
PLANET: Making Progress with Commit Processing in
Unpredictable Environments

Gene Pang Tim Kraska♠ Michael J. Franklin Alan Fekete†

UC Berkeley ♠Brown University †University of Sydney
{gpang, franklin}@cs.berkeley.edu tim_kraska@brown.edu alan.fekete@sydney.edu.au

ABSTRACT
Latency unpredictability in a database system can come from many
factors, such as load spikes in the workload, inter-query interac-
tions from consolidation, or communication costs in cloud com-
puting or geo-replication. High variance and high latency environ-
ments make developing interactive applications difficult, because
transactions may take too long to complete, or fail unexpectedly.
We propose Predictive Latency-Aware NEtworked Transactions
(PLANET), a new transaction programming model and underly-
ing system support to address this issue. The model exposes the
internal progress of the transaction, provides opportunities for ap-
plication callbacks, and incorporates commit likelihood prediction
to enable good user experience even in the presence of significant
transaction delays. The mechanisms underlying PLANET can be
used for admission control, thus improving overall performance in
high contention situations. In this paper, we present this new trans-
action programming model, demonstrate its expressiveness via sev-
eral use cases, and evaluate its performance using a strongly con-
sistent geo-replicated database across five data centers.

1. INTRODUCTION
Modern database environments significantly increase the uncer-

tainty in transaction response times and make developing user fac-
ing applications more difficult than ever before. Unexpected work-
load spikes [9], as well as recent trends of multi-tenancy [14, 16],
and hosting databases in the cloud [22, 30, 12] are all possible
causes for transaction response times to experience higher variance
and latency. With modern distributed, geo-replicated databases, the
situation is only worse. Geo-replication is now considered essential
for many online services to tolerate entire data center outages [3,
11, 2, 1]. However, geo-replication drastically influences latency,
because the network delays can be 100’s of milliseconds and vary
widely. Figure 1 exhibits the higher latency (~100ms average la-
tency) and variability (latency spikes exceeding 800ms) of RPC
message response times between different Amazon EC2 regions.
With these modern database environments of higher latency and

variance, there are currently only two possible ways developers can
deal with transactions in user facing applications such as web-shops
or social web-applications. Developers are forced to either wait
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2588558.

 10

 100

 1000

 10000

 100000

 1e+06

Jun 10 Jun 11 Jun 12 Jun 13 Jun 14

R
ou

nd
-t

rip
 (

m
s)

Date

West - EU
East - EU

West - Tokyo
East - Tokyo

Figure 1: Round trip response times between various regions
on Amazon’s EC2 cluster.

longer for the transaction result, or be uncertain of the transaction
result. This results in an undesirable situation, as clients interacting
with database-backed applications are frequently frustrated when
transactions take too long to complete, or fail unexpectedly.
To help developers cope with the uncertainty and higher latency,

we introduce Predictive Latency-Aware NEtworked Transactions
(PLANET), a new transaction programming model. PLANET pro-
vides staged feedback from the system for faster responses, and
greater visibility of transaction state and the commit likelihood for
minimizing uncertainty. This enables building user facing appli-
cations in unpredictable environments, without sacrificing the user
experience in unexpected periods of high latency. Also, PLANET
is the first transaction programming model that allows developers
to build applications using the guesses and apologies paradigm as
suggested by Helland and Campbell [19]. By exposing more trans-
action state to the developer, PLANET also enables applications
to speculatively initiate some processing, thereby trading the ex-
pense of an occasional apology or revocation for faster response in
the typical case that the transaction eventually succeeds. Further-
more, in cases where delays or data access patterns suggest that
success is unlikely, PLANET can quickly reject transactions rather
than spending user time and system resources on a doomed transac-
tion. With the flexibility and insight that PLANET provides, appli-
cation developers can regain control over their transactions, instead
of losing them in unpredictable states after a timeout. The key con-
tributions of this paper are:
• the new transaction programming model that exposes details of
the transaction state, and allows callbacks

• a demonstration of how PLANET can predict transaction progress
using a novel commit likelihood model for a Paxos-based geo-
replicated commit protocol

• optimizations for a strongly consistent database and an evalua-
tion of PLANET with five geographically diverse data centers

Session sess = factory.openSession();
Transaction tx = null;
try {

tx = sess.beginTransaction();
tx.setTimeout(1); // 1 second
// The transaction operations
boolean success = tx.commit();

} catch (RuntimeException e) {
...

} finally {
sess.close();

}

Listing 1: Typical Hibernate Transaction

The remainder of this paper describes the details and features of
PLANET. Section 2 describes how current models fall short, and
outlines how PLANET satisfies our vision for a transaction pro-
gramming model for unpredictable environments. In Sections 3 and
4, we describe PLANET, and in Section 5, we discuss the commit
likelihood models and implementation details for a geo-replicated
database. Finally, various features of the PLANET transaction pro-
gramming model are evaluated in Section 6, followed by related
work and conclusion in Sections 7 and 8.

2. THE PAST, THE DREAM, THE FUTURE
In an unpredictable, high variance environment, unexpected pe-

riods of high latency can cause database transactions to either take
a long time to complete, or experience unusually high failure rates.
In the following, we first outline the pitfalls of current techniques
when dealing with high latency and variance, describe the require-
ments for a latency-aware transaction programming model, and fi-
nally provide an overview of our solution.

2.1 The Past: Simple Timeouts
Current, state-of-the-art transaction programming models, such

as JDBC or Hibernate, provide little or no support for achieving
responsive transactions. Existing transaction programming models
only offer a time-out and ultimately implement a “fire-and-hope”
paradigm, where once the transaction is started, the user can only
hope that it will finish within the desired time frame. If the trans-
action does not return before the application’s response-time limit,
its outcome is entirely unknown. In such cases, most applications
choose to display a vague error message.
Listing 1 shows a typical transaction with Hibernate [4] and the

timeout set to 1 second. That is, within 1 second, the transaction
either returns with the outcome stored in the Boolean variable suc-
cess, or throws an exception. In the case of an exception, the out-
come of the transaction is unknown.1 Exceptions can either mean
the transaction is already committed/aborted, will later be rolled-
back because of the timeout, or maybe even was never accepted at
the server and will simply be lost.
When a transaction throws an exception, developers have two

options to recover from this unknown state: either periodically poll
the database to check if the transaction was executed, or “hack”
the database to get access to the persistent transaction log. The
first option is difficult to implement without modifying the original
transaction, as it is often infeasible to distinguish between an appli-
cation’s own changes and changes of other concurrent transactions.
The second option requires detailed knowledge about the internals
of the database system and is especially difficult in a distributed
database system with no centralized log. PLANET provides the

1Hibernate supports wasRolledBack(), which returns true if
the transaction rolled back. However, this only accounts for
application-initiated rollbacks, not system rollbacks.

1 val t = new Tx(300ms) ({
2 INSERT INTO Orders VALUES (<customer id>);
3 INSERT INTO OrderLines
4 VALUES (<order id>, <item1 id>, <amt>);
5 UPDATE Items SET Stock = Stock - <amt>
6 WHERE ItemId = <item1 id>;
7 }).onFailure(txInfo => {
8 // Show error message
9 }).onAccept(txInfo => {
10 // Show page: Thanks for your order!
11 }).onComplete(90%)(txInfo => {
12 if (txInfo.state == COMMITTED ||
13 txInfo.state == SPEC_COMMITTED) {
14 // Show success page
15 } else { // Show order not successful page }
16 }).finallyCallback(txInfo => {
17 if (!txInfo.timedOut) // Update via AJAX
18 }).finallyCallbackRemote(txInfo => {
19 // Email user the completed status
20 })

Listing 2: Order purchasing transaction using PLANET

properties in section 2.2 to make developing applications easier,
especially with geo-replicated databases.

2.2 The Dream: LAGA
As described in the previous sub-section, current transaction pro-

gramming models, like JDBC or Hibernate, leave the user in the
dark when a timeout occurs. Furthermore, they provide no addi-
tional support for writing responsive applications. In the following
we decribe the four properties a transaction programming model
should have for uncertain environments, referred to as the LAGA
properties for Liveness, Assurance, Guesses, and Apologies:
Liveness: The most important property is that the application

guarantees liveness and does not have to wait arbitrarily long for a
transaction to finish. This property is already fulfilled by means of
a timeout with current transaction programming models.
Assurance: If an application decides to move ahead without

waiting for the final outcome of the transaction (e.g., after the time-
out), the application should have the assurance that the transaction
will never be lost and that the application will at some point be
informed about the final outcome of the transaction.
Guesses: The application should be able to make informed deci-

sions based on incomplete information, before the transaction even
completes to reduce perceived latency, as, for instance, suggested
by Helland and Campbell [19]. For example, if a transaction is
highly likely to commit or abort, an application may choose to ad-
vance instead of waiting for transaction completion.
Apologies: If a mistake was made on an earlier guess, the ap-

plication should be notified of the error and the true transaction
outcome, as suggested in [19], so the application can apologize to
the user and/or correct the mistake.
The LAGA properties describe a transaction programming model,

and are orthogonal to the transaction guarantees by the underly-
ing database. For example, a database can fully support the ACID
properties (Atomicity, Consistency, Isolation, Durability), while
the transaction programming model supports the LAGA properties.

