GraphX:
Unifying Data-Parallel and

Graph-Parallel Analytics

Presented by Joseph Gonzalez

Joint work with Reynold Xin, Daniel Crankshaw, Ankur Dave,
Michael Franklin, and lon Stoica

Strata 2014

Graphs are Central to Analytics

Hyperlinks PageRank Top 20 Pages

Raw —
Wikipedia Table
T| le Bod /,
‘ - — Term-Doc Topic Model
Graph (LDA) Word Topics
= = \/\/orleopic
l — ; = — —

Discussion Community User \Commumty
Table Editor Graph ~ Detection Community Topic

— —> —> —>

PageRank: ldentifying Leaders

R[] =015+ » wjR[j]

Rank of
user i Weighted sum of

neighbors’ ranks

Update ranks in parallel

terate until convergence

The Graph-Parallel Pattern

o
Model / Alg.

State

Computation depends
only on the neighbors

Many Graph-Parallel Algorithms

* Collaborative Filtering * Community Detection
— Alternating Least Squares — Triangle-Counting
— Stochastic Gradient Descent — K-core Decomposition
— lensor Factorization — K-Truss

* Structured Prediction * Graph Analytics
— Loopy Belief Propagation — PageRank
— Max-Product Linear Programs ~ — Personalized PageRank
— Gibbs Sampling — Shortest Path

« Semi-supervised ML — Graph Coloring

— Graph SSL * (lassification
— CoEM — Neural Networks

Graph-Parallel Systems

2 N
<% Graph Lab'

e
>
%
NI 4
a»
avy
4
o
()
v

"W
a

o

v

<®

T
()
'=|
o

|/
<
}‘

»

oS¢

N

s
Q
A
dg0

Pregel

oogle

=ne
e
9

m>

Expose specialized APIs to simplify graph
brogramming.

Exploit graph structure to achieve orders-of-
magnitude performance gains over more general
data-parallel systems.

PageRank on the Live-Journal Graph

MehoutHadoop I 40

Naive Spark _ 354

GraphlLab F 22

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

Graphlab i1s 60x faster than Hadoop
Graphlab is | 6x faster than Spark

Graphs are Central to Analytics

Hyperlinks PageRank Top 20 Pages

Raw —
Wikipedia Table
T| le Bod /,
‘ - — Term-Doc Topic Model
Graph (LDA) Word Topics
= = \/\/orleopic
l — ; = — —

Discussion Community User \Commumty
Table Editor Graph ~ Detection Community Topic

— —> —> —>

Separate Systems to Support Each View

Table View Graph View

Pregel Craphlab' ¥l

GIRAPH

Dependency Graph

Result

Having separate systems
for each view s
difficult to use and inefficient

Difficult to Program and Use

Users must Learn, Deploy, and Manage
multiple systems

7 RN -
@ m SoarK™ 7 . Graphl_ab\

GIRAPH

L eads to brittle and often
complex interfaces

11

Inefficient

Extensive data movement and duplication across
the network and file system

S B

Graphlab' m :
ﬁﬂ ﬁﬂ iﬁﬂ

HDFS

Limited reuse internal data-structures
across stages

12

Solution: The GraphX Unified Approach

New AP New System
Blurs the distinction between Combines Data-Parallel
lables and Graphs Graph-Para//e/ Systems
GIRAPH {
Graph Cap

Enabling users to easily and efficiently
express the entire graph analytics pipeline

Tables and Graphs are composable
views of the same physical data

Jn Vg

Table View Graph View

Representation

Fach view has its own operators that
exploit the semantics of the view
to achieve efficient execution

View a Graph as a lable

Property Graph

Vertex Property lable

Id

Property (V)

Rxin

(Stu., Berk.)

Jegonzal (PstDoc, Berk.)

