GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

Presented by Joseph Gonzalez

Joint work with Reynold Xin, Daniel Crankshaw, Ankur Dave, Michael Franklin, and Ion Stoica

Strata 2014

*These slides are best viewed in PowerPoint with animation.

Graphs are Central to Analytics

Update ranks in parallel

Iterate until convergence

Many Graph-Parallel Algorithms

- Collaborative Filtering
 - Alternating Least Squares
 - Stochastic Gradient Descent
 - Tensor Factorization
- Structured Prediction
 - Loopy Belief Propagation
 - Max-Product Linear Programs
 - Gibbs Sampling
- Semi-supervised ML
 - Graph SSL
 - CoEM

- Community Detection
 - Triangle-Counting
 - K-core Decomposition
 - K-Truss
- Graph Analytics
 - PageRank
 - Personalized PageRank
 - Shortest Path
 - Graph Coloring
- Classification
 - Neural Networks

Expose specialized APIs to simplify graph programming.

Exploit graph structure to achieve orders-ofmagnitude performance gains over more general data-parallel systems.

PageRank on the Live-Journal Graph

Runtime (in seconds, PageRank for 10 iterations)

GraphLab is 60x faster than Hadoop GraphLab is 16x faster than Spark

Graphs are Central to Analytics

Having separate systems for each view is difficult to use and inefficient

Difficult to Program and Use

Users must Learn, Deploy, and Manage multiple systems

Leads to brittle and often complex interfaces

Inefficient

Extensive data movement and duplication across the network and file system

Limited reuse internal data-structures across stages

Solution: The GraphX Unified Approach

New API Blurs the distinction between Tables and Graphs New System Combines Data-Parallel Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline

Tables and Graphs are composable views of the same physical data

Each view has its own operators that exploit the semantics of the view to achieve efficient execution

View a Graph as a Table

Property Graph

Vertex Property Table

ld	Property (V)	
Rxin	(Stu., Berk.)	
Jegonzal	(PstDoc, Berk.)	
Franklin	(Prof., Berk)	
Istoica	(Prof., Berk)	

Edge Property Table

SrcId	Dstld	Property (E)
rxin	jegonzal	Friend
franklin	rxin	Advisor
istoica	franklin	Coworker
franklin	jegonzal	PI

Table Operators

Table (RDD) operators are inherited from Spark:

map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapWith
join	cogroup	pipe
leftOuterJoin	cross	save
rightOuterJoin	zip	

Graph Operators

```
class Graph [ V, E ] {
   def Graph(vertices: Table[ (Id, V) ],
             edges: Table[ (Id, Id, E) ])
   // Table Views -----
   def vertices: Table[ (Id, V) ]
   def edges: Table[ (Id, Id, E) ]
   def triplets: Table [ ((Id, V), (Id, V), E) ]
   // Transformations --
   def reverse: Graph[V, E]
   def subgraph(pV: (Id, V) => Boolean,
                pE: Edge[V,E] => Boolean): Graph[V,E]
   def mapV(m: (Id, V) \Rightarrow T): Graph[T, E]
   def mapE(m: Edge[V, E] \Rightarrow T): Graph[V, T]
   // Joins -
   def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E]
   def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
   // Computation
   def mrTriplets(mapF: (Edge[V, E]) => List[(Id, T)],
                   reduceF: (T, T) \Rightarrow T: Graph[T, E]
```

}

Triplets Join Vertices and Edges

The *triplets* operator joins vertices and edges:

The *mrTriplets* operator sums adjacent triplets.

SELECT t.dstld, *reduceUDF*(*mapUDF*(t)) **AS** sum **FROM** triplets **AS** t **GROUPBY** t.dstld

Map Reduce Triplets

Example: Oldest Follower

We express the Pregel and GraphLab abstractions using the GraphX operators in less than 50 lines of code!

By composing these operators we can construct entire graph-analytics pipelines.