2.3 The Future: PLANET Example
In contrast to the state-of-the-art transaction programming mod-

els, PLANET fulfills not only the Liveness property but all four
properties. Listing 2 shows an example transaction using PLANET
in Scala. The transaction is for a simple order purchasing action
in a web shop, such as Amazon.com. The code fragment outlines
how the application can guarantee one of three responses to the user
within 300ms: (1) an error message, (2) a “Thanks for your order”
page, or (3) a successful order page, given the status of the trans-

onFailure

onAccept

onComplete(P)

nothing

Guarantee:

commit process started,
transaction will not be lost

commit likelihood ≥ P
(100% = committed)w

it
h

in
 X

 m
ill

is
ec

o
n

d
s,

ex
ec

u
te

 la
te

st
st

ag
e

b
lo

ck

finallyCallback finallyCallbackRemote

local callback
(at most once)

web-service callback
(at least once)

u
p

o
n

co
m

p
le

ti
o

n
,

in
vo

ke

Figure 2: Client view of PLANET transactions

action at the timeout; Further, it guarantees an email and AJAX
notification when the outcome of the transaction is known. In the
following, we briefly explain the different mechanisms used in the
example, before Section 3 describes the semantics of PLANET .
With PLANET, transaction statements are embedded in a trans-

action object (line 1–6). PLANET requires a timeout (line 1) to ful-
fill the Liveness property. After the timeout, the application regains
control. PLANET exposes three transaction stages to the applica-
tion, onFailure, onAccept and onComplete. These three stages al-
low the developer to appropriately react to the outcome of the trans-
action given its state at the timeout. Whereas the code for onFailure
(line 7–8) is only invoked in the case of an error, and onComplete
(line 11–13) only if the transaction outcome is known before the
timeout, onAccept exposes a stage between failure and completion,
with the promise that the transaction will not be lost, and the appli-
cation will eventually be informed of the final outcome. Therefore,
the onAccept stage satisfies the Assurance property.
Only one of the code fragments for onFailure, onAccept, or on-

Complete is executed within the timeframe of the timeout. In ad-
dition, onComplete can take a probability parameter that enables
speculative execution with a developer-defined commit likelihood
threshold (90% in the example) and thus, fulfills the Guesses prop-
erty. Finally, the callbacks finallyCallbackRemote and finallyCall-
back support the Apologies property, by providing a mechanism for
notifying the application about the final outcome of the transaction
regardless of when the timeout happened.
Given the four properties, PLANET enables developers to write

highly responsive applications in only a few lines of code. The next
section precisely describes the semantics of PLANET.

3. PLANET SIMPLIFIED TRANSACTION
PROGRAMMINGMODEL

PLANET is a transaction programming model abstraction and
can be used with different data models, query languages and consis-
tency guarantees, similar to JDBC being used with SQL or XQuery,
depending on database support. The key idea of PLANET is to al-
low developers to specify different stage blocks (callbacks) for the
different stages of a transaction. This section describes the sim-
plified transaction programming model of PLANET, which is es-
sentially “syntactic sugar” for common stages and usage patterns.
Section 4.1 describes the more general model, which provides the
developer with full control and customization possibilities.

3.1 Timeouts & Transaction Stage Blocks
At its core, PLANET combines the idea of timeouts with the

new concept of stage blocks. In PLANET, the timeout is always
required, but can be set to infinity. Finding the right timeout is up
to the developer and can be determined through user studies [31,
6]. Listing 2 shows an example with the timeout set to 300ms.

PLANET simplified transaction programming model also de-
fines three stage blocks, corresponding to the internal stages of the
transaction, that follow an ordered progression of onFailure, then
onAccept, then onComplete (see also Figure 2). When the timeout
expires, the application regains the thread of control, and depending
on the state of the transaction, only the code for the latest defined
stage block is executed. That is, for any given transaction, only
one of the three stage blocks is ever executed. In the following, we
describe the stage blocks and their guarantees in more detail.
onFailure. PLANET tries to minimize the uncertainty when a

timeout occurs, but cannot entirely prevent it. In fact, for dis-
tributed database systems, it can be shown by a reduction to the
Two Generals’ Problem, that it is theoretically impossible to com-
pletely avoid uncertainty of the outcome. Therefore, PLANET
requires the onFailure stage to be defined, which is similar to an
exception code block. When nothing is known about the commit
progress when the timeout expires, the onFailure code is executed.
Reaching the onFailure stage does not necessarily imply that the
transaction will abort; instead the application may later be informed
about a successfully committed transaction (see Section 3.3).
onAccept. When the transaction will not be lost anymore and

will complete at some point, the transaction is considered accepted.
Typically, this is after the system started the commit process. How
strong the not-be-lost guarantee is depends on the implementa-
tion. For example, in a distributed database, it could mean that at
least one database server successfully received and acknowledged
the commit proposal message (with the assumption that all servers
eventually recover all acknowledged messages).
If the timeout expires, the onAccept stage is executed if the sys-

tem is still attempting to commit the transaction, but the final out-
come (i.e., abort or commit) is still unknown. If the later stage
block, onComplete, is undefined, onAccept will be executed imme-
diately after the transaction is accepted by the system, and not wait
for the timeout. This feature is particularly useful for achieving
very fast response times for transactions which will not abort from
conflict (non-conflicting, append-only transactions). In contrast to
the onFailure stage, if the onAccept stage is invoked, the system
makes two important promises: (1) The transaction will eventually
complete, and (2) the application will be later be informed about
the final outcome of the transaction (see Section 3.3). Therefore,
the onAccept stage satisfies the Assurance property.
onComplete. As soon as the final outcome of the transaction is

known and the timeout has not expired, onComplete is executed. If
the timeout did expire, an earlier stage, either onFailure or onAc-
cept, was already executed, so onComplete will be disregarded.
Finally, all stage blocks are always invoked with a transaction

state summary (txInfo in Listing 2). The summary contains in-
formation about the current state of the transaction (UNKNOWN,
REJECTED, ACCEPTED, COMMITTED, SPEC_COMMITTED,
ABORTED), the time relative to the timeout (if the transaction timed
out), and the updated commit likelihood (Section 3.2).

3.2 Speculative Commits using onComplete
PLANET provides the Guesses property by allowing developers

to write applications that advance without waiting for the outcome
of a transaction, if the expected likelihood of a successful commit
is above some threshold P . We refer to the ability for applications
to advance before the final transaction outcome and based on the
commit likelihood as speculative commits. The developer enables
speculative commits by using the optional parameter P of the on-
Complete stage block. For example, if the developer decides that a
transaction should be considered as finished when the commit like-
lihood is at least 90%, then the developer would define the stage
block as onComplete(90%) (shown in Listing 2). For a set thresh-

old P , PLANET will execute the onComplete stage block before
the timeout, as soon as the commit likelihood of the transaction
is greater than or equal to the threshold, which can greatly reduce
transaction response times.
Obviously, the commit likelihood computation is dependent on

the properties of the underlying system, and Sections 5.1 and 5.2
describe the model and statistics required for a geo-replicated data-
base using the Paxos protocol. For most databases, PLANET will
calculate the commit likelihood using local statistics at the begin-
ning of the transaction. However, for some database systems, it is
also possible to re-evaluate the likelihood as more information be-
comes available during the execution of the transaction. Possible
examples are: discovering a record of a multi-record transaction
that has completed, and receiving responses of previous RPCs.
Of course, speculative commits are not suited for every applica-

tion, and the commit likelihoods and thresholds vary significantly
from application to application. We believe, however, that spec-
ulative commits are a simpler programming construct for applica-
tions, which can already cope with eventual consistency. We en-
vision many additional applications which can significantly profit
from PLANET’s speculative commits. For example, a ticket reser-
vation system could use speculative commits to allow very fast
response times, without risking significantly overselling a high-
demand event like Google I/O (see also [23] and [5]). In order
to guide users in picking the right threshold we envision leveraging
user experience studies or automatic cost-based techniques [23].

3.3 Finally Callbacks and Apologies
It is possible that the application will not know the transaction’s

final outcome when the timeout expires, either because of a spec-
ulative commits, because onComplete stage block was not defined,
or because the transaction took too long. PLANET addresses this
with code blocks finallyCallback and finallyCallbackRemote, which
are special callbacks used to notify the application of the actual
commit decision of the completed transaction. They are different
from the other stage blocks because they are not restricted to ex-
ecute within the timeout and run whenever the transaction com-
pletes. The callbacks allow the developer to apologize and correct
any “wrong” doing because of speculative commits, errors, or time-
outs and satisfy the Apologies property.
In contrast to the finallyCallback code which can contain arbi-

trary code, the code for finallyCallbackRemote can only contain
web-service invocations (e.g., REST calls), which can be executed
anywhere in the system without requiring the outer application con-
text. For finallyCallback, the system guarantees at-most-once ex-
ecution. For example, a developer might use finallyCallback to
update the web-page dynamically using AJAX about the success of
a transaction after the timeout expires. However, finallyCallback
might never be executed, in cases of server failures. In contrast,
finallyCallbackRemote ensures at-least-once execution as the web-
service invocation can happen from any service in the system at the
cost of reduced expressivity (i.e., only web-service invocations are
allowed). Listing 2 shows an example of defining both callbacks,
finallyCallback to update the application using AJAX and finally-
CallbackRemote to send the order email. Like the stage blocks,
finallyCallback and finallyCallbackRemote also have access to the
current transaction summary, txInfo.
When speculative commits are used with P < 100%, some

transactions may experience incorrect commits. This occurs when
the transaction commit likelihood is high enough (greater than P)
and onComplete is invoked, but the transaction aborts at a later
time. To apologize for incorrect commits, the final status is notified
through a finally callback, thus satisfying the Apologies property.