Franklin (Prof., Berk)

Istoica

(Prof., Berk)

Edge

Property lable

Srcld

Dstld Property (E)

rXIin

jegonzal Friend

franklin

rXIin Advisor

Istoica

franklin Coworker

franklin

jegonzal Pl

Table Operators

Table (RDD) operators are inherited from Spark:

map reduce sample
filter count take
groupBy fold first

sort reduceByKey partitionBy
union groupByKey mapwith
join cogroup pipe
leftOuterJoin Cross save

rightouterJoin Z1ip

Graph Operators

class Graph [Vv, E] {
def Graph(vertices: Table[(1d, V) 1,
edges: Tablel (1d, 1d, E)])
// Table views --—-—————-—-———————-
def vertices: Table[(1d, V)]
def edges: Tablel (1d, 1d, E)]
def triplets: Table [((rd, V), (1d, V), E)]
// Transformations -----—-—-———————————————————————
def reverse: Graphl[v, E]
def subgraph(pv: (1d, V) => Boolean,
PE: EdgelV,E] => Boolean): GraphlV,E]
def mapv(m: (I1d, V) => T): GraphlT,E]
def mapeE(m: EdgelV,E]l => T): GraphlV,T]
// JOTNS ————————
def joinv(tbl: Table [(1d, T)]): Graph[(Cv, T), E]
def joine(tbl: Table [(1d, 1d, T)]): Graphlv, (E, T)]
// computation ------———-——————————
def mrTriplets(mapF: (EdgelV,E]) => List[(1Id, T)],
reducefF: (7, T) => T): GraphlT, E]

Iriplets Join Vertices and tdges

The triplets operator joins vertices and edges:

Vertices Triplets Edges
(4 Q=10
B B
@ C D= G
(Q 3 C
@ >

The mrliriplets operator sums adjacent triplets.

SELECT t.dstld, reduceUDF(mapUDF(t)) AS sum
FROM triplets AS t GROUPBY t.dstld

Map Reduce Iriplets

Map-Reduce for each vertex
mapF((Qe<e-(s)) =
mapF((Qee(Q) =

reduceF(,) — @

23

What is the age of the oldest
follower for each user?

val oldestFollowerAge = graph
.mrTriplets(
e=> (e.dst.i1d, e.src.age),//Map
(a,b)=> max(a, b) //reduce
)

.vertices

B

-xample: Oldest Follower

19

30

42

75

We express the Pregel and Graphlab
abstractions using the GraphX operators
in less than 50 lines of codel

By composing these operators we can
construct entire graph-analytics pipelines.

2

DIY Demo this Afternoon

®en0o6e Graph Analytics With GraphX "l

(2>) (D) (2] [£] O locathost:4000/ graph-analytics-with-graph ¢ I o)
2. Introduction to the GraphX API

To get started you first need to import GraphX. Start the Spark-Shell (by running the following on the root node):

/root/spark/bin/spark-shell

and paste the following in your Spark shell:
#Scala

1 import org.apache.spark.graphx._
2 import org.apache.spark.rdd.RDD|

2.1. The Property Graph

The property graph is a directed multigraph (a directed graph with potentially multiple parallel edges sharing the same source and destination
vertex) with properties attached to each vertex and edge. Each vertex is keyed by a unique 64-bit long identifier (vertex10). Similarly, edges have
corresponding source and destination vertex identifiers. The properties are stored as Scala/Java objects with each edge and vertex in the graph.
Throughout the first half of this tutorial we will use the following toy property graph. While this is hardly big data, it provides an opportunity to learn

about the graph data model and the GraphX API. In this example we have a small social network with users and their ages modeled as vertices
and likes modeled as directed edges.

We begin by creating the property graph from arrays of vertices and edges. Later we will demonstrate how to load real data. Paste the following
code into the spark shell.