DIY Demo this Afternoon

Graph Analytics With GraphX	ĊF	Reader	
2. Introduction to the GraphX API			
To get started you first need to import GraphX. Start the Spark-Shell (by running the following on the root node):			
/root/spark/bin/spark-shell			
and paste the following in your Spark shell:			
1 import org.apache.spark.graphx 2 import org.apache.spark.rdd.RDD			
2.1. The Property Graph The property graph is a directed multigraph (a directed graph with potentially multiple parallel edges sharing the same source and destination vertex) with properties attached to each vertex and edge. Each vertex is keyed by a <i>unique</i> 64-bit long identifier (VertexID). Similarly, edges hav corresponding source and destination vertex identifiers. The properties are stored as Scala/Java objects with each edge and vertex in the graph			
Throughout the first half of this tutorial we will use the following toy property graph. While this is hardly big data, it provides an opportunity to lea about the graph data model and the GraphX API. In this example we have a small social network with users and their ages modeled as vertices and likes modeled as directed edges.			

We begin by creating the property graph from arrays of vertices and edges. Later we will demonstrate how to load real data. Paste the following code into the spark shell.

\$Scala 1 val vertexArray = Array(2 (11, ("Alice", 28)), 3 (21, ("Bob", 27)), 4 (31, ("Charlie", 65)), 5 (44, ("David", 42)), 6 (51, ("Ed", 55)), 7 (6) (("Ecan" 50))

GraphX System Design

Distributed Graphs as Tables (RDDs)

Property Graph

Caching for Iterative mrTriplets

Incremental Updates for Iterative mrTriplets

Aggregation for Iterative mrTriplets Vertex Edge Table Table (RDD) (RDD) Mirror В Cache Change Local В Aggregate Change \square Change -Mirror Cache Change Scan Local Change Aggregate

Change

Reduction in Communication Due to Cached Updates

Benefit of Indexing Active Edges

Connected Components on Twitter Graph

Join Elimination

Identify and bypass joins for unused triplets fields *» Example:* PageRank only accesses source attribute

Additional Query Optimizations

Indexing and Bitmaps:

- » To accelerate joins across graphs
- » To efficiently construct sub-graphs

Substantial Index and Data Reuse:

- » Reuse routing tables across graphs and sub-graphs
- » Reuse edge adjacency information and indices

Performance Comparisons

Live-Journal: 69 Million Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 3x slower than GraphLab

GraphX scales to larger graphs

Twitter Graph: I.5 Billion Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab »Scala + Java overhead: Lambdas, GC time, ... »No shared memory parallelism: 2x increase in comm.

PageRank is just one stage....

What about a pipeline?

A Small Pipeline in GraphX

Timed end-to-end GraphX is *faster* than GraphLab

The GraphX Stack (Lines of Code)

Spark

Status Alpha release as part of Spark 0.9

Seeking collaborators and feedback

Conclusion and Observations

Domain specific views: *Tables* and *Graphs* » tables and graphs are first-class composable objects » specialized operators which exploit view semantics

Single system that efficiently spans the pipeline » minimize data movement and duplication » eliminates need to learn and manage multiple systems

Graphs through the lens of database systems » Graph-Parallel Pattern → Triplet joins in relational alg. » Graph Systems → Distributed join optimizations

Active Research

Static Data → Dynamic Data » Apply GraphX unified approach to time evolving data » Model and analyze relationships over time

Serving Graph Structured Data » Allow external systems to interact with GraphX » Unify distributed graph databases with relational database technology

Thanks!

http://amplab.github.io/graphx/

<u>ankurd@eecs.berkeley.edu</u> <u>crankshaw@eecs.berkeley.edu</u> <u>rxin@eecs.berkeley.edu</u> jegonzal@eecs.berkeley.edu

Graph Property I Real-World Graphs

Graph Property 2 Active Vertices

PageRank on Web Graph

Graphs are Essential to Data Mining and Machine Learning

Identify influential people and information

Find communities

Understand people's shared interests

Model complex data dependencies

Recommending Products

Recommending Products

Low-Rank Matrix Factorization:

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} \left(r_{ij} - w^T f[j] \right)^2 + \lambda ||w||_2^2$$

Predicting User Behavior

Post **Conditional Random Field** Post **Belief Propagation** 46

Finding Communities

Count triangles passing through each vertex:

Measures "cohesiveness" of local community

Fewer Triangles Weaker Community

More Triangles Stronger Community

Example Graph Analytics Pipeline