Transaction
Started

start_commit

accept

Accepted
do/compute likelihoodreceive_msg

commit,
abort

Commit Started

[∃onComplete ∧
likelihood ≥ P]

commit,
abort

Finally Completed
do/run finallyCallback[Remote]

[∃onComplete ∧
before timeout]

[¬∃onComplete ∨
after timeout]

 timeout [∃onAccept]

[¬∃onComplete ∧
∃onAccept]

timeout [¬∃onAccept]

Completed

timeout

Speculatively
Committed

Waiting for
Completion

commit,
abort

Waiting for
Accept

accept

Invoke onComplete
do/run onComplete(P)

Invoke onAccept
do/run onAccept

Invoke onFailure
do/run onFailure

Return
do/return to application

Figure 3: PLANET transaction state diagram

3.4 PLANET vs. Eventual Consistency
Utilizing the onAccept block, coupled with the finally callbacks

is a valuable alternative to Eventual Consistency (EC) models [15].
EC systems are typically used for their fast response times and high
availability guarantees, but come with a high cost: potential data
inconsistencies. In contrast, PLANET can also offer fast response
times and high availability without sacrificing data consistency.
PLANET does not change the transaction semantics of the un-

derlying database; even with speculative commits the data would
never be rendered inconsistent if the backend is strongly consis-
tent. It only allows clients to deliberately proceed (using onAc-
cept or speculative commits), even though the final decision (com-
mit/abort) is not yet known. Furthermore, the onAccept stage guar-
antees (transactions will not be lost) can be implemented in a highly
available fashion. Similar to EC, the application can still make in-
consistent decisions, like informing a user about a successful order
even though items are sold out. But in contrast to EC, PLANET
does not allow the database to expose an inconsistent state to other
subsequent transactions or concurrent clients, and thus, prevents
dependencies based on inconsistent data, which are particularly
hard to detect and correct. This property makes it easier to write ap-
plications than with the EC transaction model: it isolates mistakes
(e.g., a commit followed by an abort) to a single client/transaction
allowing the developer to better foresee the implications.

3.5 Life of a PLANET Transaction
Figure 3 formalizes the transaction programming model using a

state diagram. State transitions are represented by edges and use
the format “event[guard]/action”, and the dark lines represent a
fork in the state diagram, to capture parallel execution. The shaded
states are the ones which execute user-defined stage blocks, and
∃stageName and ¬∃stageName refer to whether or not a stage
block was defined. This diagram shows that the commit likeli-
hoods are computed every time a new message is received, and
that timeouts fork execution so that the transaction continues to ex-
ecute while the application regains control. For an example of a
speculative commit, in the Accepted stage, when the onComplete
stage block is defined and the likelihood is greater than P , the tran-
sition will fork so that one will run onComplete and return to the
application, while the other will be in the Speculatively Committed
state waiting for completion. Even though this state diagram may

val t = new Tx(30000ms) ({
UPDATE Accounts SET Balance = Balance - 100

WHERE AccountId = <id>;
}).onFailure(txInfo => {

// Show error message
}).onComplete(txInfo => {

if (txInfo.success) // Show money transfer
else // Show failure page

}).finallyCallbackRemote(txInfo => {
if(txInfo.success && txInfo.timedOut)

// Inform service personnel
})

Listing 3: ATM example using PLANET

val t = new Tx(200ms) ({
INSERT INTO Tweets VALUES (<user id>, <text>);

}).onFailure(txInfo => {
// Show error message

}).onAccept(txInfo => {
// Show tweet accept

})

Listing 4: Twitter example using PLANET

be complicated, the client sees a far simpler view, without all the
internal transitions, which can be simply explained using the state
progression flow shown Figure 2.

3.6 Usage Scenarios
PLANET is very flexible and can express many kinds of trans-

actions. There are ad hoc solutions and systems for every situation,
but PLANET is expressive enough to encapsulate the use cases into
a single model for the developer, regardless of the underlying im-
plementation. A document containing various use cases can be
found in [5]. In addition to the web shop motivating example in
Listing 2, we describe two other use cases.
ATM Banking. Code Listing 3 shows an example of an ATM

transaction. The structure is very similar to a standard Hibernate
transaction, where only failures and commits are reported on. This
is because correctness is critical for money transfers, so waiting for
the final outcome is most appropriate. Therefore, there is no onAc-
cept stage block. When the timeout expires and the transaction is
not completed, it is a failure. However, if the transaction times out
and later commits, this means the user saw a failure message, but
the transaction eventually committed successfully. The finallyCall-
backRemote handles this problematic situation.
Twitter. Code Listing 4 shows an example of a transaction for

sending an update to a micro-blogging service, like Twitter. In con-
trast to the ATM example, these small updates are less critical and
are not required to be immediately globally visible. Also, the devel-
oper knows that there will never be any transaction conflicts, since
every transaction is essentially a record append, and not an update.
Therefore, the transaction only defines the onFailure and onAccept
code blocks, which means the developer is not concerned with the
success or failure of the commit. This type of transaction easily
provides the response times of eventually consistent systems, but at
the same time never allowing the data to become inconsistent.

4. ADVANCED PLANET FEATURES
The following section first describes the generalized version of

PLANET, which gives developers even more freedom, and then,
the PLANET admission control feature.

4.1 Generalized Transaction Programming
Model

While the simplified model in Section 3 supports many of the
common cases, there may be situations when the developer wants
more fine-grained control. This section describes the fully general-

val t = new Tx(300ms) ({
// Transaction operations

}).onProgress(txInfo => {
if (txInfo.timedOut) {

if (txInfo.state == ACCEPTED) // onAccept code
else // onFailure code
FINISH_TX // finish the transaction.

} else { // not timedOut
if (txInfo.commitLikelihood > 0.90) {

// onComplete(90%) code
FINISH_TX // finish the transaction.

}
}

}).finallyCallback(txInfo => {
// Callback: Update status via AJAX

}).finallyCallbackRemote(txInfo => {
// Callback: Update status via email

})

Listing 5: PLANET general transaction programming model.
Equivalent to Listing 2

ized transaction programming model which supports the simplified
model in Section 3, but also provides more control for the devel-
oper. The generalized model has only one stage block, onProgress,
and has the two finally callbacks, finallyCallback and finallyCall-
backRemote. The stage blocks of the simplified model in Section 3
are actually just “syntactic sugar” for common cases using the gen-
eralized model. Listing 5 is equivalent to the simplified Listing 2,
but uses the generalized onProgress block instead.

4.1.1 onProgress
The onProgress stage block is useful for the application to get

updates or notifications on the progress of the executing transac-
tion. Whenever the transaction state changes, the onProgress block
is called with the transaction summary, containing information about
the transaction status and other additional information about the
transaction (e.g., the commit likelihoods). This means the stage
may be called multiple times during execution. By getting notifi-
cations on the transaction status, the application can make many
informed decisions on how to proceed.
A special feature for the code defined in the onProgress block is

that the developer can return a special code FINISH_TX to signal
to the transaction handler that the application wants to stop wait-
ing. If the code returns FINISH_TX, the application will get back
the thread of control and get notified of the outcome with a finally
callback. If the application does not want the thread of control, the
transaction handler will continue to wait for a later progress update.

4.1.2 User-Defined Commits
Using the generalized PLANET transaction programming model

and the exposed transaction state, the developer has full control and
flexibility on how transactions behave. For example, onProgress al-
lows informing the user details about the progress of a buying trans-
action;: a website could first show, “trying to contact the backend”,
then move on to “booking received”, until it shows “order success-
fully completed”. This is not possible in the simplified model.
The generalized model is a very powerful construct; ultimately,

it allows to redefine what a commit means. For example, for one
transaction, a developer can choose to emulate asynchronously repli-
cated systems by defining the commit to be when the local data
center storage nodes received the updates (assuming that the trans-
action summary contains the necessary information), and choose to
wait for the final outcome for another transaction.

