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Graphs are Central to Analytics	
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Update ranks in parallel 	


Iterate until convergence	


Rank of 
user i	
 Weighted sum of 

neighbors’ ranks	
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R[i] = 0.15 +
X

j2Nbrs(i)

wjiR[j]

PageRank: Identifying Leaders	




The Graph-Parallel Pattern	
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Model / Alg. 
State

Computation depends 
only on the neighbors



Many Graph-Parallel Algorithms	

•  Collaborative Filtering	


–  Alternating Least Squares	

–  Stochastic Gradient Descent	

–  Tensor Factorization	


•  Structured Prediction	

–  Loopy Belief Propagation	

–  Max-Product Linear Programs	

–  Gibbs Sampling	


•  Semi-supervised ML	

–  Graph SSL 	

–  CoEM	


•  Community Detection	

–  Triangle-Counting	

–  K-core Decomposition	

–  K-Truss	


•  Graph Analytics	

–  PageRank	

–  Personalized PageRank	

–  Shortest Path	

–  Graph Coloring	


•  Classification	

–  Neural Networks	
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Graph-Parallel Systems	


6	


 
oogle 

Expose specialized APIs to simplify graph 
programming.	


	

Exploit graph structure to achieve orders-of-

magnitude performance gains over more general ���
data-parallel systems.	




PageRank on the Live-Journal Graph	
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Runtime (in seconds, PageRank for 10 iterations)	


GraphLab is 60x faster than Hadoop	

GraphLab is 16x faster than Spark	




Graphs are Central to Analytics	
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Separate Systems to Support Each View	

Table View	
 Graph View	


Dependency Graph	


6. Before

8. After

7. After
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Having separate systems ���
for each view is ���

difficult to use and inefficient	
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Difficult to Program and Use	


Users must Learn, Deploy, and Manage 
multiple systems	


	

	

	


Leads to brittle and often ���
complex interfaces	
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Inefficient	
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Extensive data movement and duplication across ���
the network and file system	


< / >!< / >!< / >!
XML!

HDFS	   HDFS	   HDFS	   HDFS	  

Limited reuse internal data-structures ���
across stages	




Solution: The GraphX Unified Approach	


Enabling users to easily and efficiently 
express the entire graph analytics pipeline	


New API	

Blurs the distinction between 

Tables and Graphs	


New System	

Combines Data-Parallel 
Graph-Parallel Systems	




Tables and Graphs are composable ���
views of the same physical data	


GraphX Unified	

Representation	


Graph View	
Table View	


Each view has its own operators that ���
exploit the semantics of the view 	


to achieve efficient execution	




View a Graph as a Table	
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Property Graph	

Vertex Property Table	


Edge Property Table	




Table Operators	

Table (RDD) operators are inherited from Spark:	
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map 

filter 

groupBy 

sort 

union 

join 

leftOuterJoin 

rightOuterJoin 

reduce 

count 

fold 

reduceByKey 

groupByKey 

cogroup 

cross 

zip 

sample 

take 

first 

partitionBy 

mapWith 

pipe 

save 

... 



class Graph [ V, E ] { 
   def Graph(vertices: Table[ (Id, V) ],  
             edges: Table[ (Id, Id, E) ]) 

 // Table Views ----------------- 
 def vertices: Table[ (Id, V) ] 
 def edges: Table[ (Id, Id, E) ] 
 def triplets: Table [ ((Id, V), (Id, V), E) ] 
 // Transformations ------------------------------ 
 def reverse: Graph[V, E] 
 def subgraph(pV: (Id, V) => Boolean,  

                pE: Edge[V,E] => Boolean): Graph[V,E] 
 def mapV(m: (Id, V) => T ): Graph[T,E]  
 def mapE(m: Edge[V,E] => T ): Graph[V,T] 
 // Joins ---------------------------------------- 
 def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E ] 
 def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)] 
 // Computation ---------------------------------- 
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)], 
       reduceF: (T, T) => T): Graph[T, E] 

} 
 

Graph Operators	
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Triplets Join Vertices and Edges	

The triplets operator joins vertices and edges:	


The mrTriplets operator sums adjacent triplets.	

SELECT t.dstId, reduceUDF( mapUDF(t) ) AS sum  
FROM triplets AS t GROUPBY t.dstId 

Triplets	
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 Edges	
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Map Reduce Triplets	


Map-Reduce for each vertex	
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F	  

E	  

Example: Oldest Follower	


D	  

B	  

A	  

C	  What is the age of the oldest 
follower for each user?	


val oldestFollowerAge = graph 
  .mrTriplets( 
    e=> (e.dst.id, e.src.age),//Map      
    (a,b)=> max(a, b) //Reduce  
  ) 
  .vertices 
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We express the Pregel and GraphLab ���
abstractions using the GraphX operators���

in less than 50 lines of code!	
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By composing these operators we can ���
construct entire graph-analytics pipelines.	