#Scala

val vertexArray = Array(
(1L, ("Alice", 28)),
(2L, ("Bob", 27)),
Q@G3L, ("Charlie”, 65)),
(4L, ("David", 42)),
(5L, ("Ed", 55)),

OV A WN e

GraphX System Design

Property Graph
Part. |
A\ j \
2D \%Cut Heur%%
\

Part. 2

Distributed Graphs as Tables (R

DDs)

Vertex
Table

(RDD)

Routing
Table

(RDD)

0>
~

L8

Ay

2
o

Edge Table
(RDD)

0.0

OIOIOIO} @IOIO,
©1010]0)]©I0I0

Caching for lterative mririplets

Table (izTgi'e

e ()
g (a0
P <)
©: ()
o (a(®)
g (a ()
e ()
O-| (P

Incremental Updates for Iterative mrlriplets

Vertex Edge Table
ROD) o0
Mirror
Change ——> % “ache @
g ionc
¢ e ©
@ 0] (o)
P Sl 100
Q=
Change —> % @ @ -®
0§ o)
e 0§ .

Aggregation for [terative mrlriplets

Change —

Change

Change —

Change

Change —

Change

Vertex
Table

(RDD)

Local
Aggregate

Local
Aggregate

o

Edge Table

Mirror
Cache

0=
0
)

(RDD)

Mirror
Cache

Q=

—>Ej@

6=

)))& @Q@g@
HEOEIEOOE

-0

Reduction in Comm

10000
S 1000
E oo
O
O
Y 10
o
§
Z

0.1

Due to Cachec

UM

L

pC

ication

ates

Connected Components on Twitter Graph

Most vertices are within 8 hops
of all vertices in their comp.

0 2 4 6 8
[teration

Benefit of Indexing Active Edges

Connected Components on Twitter Graph

30
g =¢=Scan
8 25
S ““*Indexed
g 20
L
o |5 Q
= Scan All Edges
g=
S 10
é (4 .)
5 -
0

O

2 4 6 8 10 12 |4 |6

lteration

Join Elimination

|dentify and bypass joins for unused triplets fields

» Example: PageRank only accesses source attribute

PageRank on Twitter o=qp e Way Join

- 14000 == |oin Elimination
s 12000
-5 | 0000 /)
*é 8000 i
S 6000
€ 4000 ! .
o)
O 2008 Factor of 2 reduction in communication
0 5 |10 |5 20

lteration .

Additional Query Optimizations

Indexing and Bitmaps:

» To accelerate joins across graphs

» To efficiently construct sub-graphs

Substantial Index and Data Reuse;
» Reuse routing tables across graphs and sub-graphs

» Reuse edge adjacency information and indices

31

Performance Comparisons

Live-Journal: 69 Million Edges

Mahout/Hadoop | | | | | | 1340
Naive Spark | 354
Giraph , 207
GraphX [l 68
GraphlLab | 22

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

GraphX is roughly 3x slower than Graphlab

GraphX scales to larger graphs

Twitter Graph: |.5 Billion Edges

Giraph — 749
GraphX # 451

Graphlab _— 203

0 200 400 600 800

Runtime (in seconds, PageRank for 10 iterations)

GraphXis roughly 2x slower than Graphlab
» Scala + Java overhead: Lambdas, GC time, ...
» No shared memory parallelism: 2x increase in comm.

PageRank Is just one stage.. ..

What about a pipeline!

A Small Pipeline in GraphX

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
—) «__ 3> C—p >
& -l
Spark | , | . . . 1492
Giraph + Spark | , 1 605
GraphX | 342
Graphlab + Spark | 375

0 200 400 600 800 1000 1200 1400 1600
Total Runtime (in Seconds)

Timed end-to-end GraphX is faster than Graphlab

The GraphX Stack
(Lines of Code)

Connected [Shortest § SVD | ALS K-core
Comp. (10) fPath (10)] (40) | (40) (51

Pregel (28) + GraphlLab (50)

Triangle
Count
(45)

PageRank
()

GraphX (3575)