4.2 Admission Control
With commit likelihoods, it becomes very natural to also use

these likelihoods for admission control. PLANET implements ad-

mission control with the hope of improving performance by pre-
venting wasted resources or thrashing. If the system computes a
transaction commit likelihood which is too low, that means there is
a high chance the transaction will abort. If that is the case, it may
be a better idea not to actually execute the transaction and poten-
tially waste resources in the system such as CPU cycles, disk I/o, or
extraneous RPCs. In addition to improving resource allocation, not
attempting transactions with low likelihoods reduces contention on
the involved records, which can lead to improving the chances for
other transactions to commit on those records for some consistency
protocols (e.g., MDCC [24]). Currently, PLANET supports two
policies for admission control: Fixed and Dynamic.
Fixed(threshold,attempt_rate). Whenever the transaction com-

mit likelihood is less than the threshold, then the transaction is at-
tempted with probability attempt_rate. For example, Fixed(40,20)
means when the commit likelihood is less than 40%, the transac-
tion will be attempted 20% of the time. If attempt_rate is 100%,
the policy is equivalent to using no admission control.
Dynamic(threshold). TheDynamic policy is similar to the Fixed

policy, where the attempt rate is not fixed, but related to the commit
likelihood. Whenever the likelihood, L, is lower than the threshold,
the transaction is attempted with probability L. For example, a Dy-
namic(50) policy means all transactions with a likelihood, L, less
than 50%will be attempted with probabilityL. If the threshold is 0,
the policy is equivalent to using no admission control. Section 6.7
further investigates these parameters.
When a transaction is rejected by the system, PLANET does not

actively retry the transaction. However, with PLANET, the de-
veloper may choose to retry rejected transactions (the transaction
summary contains the necessary information). This may lead to
starvation, but the developer can define how retries are done, and
implement retries with exponential backoff to mitigate starvation.
The PLANET admission control technique using commit like-

lihoods does not preclude using other methods such as intermit-
tent probing [18]. In fact, admission control of PLANET can aug-
ment existing techniques by using record access rates to improve
the granularity of information, and by using commit likelihoods to
identify types of transactions and access patterns.

5. GEO-REPLICATION
The PLANET transaction programming model can be imple-

mented on any transactional database as long as the required statis-
tics and transaction states are exposed. It is even possible to use
PLANET for non-transactional key/value stores, where the commit
likelihood would represent the likelihood of an update succeeding
without lost updates (see also Section 5.1.3). However, we see the
greatest benefits of PLANET with geo-replicated, strongly consis-
tent, transactional database systems such as Megastore [8], Span-
ner [13] or MDCC [24, 20]. Figure 1 shows the long and unpre-
dictable delays between data centers (on Amazon EC2) these sys-
tems have to deal with. In the following, we show how PLANET
can be implemented on an existing geo-replicated database, MDCC,
for which two implementations are publicly available [24, 20]. How-
ever, the results from this study are transferable to other systems,
like Megastore or COPS[27], by adjusting the likelihood models.

5.1 Conflict Estimation for MDCC
MDCC is a distributed, geo-replicated transactional database de-

signed along the lines of Megastore [8]. A typical MDCC data-
base deployment is distributed across several storage nodes, and
the nodes are fully replicated across multiple data centers. Besides
the small changes to the underlying MDCC (see Section 5.2), most
of PLANET is implemented in the client-side library.

In MDCC, every record has a master that replicates updates to
remote data centers using the Paxos consensus protocol [25] sim-
ilar to Megastore’s Paxos implementation. However, MDCC is
able to avoid Megastore’s limitations of being only able to exe-
cute one transaction at a time per partition and has significantly
higher throughput by using a finer grained execution strategy [24,
20]. Furthermore, MDCC supports various read-modes (snapshot-
isolation, read-committed) and proposes several optimizations in-
cluding a fast protocol to reduce the latency of commits at the cost
of additional messages in the case of conflicts. For the remainder
of this section, we ignore many of the optimizations and we focus
on MDCC’s default setting (read-committed) without the fast pro-
tocol. We only model the MDCC classic protocol, as this configu-
ration is more similar to other well-known systems like Megastore.

5.1.1 The MDCC Classic Protocol
In its basic configuration, the MDCC protocol provides read-

committed isolation, and ensures all write-write conflicts are de-
tected similar to snapshot isolation, but only provides atomic dura-
bility (i.e., all or none of the updates are applied) and not atomic
visibility (i.e., consistent reads). This read guarantee has proven to
be very useful, because read-committed is still the default isolation
level in most commercial and open-source database systems (e.g.,
MS SQL Server, PostgreSQL, Oracle).
In the MDCC classic protocol, the transaction manager (typi-

cally, the client) acquires an option per record update in a transac-
tion using Multi-Paxos. The option is learned either as accepted
or rejected using Multi-Paxos from a majority of storage nodes
(note that even rejecting an option requires learning the option).
A learned (but not yet visible) option prevents other updates on the
same record from succeeding (i.e., does the write-write conflict de-
tection) and can best be compared to the first phase of two-phase
commit (2PC) as it prepares the nodes to commit. However, in
contrast to 2PC, the transaction is immediately committed if all the
options have successfully been learned using Paxos. If all options
are learned as accepted, the transaction manager has no choice and
must commit the transaction. Similarly, it has to abort the transac-
tions if one of the options is learned as aborted. In this paper, we do

cc cp lr s1r s5r
…..

3/5

3/5

x/N Quorum
x out N

local

Irrelevant

Wait time for other options

Wait for transaction to commit

local local
read

Phase 1

Phase 2

Trx Time

Phase 1

Ma→b
phase2a

Ma→b
read

Ma→b
propose

(1)

(2)

(3)

(4)

(5)

Ma→b
learned

(6)

(7)

(8)

Mb →a
phase2b

Ma →b
commit

W

Figure 4: Time-sequence for rounds

not consider the MDCC optimization of broadcasting all messages
to avoid a second phase.
The sequence diagram of the protocol is shown in Figure 4. As

a first step, the client (assumed to be Cp) proposes the option to
any record-leader Lr (i.e, the master responsible for learning the
option) involved in the transaction shown as step (1). Afterwards,
the leader executes the Paxos round by sending a Paxos phase2a
message to all storage nodes and waits for the majority of phase2b
answers, visualized as step (2) for 5 storage s1r . . . s5r nodes in
Figure 4. If the option is learned by a majority, the leader sends a
learned message with the success value to the transaction manager
on the client Cp, shown as step (3). The transaction manager now
has to wait for all learned messages, one per update in the transac-
tion, indicated as step (4).2 If all options are learned successfully,
the transaction is committed and the client is allowed to move on.
However, the updates are not yet visible to other clients. To make
the updates visible, the transaction manager sends a commit visibil-
ity message to all involved storage nodes, shown as step (5). Note
that the transaction manager/client Cp, the record leader Lr , and
the storage nodes S1r . . . S5r may all be in different data centers.
If the client, leader and at least one storage node are co-located in
the same data center, the commit will only take a single round-trip
between remote data centers (local round-trips are less significant).

5.1.2 Commit Likelihood Model for MDCC
We next show how we can model the commit likelihood for the

described protocol. The key idea is estimating the time it takes to
propagate the updates of a preceding transaction, so that the cur-
rent transaction does not conflict with it. Given this duration, we
can then calculate the likelihood of another transaction interfering
by considering the update rate per record. Section 5.2 describes
how we actually are able to collect the necessary statistics and pre-
compute a lot of the calculations.
In the remainder, we assume the following symbols3.

◦ {a, b, c, l} ∈ {1 . . . N}, where 1 to N are the data centers
◦ C ∈ {1 . . . N}, stochastic variable of the data center of the
client, with c being an instance of the variable

◦ L ∈ {1 . . . N}, stochastic variable of the data center of the
master (i.e., leader) with l being an instance of the variable

◦ Ma→b ∈ IR, stochastic variable corresponding to the delay
(message and processing time) of sending a message from data
center a to data center b

◦ R ∈ IN, stochastic variable corresponding to the number of
records inside a transaction

◦ X(t) ⊆ IN, stochastic variable corresponding to the number
of expected updates for a given record and a time interval t.

◦ W ∈ IR, the processing time after reading the value before
starting the commit

◦ Θ ∈ {commit, abort}, stochastic variable corresponding to
the commit or abort of a transaction

To simplify the model, we assume that transactions and records
inside a transaction are independent. We further assume that all pre-
vious transactions are successful. Thus, we might under-estimate
the success rate if aborts are more common. The protocol de-
fines that a transaction is committed if all options are successfully
learned. We can therefore estimate the likelihood of a commit by
calculating the likelihood of successfully learning every option. In

2Actually, if messages come from the same storage nodes, they can
be batched together. However, we do not consider this optimization
further as it mainly improves bandwidth.
3We describe a stochastic variable in the short formX ∈ IR instead
of defining the function X : Ω → IR

turn, learning an option can only be successful if no concurrent op-
tion is still pending (i.e., not committed). The first goal is therefore
to derive a stochastic variable describing the required time for a
previous transaction to commit and become visible.
A transaction for a record r is in conflict only from the moment it

requested the option at the leader until it becomes visible, shown as
steps (2) to (5). The leader executes the Paxos round by sending a
phase2a message to all storage nodes and waiting for their phase2b
responses. We can model the message delay as a stochastic variable
M l,b which simply adds the two stochastic variables for sending
and receiving the phase2a and phase2b message from the leader’s
data center l to some other data center b:

(1)Ml,b = Ml→b
phase2a + Mb→l

phase2b

The combined distribution for the round-trip requires convolut-
ing the distributions for phase2a and phase2b. However, the leader
only needs to wait for a majority q out of N responses. Assum-
ing, that the leader sends the learning request to allN data centers,
waiting for a quorum of answers corresponds to waiting for the
maximum delay for all possible combination for picking n out of
N responses and can be expressed as:

(2)Ql =

{
max

(
x1M

l,1, . . . , xNMl,N
)
| xi ∈ {0, 1};

N∑
i=1

xi = q

}

Deriving the distribution for Ql requires integrating over the
maximum of all possible combinations of M l,b. After the option
has been learned successfully, we can model the message delay to
notify the transaction manager cp by adding the stochastic variable
M

l→cp
learned describing the delay to send a learned message:

(3)Q
l,cp = Q

l
+ M

l→cp
learned

Unfortunately, even though we now reflect the time of learning
an option for a single record, the transaction is only committed if
all the options of the transaction are successfully acquired. This
entails waiting for the learned message from all involved leaders
(l1, . . . , lr), with r being the number of updates. Furthermore,
after the transaction manager received all learned messages, the
update only becomes visible, if the commit visibility message ar-
rives at least at the data center of the current transaction cc before
a local read is done for the record (here, we always assume local
reads). Given the locations of the leaders (l1, . . . , lr) and the pre-
vious client’s data center cp, we can model the delay as taking the
maximum of allQl,cp , one for each leader, and adding the commit
message time:4

(4)Ucc
(
cp, (l1, . . . , lr)

)
= max

(
Ql1,cp , . . . , Qlr,cp

)
+ M

cp→cc
commit

Up to now, we modeled the stochastic variable describing the
time to make an update visible for any given record. However, once
the update is visible the current transaction still needs to read it and
send its option to the leader. Therefore, we first add the transaction
processing time w and afterwards add the stochastic variable for
sending the propose message to the leader l.

(5)Φ
cc,l

(cp, (l1, . . . , lr)) = U
cc (cp, (l1, . . . , lr)) + w + M

cc,l
propose

Note that w is not a stochastic variable. Instead w is the mea-
sured time from requesting the read over receiving the response
until committing the transaction.5. This allows us to factor W out
of equation 5 and only consider it in the next step.
4We changed the subscripts to a function input to express the de-
pendency of cp
5Actually the read-request is not part of the crucial path and should
be included. For simplicity, we consider it as part of W as it is a
local message delay without any big impact

Given the location cp of the transaction manager of the previous
transaction and all the involved leaders (l1, . . . , lr),Φcc,l describes
the time in which no other update should arrive to allow the current
transaction to succeed. Unfortunately, these values are unknown.
We therefore need to iterate over all possible instantiations of cp
and (l1, . . . , lr) and consider their likelihoods. By assuming in-
dependence between the inputs, we can describe the likelihood to
finish in time t as:

(6)

P
cc,l

(t) =
∑
τ∈IN

l1...lτ ,cp∈1...N

{
P (R = τ)P (L1 = l1) · · ·P (Lτ = lτ)

P (Cp = cp)P

(
Φ

cc,m
(
cp, (m1, . . . ,mτ)

)
= t

)}

For a single record transaction, the likelihood of committing the
transaction is equal to the likelihood of successfully learning the
option. Given the likelihood P (X(t) = 0) of having zero other
updates in the time interval t, we can express the likelihood of
committing the current transaction by multiplying the likelihood
of finishing in time t and having no update in t for all possible t:

(7)P cc,l(Θ = commit) =

∫ ∞

0

P (X(γ) = 0)P cc,m(γ) dγ

Since w is a constant, we can make all stochastic variables up to
this point independent of the current transaction, by factoring out
w from Φ and considering it as part of the time as:

(8a)Φcc,l
W (cp, (l1, . . . , lr)) = Ucc (cp, (l1, . . . , lr)) + Mcc,l

propose

(8b)P
cc,l

(Θ = commit) =

∫ ∞

w

P (X(γ) = 0)P
cc,m

(γ − w) dγ

Finally, in order to generalize the likelihood of committing a sin-
gle record transaction to a transaction with multiple records, we
need to calculate the likelihood that all updates are acquired suc-
cessfully. Assuming independence between records, this can sim-
ply be done by multiplying the likelihood of success for each record
ϕ inside the transaction:

(9)P cc,(l1...lϕ)(Γ = commit) =

ϕ∏
P (cc,l)(Θ = commit)

Note that P cc,(l1...lϕ) assumes that we know the current data
center cc as well as all involved leaders (l1 . . . lϕ). However, in
contrast to the previous transaction, we have all this information
for the current transaction as we know the involved records.
Even though it may look complicated to derive all the distribu-

tions for the various message delays and to do the actual computa-
tion, it turned out to be straightforward. This is mainly due to the
fact that most of the measured statistics and convolution compu-
tations are independent of the current transaction and can be done
off-line instead of online. Furthermore, it turned out, that we can
simplify some of the distributions as the variance does not play an
important role. We describe the implementation of the model and
the simplifications in Section 5.2.

5.1.3 Other Protocol Models
Even though we only showed the model for the protocol of [24],

it should be obvious that it is possible to model the conflict rate
for other systems as well. For example, we could use a similar
model as proposed in [7] to model the likelihood of losing updates
in a typical eventually consistent, quorum protocol as used by dis-
tributed key/value stores, Cassandra or Dynamo [15]. Furthermore,
we could restrict the model to Megastore by assuming updates per
partition instead of per record. Finally, the model could be adapted
slightly to model more classical two-phase commit implementa-
tions by introducing extra wait delays.

5.2 System Statistics and Computations
We only had to make small changes to an existing implementa-

tion of MDCC, in order to support the PLANET language. Most
of the changes to the system collect statistics on the characteristics
of transactions. By gathering statistics on various attributes of the
deployed system, the measurements can be used to calculate useful
estimations such as estimated duration or commit likelihood, using
the model in Section 5.1.
Themodel in Section 5.1 defines various required statistics. How-

ever, most of the statistics can be collected on a system-wide level
and be approximated. Specifically, the distribution of the stochastic
variable of equation 8a can be entirely pre-computed for all pos-
sible master/client configurations. Afterwards, given the current
number of records inside the current transaction, their leader lo-
cation, and the update arrival rate per record, the computation of
final probability reduces to a look-up to find the distribution of the
stochastic variable from data center cc to master l and integrating
over the time as shown in equations 8b and 9. Furthermore, in prac-
tice, the integration itself is simplified as we use histograms for the
statistics. In this section, we describe the required statistics.

5.2.1 Message Latencies
Instead of individual per message type statistics, we simplified

the model and assume that the message delays are similar for all
message types. Hence we only measure the round trip latencies
between data centers by sending a simple RPC message to storage
nodes in all the data centers. The clients keep track of histograms of
latencies for every data center. In order to disseminate this informa-
tion to other clients in the system, the clients send their histograms
in the RPC message to the storage nodes. The storage nodes aggre-
gate the data from the different clients and data centers and send
the information back with the response to the clients. Furthermore,
we implemented a window based histogram approach [23], and age
out old round trip values, in order to better approximate the current
network conditions.

5.2.2 Transaction Sizes
The distribution of transaction sizes is collected in a similar way

as the data center round trip latencies described in the previous sec-
tion. Whenever a transaction starts, the application server stores
the size in a local histogram, and occasionally distributes the his-
tograms by sending the data to some storage nodes throughout the
distributed database. The distribution of transaction sizes is use-
ful for estimating transaction durations and is used in the conflict
estimation models.

5.2.3 Record Access Rates
The likelihood equation 8b needs the likelihood of zero conflict-

ing updates. As a simplification, we assume the update-arrival rate
follows a Poisson process, so it is sufficient to compute the average
arrival rate as the λ parameter.
The update-arrival rate for individual records is measured on the

storage nodes. On the servers, the number of accesses to a particu-
lar record is counted in bucket granularities, to reduce the size of the
data. Also, only the most recent buckets are stored for each record
to reduce the storage overhead. In our system, the configured size
of a bucket is 10 seconds, and only the 6 latest buckets are main-
tained, which we aggregate using the arithmetic mean. Using these
buckets of accesses, the arrival rate described in Section 5.1 can
be calculated without significant space overhead ([23] describes in
more detail the required overhead).

5.2.4 Computations
Given the message latencies and the transaction size statistics, it

is possible to convolute all these statistics according to equation 8a.

unknown
aborts

commits
 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

Traditional

P
er

ce
nt

ag
e

of
 T

ra
ns

ac
tio

ns

Timeout parameter (ms)

unknown
accept-aborts

accept-commits

aborts
commits

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

PLANET

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

200 400 800 1600 3200 6400 12800 25600 51200 102400 uniform

T
hr

ou
gh

pu
t (

tp
s)

Hotspot Size (items)
without PLANET commits

without PLANET aborts
PLANET commits

PLANET aborts

 0

 100

 200

 300

 400

 500

 600

 700

 800

200 400 800 1600 3200 6400 12800 25600 51200 102400 uniform
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

P
LA

N
E

T
 S

pe
c

C
om

m
its

 %

Hotspot Size (items)
without PLANET commits

PLANET commits
PLANET Spec %

Figure 5: Transaction outcomes, vary
timeout (20,000 items, 200 TPS)

Figure 6: Commit & abort throughput,
vary hotspot (200,000 items, 200 TPS)

Figure 7: Average response time, vary
hotspot (200,000 items, 200 TPS)

The result is an N ×N matrix with one entry per data-center pair.
This matrix is very compact and can be stored on every storage
node and client, allowing a very efficient likelihood computation.
Whenever a transaction is started, it uses the current statistics

and pre-computed values, and computes the commit likelihood of
the transaction, using equation 9. The computation is negligible,
and adds virtually no overhead compared to the overall latencies
between data centers. Also, whenever a new message or response
is received, the client re-computes the likelihood with the new in-
formation. This allows the commit likelihood to become more ac-
curate as more information is revealed during the commit process.