DIY Demo this Afternoon	




GraphX System Design	




Part. 2	


Part. 1	
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D	


Property Graph	


B	
 C	


D	


E	


A	
A	


F	


Edge Table 	

(RDD)	


A	
 B	


A	
 C	


C	
 D	


B	
 C	


A	
 E	


A	
 F	


E	
 F	


E	
 D	


B	


C	


D	


E	


A	


F	


Routing	

Table 

(RDD)	


B	


C	


D	


E	


A	


F	


1	  

2	  

1	   2	  

1	   2	  

1	  

2	  

2D Vertex Cut Heuristic	




Vertex 
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Caching for Iterative mrTriplets	
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Incremental Updates for Iterative mrTriplets	
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Aggregation for Iterative mrTriplets	


B	


C	


D	


E	


A	


F	


Change	


Change	


Scan	


Change	


Change	


Change	


Change	


Local	

Aggregate	


Local	

Aggregate	


B	

C	


D	


F	




Reduction in Communication 
Due to Cached Updates	
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Iteration	


Connected Components on Twitter Graph	


Most vertices are within 8 hops���
of all vertices in their comp.	




Benefit of Indexing Active Edges	
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Join Elimination	

Identify and bypass joins for unused triplets fields	

» Example: PageRank only accesses source attribute	
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Iteration	


PageRank on Twitter	
 Three Way Join	


Join Elimination	


Factor of 2 reduction in communication	




Additional Query Optimizations	


Indexing and Bitmaps:	

» To accelerate joins across graphs	

» To efficiently construct sub-graphs	


Substantial Index and Data Reuse:	

» Reuse routing tables across graphs and sub-graphs	

» Reuse edge adjacency information and indices	
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Performance Comparisons	
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GraphX scales to larger graphs	
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GraphX is roughly 2x slower than GraphLab	

» Scala + Java overhead: Lambdas, GC time, …	

» No shared memory parallelism: 2x increase in comm.	


Twitter Graph: 1.5 Billion Edges	




PageRank is just one stage….    ���
���

      What about a pipeline?	




HDFS	
HDFS	


Compute	
Spark Preprocess	
 Spark Post.	


A Small Pipeline in GraphX	


Timed end-to-end GraphX is faster than GraphLab	
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The GraphX Stack���
(Lines of Code)	
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Status	

Alpha release as part of Spark 0.9	


	


 	


	


	


	


	


Seeking collaborators and feedback	




Conclusion and Observations	

Domain specific views:  Tables and Graphs	

» tables and graphs are first-class composable objects	

» specialized operators which exploit view semantics	


Single system that efficiently spans the pipeline	

» minimize data movement and duplication	

» eliminates need to learn and manage multiple systems	


Graphs through the lens of database systems	

» Graph-Parallel Pattern à Triplet joins in relational alg.	

» Graph Systems à Distributed join optimizations	
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Active Research	

Static Data à Dynamic Data	

» Apply GraphX unified approach to time evolving data	

» Model and analyze relationships over time	


	


Serving Graph Structured Data	

» Allow external systems to interact with GraphX	

» Unify distributed graph databases with relational 

database technology	
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Thanks!	


ankurd@eecs.berkeley.edu	

crankshaw@eecs.berkeley.edu	


rxin@eecs.berkeley.edu	

jegonzal@eecs.berkeley.edu	


http://amplab.github.io/graphx/ 
 



Graph Property 1���
Real-World Graphs	
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AltaVista WebGraph1.4B Vertices, 6.6B Edges	


Degree	


More than 108 vertices ���
have one neighbor.	
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Graph Property 2���
Active Vertices	
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Number of Updates	


51% updated only once!	

PageRank on Web Graph	




Graphs are Essential to Data 
Mining and Machine Learning	

	


Identify influential people and information	


Find communities	


Understand people’s shared interests	


Model complex data dependencies	




Ratings Items

Recommending Products
Users



Low-Rank Matrix Factorization:	
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Conditional Random Field!
Belief Propagation!



Count triangles passing through each vertex:
"



Measures “cohesiveness” of local community

More Triangles
Stronger Community

Fewer Triangles
Weaker Community

1
2 3

4

Finding Communities



Preprocessing	
 Compute	
 Post Proc.	


Example Graph Analytics Pipeline	
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