Spark

Status

Alpha release as part of Spark 0.9

®e0e6 GraphX Programming Guide - Spark 0.9.0 Documentation "

<> @ @ E{.{ spark.incubator.apache.org /¢

spo,izo o Overview Programming Guides~ APl Docs Deploying~ More~

GraphX

GraphX is the new (alpha) Spark API for graphs and graph-parallel computation. At a high-level, GraphX extends the Spark RDD by introducing
the Resilient Distributed Property Graph: a directed multigraph with properties attached to each vertex and edge. To support graph computation,
GraphX exposes a set of fundamental operators (e.g., subgraph, joinVertices, and mapReduceTriplets) as well as an optimized variant of the
Pregel API. In addition, GraphX includes a growing collection of graph algorithms and builders to simplify graph analytics tasks.

Background on Graph-Parallel Computation

From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new
graph-parallel systems (e.g., Giraph and GraphlLab). By restricting the types of P ion that can be expi d and introducing new
techniques to partition and distribute graphs, these systems can y sopt graph algorithms orders of magnitude faster
than more general data-parallel systems.

Graph-Parallel
a
Pregel \l ab ;:1

Property Graph

Data-Parallel

Spoﬁ(\I

Table

-+

—_—
—_—
L]

Seeking collaborators and feedback

Conclusion and Observations

Domain specific views: Tables and Graphs
»tables and graphs are first-class composable objects
» specialized operators which explort view semantics

Single system that efficiently spans the pipeline
» minimize data movement and duplication
» eliminates need to learn and manage multiple systems

Graphs through the lens of database systems
» Graph-Parallel Pattern = Triplet joins in relational alg.
» Graph Systems > Distributed join optimizations

Active Research

Static Data = Dynamic Data

» Apply GraphX unified approach to time evolving data
» Model and analyze relationships over time

Serving Graph Structured Data
» Allow external systems to interact with GraphX
» Unify distributed graph databases with relational
database technology

Thanks!

http://amplab.github.io/graphx/

ankurd@eecs.berkeley.edu
crankshaw@eecs.berkeley.edu

~xin@eecs.berkeley.edu
Jegonzal@eecs.berkeley.edu

Number of Vertices

Graph Property |
Real-World Graphs

Power-Law Degree Distribution

AltaVista WebGraph | 4B Vertices, 6.6B Edges

D~ | have one neighbor.
.... \\S)

More than 108 vertices j

Top 1% of vertices are

adjacent to
\ 50% of the edges!

O
N

St 10

Edges >> Vertices

Facebook

200

—

1 60
/
140 /

120
100 /
80 7

60
40
20
0 T T T |
2008 2009 2010 2011 2012

Year

Ratio of Edges to Vertices

41

Num-Vertices

00000000

10000000 ¥

1000000
100000
10000
1000
100

10

|

Graph Property 2

Active Vertices
PageRank on Web Graph

@« 51% updated only oncel

0 10 20 30 40 50 60 70
Number of Updates

Graphs are

-ssential to

Data

Mining and Machine Learning

|dentify influential people and information

FiInd communities

Understand people’s shared interests

Model complex data dependencies

Recommending Products

Users Ratings

5

Recommending Products

L ow-Rank Matrix Factorization:

Users

Users
)
=)

\'w
=
User Factors (U)

Movies l]

lterate:

flt] = arg min
weR ,
jENDrs(2)

S (rij = wTfl])” + Allwl]

f(3)

45

() SJO1DB SIAOA|

2
2

Predicting User Behavior

a O
Conditional Random Field
Belief Propagation

Finding Communities

Count triangles passing through each vertex:
2

1

Measures “cohesiveness” of local community

Fewer Triangles More Triangles
Weaker Community Stronger Community

Preprocessing

Compute

Raw
Data i

Inrtial

| Subgraph
~ Graph

- N\

&
GraphLab®

Compute

PageRank

-xample Graph Analytics Pipeline

Post Proc.

Analyze

Top

48