6. EVALUATION
We evaluated PLANET on top of MDCC, deployed across five

different data centers with Amazon EC2. Our evaluation shows
that (1) PLANET significantly reduces the uncertainty of transac-
tions with timeouts, (2) speculative commits and admission control
notably improve the overall throughput and latency, (3) our predic-
tion model for MDCC is accurate enough for various conflict rates,
and (4) the dynamic admission control policy generally provides
the best throughput for a variety of configurations.

6.1 Experimental Setup
We implemented PLANET on top of a publicly available imple-

mentation of MDCC [24, 20] from UC Berkeley, which we modi-
fied according to Section 5.2. We deployed the system in five differ-
ent data centers of Amazon EC2: US West (Northern California),
US East (Virginia), EU (Ireland), Asia Pacific (Tokyo), Asia Pacific
(Singapore). Each data center has a full replica of the database (5
times replicated), partitioned across two m1.large servers per data
center. Clients issuing transactions are evenly distributed across all
five data centers, and are on m1.large servers, separate from the
data storage nodes. Clients behave in the open system model, so
they issue transactions at a fixed rate, in order to achieve a global
target throughput. For all the experimental runs, clients ran for 3
minutes after a 2 minute warmup period, and recorded throughput,
response times, and statistics. We further configured PLANET to
consider a transaction as accepted as soon as the first storage node
confirmed the transaction proposal message.

6.2 TPC-W-like Buy Transactions
We use a TPC-W-like benchmark for all of the experiments.

TPC-W is a transactional benchmark which simulates clients inter-
acting with an e-commerce website. TPC-W defines several read
and write transactions, but for our purposes, we only test the TPC-
W order buying transaction. Many TPC-W transactions focus on
reads, which are orthogonal to the transaction programming model.
Our buy transaction randomly chose 1–4 items, and purchases them
by decrementing the stock levels (similar to the code shown in List-
ing 2). To focus on the database transaction, we forego any credit
card checks, etc., and focus on a single Items table with the same
attributes as defined in the TPC-W benchmark.

6.3 Reducing Uncertainty With PLANET
Using PLANET’s onAccept stage block can reduce the amount

of uncertainty that applications may experience. To evaluate the
effectiveness, we used the buy transaction with varying timeouts
from 0ms to 1500ms. The clients used a uniformly random access
pattern, and the fixed client rate was set to 200 TPS, for moderate
contention. The Items table had 20,000 items, and both speculative
commits and admission control were disabled.
Figure 5 shows the breakdown of transaction outcomes for the

different timeout values, for PLANET and a traditional JDBCmodel
with normal timeouts.6 The solid areas of the graph show the per-
centage of transactions of which the outcomes are known when the
timeout expires. All other portions of the graph (striped, cross-
hatched) represent transactions which have not finished before the
timeout. For the traditional model, there can be a large percent-
age of transactions with an unknown state when the timeout expires
(blue crosshatched area in top graph). So, for a given timeout value,
a larger crosshatched area means the application is more frequently
in the dark and more users will be presented with an error.
With PLANET, transactions quickly reach the accepted stage,

with the promise that they will eventually complete and the user
will be informed of the final outcome. The accept-commits and
accept-aborts areas of the PLANET graph are those transactions
which were accepted before the timeout, but completed after the
timeout. By being notified through finallyCallback, applications
can discover the true outcome of transactions even if they do not
complete before the timeout, and this can drastically reduce the
level of uncertainty. For the red and green striped areas, the ap-
plication can present the user with a meaningful message that the
request was received and that the user will be notified about the fi-
nal outcome, instead of showing an error message. Furthermore, in
contrast to the traditional model, for the transactions which only
reach the onFailure stage within the timeout (blue crosshatched
area in the bottom graph), the finally callbacks may be invoked as
long as the transaction is not actually lost due to a failure.
As Figure 5 shows, PLANET is less sensitive to the timeout pa-

rameter using onAccept and finallyCallback, because it allows for
providing more meaningful responses to the user and for learning
the transaction outcome even after the timeout.

6.4 Overall Performance
In order to show the overall benefits of PLANET, we used the

TPC-W-like buy transaction, with the clients executing at a fixed
rate, to achieve a fixed target aggregate throughput. The transac-
tions used a 5 second timeout, and no onAccept stage. To simulate
non-uniform access of very popular items, we used a hotspot access
pattern, where 90% of transactions accessed an item in the hotspot.

6The transaction latencies are not a property of PLANET itself but
of the underlying database system MDCC. Also, all presented la-
tencies in this paper are not directly comparable to the latencies
shown in [24] as [24] focuses on MDCC optimizations such as fast
Paxos and commutativity, instead of the classic protocol, and uses
different workloads (no contention, less load, etc).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

50 100 200 300 400 500 600

C
om

m
it

T
hr

ou
gh

pu
t (

tp
s)

Client Transaction Request Rate (tps)

without PLANET
with PLANET

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 T

ra
ns

ac
tio

ns

Commit Response Times (ms)

without PLANET (100 tps)
without PLANET (300 tps)
without PLANET (500 tps)

PLANET (100 tps)
PLANET (300 tps)
PLANET (500 tps)

 0

 50

 100

 150

 200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Data Size (# items)

Aborts
Incorrect Spec

Spec
Commits

Figure 8: Commit throughput, vary
client rate (50,000 items, 100 hotspot)

Figure 9: Commit response time CDF
(50,000 items, 100 hotspot)

Figure 10: Transaction types, vary data
size (200 TPS, uniform access)

The Items table had 200,000 items and we varied the hotspot size
to vary the transaction conflict rates. The PLANET system enabled
admission control with the Dynamic(50) policy, so when the like-
lihood of commit, L, is less than 50%, then the transaction is at-
tempted with probability L. The PLANET transaction also enabled
speculative commits with a value of 0.95, so when the likelihood
of commit is at least 95%, the transaction is considered committed.
Figure 6 shows the commit and abort rates for different hotspot

sizes, with a client target throughput of 200 TPS. The figure shows
that as the hotspot size grows (decreasing conflict rates), PLANET
achieves similar throughput with the standard system, with abort
rates around 1%–2% with the uniform access. As the hotspot sizes
shrink (i.e., more conflicts are created), the abort rates increase be-
cause of the increasing conflict rates, and PLANET begins to expe-
rience higher commit throughput. When the hotspot is 200 items,
PLANET has a commit rate of 58.2%, but the standard system only
has a commit rate of 17.1%. The better commit rate is explained
by theDynamic(50) policy, which has the biggest impact at roughly
800 or fewer hotspot items. We study the effect of different admis-
sion control parameters in Section 6.7.
Figure 7 shows the average commit response times for the differ-

ent target throughputs. The PLANET response times are all faster
than those of the standard system, because PLANET can take ad-
vantage of faster, speculative commits. As the hotspot size in-
creases from 200 to 6400 items, the average PLANET response
times (green solid line) increase because reducing the conflict rate
in the hotspot increases the commit likelihoods and fewer transac-
tions will be rejected. This means fewer transactions will be able to
run in the less contended portion of the data, and be able to expe-
rience speculative commits. However, as the hotspot size increases
further from 6400 items, the hotspot is then large enough where
even the transactions accessing the hotspot begins to experience
faster, speculative commits and the response time decreases again.
Figure 7 also shows the percentage of commits which are specula-
tive, and demonstrates that PLANET response times are low when
a larger percentage of speculative commits are possible.
Overall, the throughput and response time are significantly im-

proved by PLANET. The next sub-sections study in more detail the
impact of contention, speculative commits and admission control
on the overall performance.

