

j2Nbrs(i)

�
rij � wT f [j]

�2
+ �||w||22

Recommending Products	

Liberal	

 Conservative	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Predicting User Behavior

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

Post	

?	

?	

?	

?	

?	

?	

?	

?	
 ?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	

?	
 ?	

?	

46	

Conditional Random Field!
Belief Propagation!

Count triangles passing through each vertex:

"

Measures “cohesiveness” of local community

More Triangles

Stronger Community

Fewer Triangles

Weaker Community

1

2
 3

4

Finding Communities

Preprocessing	

 Compute	

 Post Proc.	

Example Graph Analytics Pipeline	

48	

< / >!< / >!< / >!
XML!

Raw	

Data	

 ETL	

 Slice	

 Compute	

Repeat	

Subgraph	

 PageRank	

Initial 	

Graph	

Analyze	

Top	

Users	