6.5 Performance Under High Contention
To further investigate the performance under high contention, we

varied the client request rates (i.e., Client Transaction Rate) with a
fix set of Items (50,000) and hotspot (100 items). Figure 8 shows
the successful commit transaction throughput (i.e., goodput) of the
PLANET system , for various client requests rates. The PLANET
system outperforms the standard system for all the client through-
puts and achieves up to 4-times more throughput at higher requests
rates. For the standard system, the throughput peaks at around 40
TPS, where as with PLANET, the peak throughput is around 163
TPS. The abort rates for PLANET ranged from 44% to 75.8%
at 600 TPS (hence, the difference between request rate and ac-

tual commit throughput). Without PLANET, the abort rates ranged
from 56.7% to 94.1% at 600 TPS. Again, PLANET admission con-
trol is the main reason for the improved goodput. Admission con-
trol prevents thrashing the system, uses resources to attempt more
likely transactions, improves commit throughput, and improves the
goodput within the hotspot by reducing the contention.
Figure 9 shows the cumulative distribution functions (CDF) for

committed transaction response times for experimental runs of var-
ious client request rates. It shows that the latencies for PLANET
transactions are lower than the latencies for transactions not using
PLANET. The main reason for the reduced response times with
PLANET is that speculative commits are utilized. At 300 TPS,
about 46.2% of all commits could commit speculatively, therefore
greatly reducing response times. Many of the transactions not in the
hotspot (cold-spot) are able to commit speculatively, with a commit
likelihood greater than 0.95 because of the low contention. There-
fore, the commit likelihoods of cold-spot transactions are high. At
low load of 100 TPS, 95.5% of transactions in the cold-spot could
commit speculatively, and at high load of 500 TPS, about 20.2% of
transactions were speculative commits. These results show that the
speculative commits of PLANET can improve the response times.

6.6 Speculative Commits
In order to study our prediction model in more detail, we ran

experiments with our benchmark, but with the transaction size at 1
item, a 5 second timeout, and no onAccept stage. To better evaluate
only the speculative model, we forego admission control and used
a more balanced contention scheme by selecting uniformly items
from the Items table, which we varied in size from 1,000 to 10,000
items. The transactions were defined to speculatively commit when
the likelihood was at least 0.95 and we used a client transaction
request rate of 200 TPS.
Figure 10 shows the breakdown of the different commits types,

for the different data sizes. In the figure, standard commits are la-
beled as “Normal”, speculative commits are labeled as “Spec”, and
speculative commits which are incorrect are labeled as “Incorrect
Spec”. When the data size is large and there is low contention on
the records (10,000 items), most of the transactions can commit
speculatively. At 10,000 items, about 77.3% of transactions could
commit speculatively because of the high likelihood of success.
When the data size is small and there is high contention (1,000
items), most of the transactions cannot take advantage of specu-
lative commits. At 1,000 items, only 0.1% of transactions could
commit speculatively. This occurs because as contention increases,
the records have higher access rates, so it becomes less likely that
a transaction would have a commit probability of at least 0.95.
Since speculative commits finish the transaction early, before the

final outcome, sometimes the commit can be wrong. It is clear in
Figure 10, that the fraction of incorrect commits is not very large.
The transaction defines speculative commits with a likelihood of at
least 0.95, so ideally only about 5% of speculative commits would
be incorrect. For all the data sizes greater than 1,000 items, the rates
of incorrect speculative commits were between 1.8% and 5.8%.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Data Size (# items)

 0

 10

 20

 30

 40

 50

 60

 70

0 10 20 30 40 50 60 70 80 90 100

C
om

m
its

 (
tp

s)

Parameter (100 tps client rate)
Dyn(*) total
Dyn(*) hot

F(60,*) total
F(60,*) hot

F(40,*) total
F(40,*) hot

F(20,*) total
F(20,*) hot

 0

 50

 100

 150

 200

 250

 300

0 10 20 30 40 50 60 70 80 90 100

C
om

m
its

 (
tp

s)

Parameter (400 tps client rate)
Dyn(*) total
Dyn(*) hot

F(60,*) total
F(60,*) hot

F(40,*) total
F(40,*) hot

F(20,*) total
F(20,*) hot

Figure 11: Average commit latency, vary
data size (200 TPS, uniform access)

Figure 12: Admission control, vary poli-
cies (100 TPS, 25,000 items, 50 hotspot)

Figure 13: Admission control, vary poli-
cies (400 TPS, 25,000 items, 50 hotspot)

For 1,000 items, 25.6% of speculative commits were incorrect. The
higher error rate for 1,000 items can be explained by the fact that
not many transactions commit speculatively (only 39 in 3 minutes),
and high contention makes it difficult to predict the commit likeli-
hood accurately. However, most of the error rates are similar to,
or better than the expected rate of 5%. We also studied the predic-
tion model for transactions with more than one record as well as
non-uniform access (different conflict rates). The results were very
similar to the ones in Figure 10 and not shown.
Figure 11 shows the average transaction response times (includ-

ing aborts) for the same setup as Figure 10. The graph shows the
expected: larger data sizes lower the response times because more
transactions can commit speculatively. We conclude that even our
simple prediction model provides enough accuracy and is able to
significantly lower the total response times.

6.7 Admission Control
Finally, we studied the effects of PLANET’s admission control

more closely, by running experiments with our benchmark with
smaller data sizes, and without speculative commits. Transaction
size was at 1 item, the data size was set to 25,000 items, and the
hotspot size was set to 50 items. We ran the experiments with dif-
ferent client request rates, and varied the parameters for the Fixed
and Dynamic policies, to observe how the parameters are affected
by different access rates. For Fixed(threshold,attempt_rate), we
varied the attempt_rate, for a few constant values of the threshold.
For Dynamic(threshold), we varied the threshold.
Figures 12 and 13 show the commit rates for the policies with

client throughputs of 100 TPS and 400 TPS, respectively. We tested
the Dynamic(*), Fixed(20,*), Fixed(40,*), and Fixed(60,*) poli-
cies, represented by Dyn(*), F(20,*), F(40,*), and F(60,*) in the
graphs, where “∗” refers to the parameter we varied (X-axis). The
figures show the total commit rates (solid green lines), and the
hotspot commit rates (dashed red lines), while varying parameters.
In general, for a 100 TPS request rate (Figure 12) all policies

behave similarly. At 100 TPS, the contention level is not strong
enough for the admission control policies to really show an im-
pact. However, they are three configurations, which stand out:
Fixed(60,*), Fixed(40,*) and Dyn(*). Fixed(60,*) and Fixed(40,*)
overcompensates for attempt_rate near 0% as they reject too many
hotspot transactions causing them to drop significantly below the
maximum hotspot throughput of 30 TPS. However, with an attempt
rate of 10%, Fixed(60,10) achieves the highest total throughput
in this setup. The reason is, that Fixed(60,10) is too aggressive
in rejecting low commit likelihood transactions and influences the
workload to a more uniform workload, whereas the other policies
still attempt and commit more transactions in the hotspot region
(around 30 TPS). This is undesirable, since the admission control
technique should fully utilize the hotspot instead of underutilizing
it. In contrast, the Dyn(*) always utilizes the hotspot at around 30
TPS while providing a good overall throughput.
For a 400 TPS request rate (Figure 13) the situation is differ-

ent. The dynamic policy performs poorly with a threshold near 0%,

whereas the Fixed strategies do well, the high threshold (60%) in
particular. The reason is simple. Recall a Fixed(T,A) policy means
that when the commit likelihood is less than T%, the transaction
will be attempted A% of the time. With a setting of Fixed(60,0)
the admission control is most aggressive, whereas the Fixed(60,10)
will admit some transactions accessing the hotspot and increase the
overall performance. In contrast, a Dyn(0) policy actually refers to
a setup without any admission control. It is more appropriate to
compare the Dyn(60) point with all the data points of Fixed(60,*),
as a Dyn(60) policy means that all transactions with a likelihood L,
less than 60% will be attempted L% of the time.
In general, the Dynamic(100) policy, which means that all trans-

actions are tried in proportion to their commit likelihood, performed
very well in both experiments. This also shows that our prediction
model is accurate enough to allow Dynamic to make good deci-
sions. Lower thresholds for theDynamic strategy essentially accept
more risky transactions into the system. In our setup, the Dynamic
policy performed similarly for all thresholds greater than 50%.
For all configurations, using admission control always resulted in

a higher total commit rate than when not using admission control.
With admission control, PLANET can back off from the hotspot,
not spend resources and thrash the commit protocol, and try to
execute transactions which have a much better chance to succeed
(transactions not accessing the hotspot). These experiments show
the sensitivity analysis for the parameters and policies, and show
that the default policy for PLANET, Dynamic with a high thresh-
old, works well for a range of environments.
In summary, PLANET enables application developers to write

responsive applications by speculatively committing transactions
and using the onAccept stage. Also, when the system performs ad-
mission control with commit likelihoods, resources can be spent for
transactions more likely to commit, resulting in higher throughput.

7. RELATED WORK
The PLANET transaction programming model enables applica-

tion developers to write latency sensitive applications in high vari-
ance environments. In [19], the authors describe three types of
design patterns in eventually consistent and asynchronous environ-
ments: memories, guesses, and apologies. PLANET supports these
design patterns with speculative commits, and finally callbacks.
This paper described a conflict estimation model in to predict the

likelihood of commit for a write-set, optimistic concurrency con-
trol system. Similarly, the work in [34] developed models for two-
phase locking, and the models can be implemented in PLANET to
compute the commit likelihoods, for PLANET to work in systems
using two-phase locking.
[29, 32, 23] all use probabilistic models to limit divergence of

replicas or inconsistencies with respect to caching. PLANET uses
probabilistic models to predict the likelihood of commit, instead of
possible data inconsistencies or divergence.
There have been many studies on transaction admission control,

or load control in databases. In [18], the “optimal” load factor is
approximated by adaptively probing the performance of the system

with more or less load, and admission control prevented thrashing
of the system. [10, 28, 33] have all studied the effects of thrashing
and admission control with two-phase locking concurrency control.
These solutions require keeping track of the global number of trans-
actions or locks held by transactions to make admission control de-
cisions, which is difficult in geo-replicated distributed databases.
The authors of [17] implemented a proxy for admission control by
rejecting new transactions which may surpass the system capacity
computed offline. PLANET differs from these solutions by using
commit likelihoods to make decisions on admission control.
There have been previous proposals for system implementations

that perform optimistic commit, sometimes needing compensation
if the optimistic decision was wrong [26, 21]. PLANET is orthog-
onal to this, with speculative commits at the language level that
allow the application programmer awareness of the commit likeli-
hood, so a principled decision can trade-off the benefits of fast re-
sponses against the occasional compensation costs. Any optimistic
commit protocol could be used to implement the PLANET model,
so long as PLANET can predict the probability of eventual success.
Several systems support time-outs for transactions, such as JDBC

drivers or Hibernate, but to our knowledge, they only support sim-
ple timeouts with no further guarantees. Also, with most models,
after the timeout expires, the transaction outcome is unknown with-
out an easy way to discover it. Some models allow setting various
timeouts for different stages of the transaction (e.g., Galera, Oracle
RAC), but how the timeouts effect the user application is not obvi-
ous. In contrast, PLANET provides a solid foundation for develop-
ers to implement highly responsive transactions using the guess and
apology pattern, as well as minimizes the uncertain state for which
the application does not know anything about the transaction.

8. CONCLUSION
High variance and high latency environments can be common

with recent trends towards consolidation, cloud computing, and
geo-replication. Transactions in such environments can experience
unpredictable response times or unexpected failures, and the in-
creased uncertainty makes developing interactive applications dif-
ficult. We proposed a new transaction programming model, Pre-
dictive Latency-Aware NEtworked Transactions (PLANET), that
offers features to help developers build applications. PLANET ex-
poses the progress of the transactions to the application, so that
it can flexibly react to unexpected situations while still providing
a predictable and responsive user experience. PLANET’s novel
commit likelihood model and user-defined commits enable devel-
opers to explicitly trade-off between latency and consistent applica-
tion behavior (e.g., apologizing for moving ahead too early), mak-
ing PLANET the first implementation of the previously proposed
guesses and apologies transaction design pattern [19]. Further-
more, likelihoods can be used for admission control to reject trans-
actions which have a low likelihood to succeed, in order to bet-
ter utilize resources and avoid thrashing. We evaluated PLANET
in a strongly consistent, synchronous geo-replicated system and
showed that using the features of PLANET can improve the through-
put of the system, and decrease the response times of transactions.
When implemented in a strongly consistent, synchronous geo-

replicated system, PLANET can offer the lower latency benefits of
eventual consistency. While eventually consistent systems choose
to give up data consistency or multi-record transactions for im-
proved response times, PLANET can improve transaction response
times while still keeping data consistent.
Acknowledgements: We would like to thank the SIGMOD re-

viewers for their helpful feedback. This research is supported in
part by NSF CISE Expeditions award CCF-1139158 and DARPA

XData Award FA8750-12-2-0331, and gifts from Amazon Web
Services, Google, SAP, Apple, Inc., Cisco, Clearstory Data, Cloud-
era, Ericsson, Facebook, GameOnTalis, General Electric, Horton-
works, Huawei, Intel, Microsoft, NetApp, Oracle, Samsung, Splunk,
VMware, WANdisco and Yahoo!.

9. REFERENCES
[1] Amazon EC2 Outage, April 2011.

http://aws.amazon.com/message/65648/.
[2] Amazon RDS Multi-AZ Deployments.

http://aws.amazon.com/rds/mysql/#Multi-AZ.
[3] Google AppEngine High Replication Datastore.

http://googleappengine.blogspot.com/2011/01/
announcing-high-replication-datastore.html.

[4] Hibernate. http://www.hibernate.org/.
[5] PLANET. http://planet.cs.berkeley.edu.
[6] M. Armbrust et al. PIQL: Success-Tolerant Query Processing in the Cloud.

PVLDB, 5(3):181–192, 2011.
[7] P. Bailis et al. Probabilistically Bounded Staleness for Practical Partial

Quorums. Proc. VLDB Endow., 5(8), 2012.
[8] J. Baker et al. Megastore: Providing Scalable, Highly Available Storage for

Interactive Services. In CIDR, 2011.
[9] P. Bodik et al. Characterizing, Modeling, and Generating Workload Spikes for

Stateful Services. In Proc. of SoCC, 2010.
[10] M. J. Carey, S. Krishnamurthi, and M. Livny. Load Control for Locking: The

’Half-and-Half’ Approach. In PODS, 1990.
[11] B. F. Cooper et al. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proc.

VLDB Endow., 1, 2008.
[12] B. F. Cooper et al. Benchmarking Cloud Serving Systems with YCSB. In Proc.

of SoCC, 2010.
[13] J. C. Corbett et al. Spanner: Google’s Globally-Distributed Database. In Proc.

of OSDI, 2012.
[14] C. Curino et al. Workload-Aware Database Monitoring and Consolidation. In

Proc. of SIGMOD, SIGMOD ’11, New York, NY, USA, 2011. ACM.
[15] G. DeCandia et al. Dynamo: Amazon’s Highly Available Key-Value Store. In

Proc. of SOSP, 2007.
[16] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. Performance

Prediction for Concurrent Database Workloads. In Proc. of SIGMOD, 2011.
[17] S. Elnikety et al. A method for Transparent Admission Control and Request

Scheduling in E-Commerce Web Sites. In WWW, 2004.
[18] H.-U. Heiss and R. Wagner. Adaptive Load Control in Transaction Processing

Systems. In VLDB, 1991.
[19] P. Helland and D. Campbell. Building on Quicksand. In CIDR, 2009.
[20] H. Jayathilaka. MDCC - Strong Consistency with Performance.

http://techfeast-hiranya.blogspot.com/2013/04/
mdcc-strong-consistency-with-performance.html, 2013.

[21] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions over
Optimistic Atomic Broadcast Protocols. In Proc. of ICDCS, 1999.

[22] D. Kossmann, T. Kraska, and S. Loesing. An Evaluation of Alternative
Architectures for Transaction Processing in the Cloud. In Proc. of SIGMOD,
2010.

[23] T. Kraska et al. Consistency Rationing in the Cloud: Pay only when it matters.
PVLDB, 2(1), 2009.

[24] T. Kraska et al. MDCC: Multi-Data Center Consistency. In Proceedings of the
8th ACM European Conference on Computer Systems, 2013.

[25] L. Lamport. Paxos Made Simple. SIGACT News, 32(4), 2001.
[26] E. Levy, H. F. Korth, and A. Silberschatz. An Optimistic Commit Protocol for

Distributed Transaction Management. In Proc. of SIGMOD, 1991.
[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t Settle for

Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. In
Proc. of SOSP, 2011.

[28] A. Mönkeberg and G. Weikum. Conflict-driven Load Control for the Avoidance
of Data-Contention Thrashing. In ICDE, 1991.

[29] C. Olston, B. T. Loo, and J. Widom. Adaptive Precision Setting for Cached
Approximate Values. In SIGMOD Conference, pages 355–366, 2001.

[30] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime Measurements in the
Cloud: Observing, Analyzing, and Reducing Variance. Proc. VLDB Endow.,
3(1-2), 2010.

[31] E. Schurman and J. Brutlag. Performance Related Changes and their User
Impact. Presented at Velocity Web Performance and Operations Conference,
2009.

[32] S. Shah, K. Ramamritham, and P. J. Shenoy. Resilient and Coherence
Preserving Dissemination of Dynamic Data Using Cooperating Peers. IEEE
Trans. Knowl. Data Eng., 16(7):799–812, 2004.

[33] A. Thomasian. Thrashing in Two-Phase Locking Revisited. In ICDE, 1992.
[34] A. Thomasian. Two-Phase Locking Performance and Its Thrashing Behavior.

TODS, 18(4), 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Amienne
 /Amienne-Bold
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Arnprior
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Baveuse
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /Berylium
 /Berylium-BoldItalic
 /Biondi
 /Biondi-Light
 /BlackadderITC-Regular
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Boopee
 /Boopee-Bold
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BurnstownDam
 /Byington
 /Byington-Bold
 /Byington-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Catriel
 /Catriel-Bold
 /Catriel-BoldItalic
 /Catriel-Italic
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /EarwigFactory
 /Ebrima
 /Ebrima-Bold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /EuphorigenicS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeavyHeap
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HurryUp
 /Huxtable
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /Kredit
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LevenimMT
 /LevenimMT-Bold
 /Ligurino
 /Ligurino-Bold
 /LigurinoCondensed
 /Ligurino-Italic
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /Mufferaw
 /MVBoli
 /Narkisim
 /Neuropol
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /Nyala-Regular
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlanetBenson2
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /Pristina-Regular
 /Pupcat
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tandelle
 /Tandelle-Bold
 /Tandelle-BoldItalic
 /Tandelle-Italic
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

