
Scalable Atomic Visibility with RAMP Transactions

Peter Bailis, Alan Fekete†, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica
UC Berkeley and †University of Sydney

ABSTRACT
Databases can provide scalability by partitioning data across several
servers. However, multi-partition, multi-operation transactional ac-
cess is often expensive, employing coordination-intensive locking,
validation, or scheduling mechanisms. Accordingly, many real-
world systems avoid mechanisms that provide useful semantics for
multi-partition operations. This leads to incorrect behavior for a
large class of applications including secondary indexing, foreign key
enforcement, and materialized view maintenance. In this work, we
identify a new isolation model—Read Atomic (RA) isolation—that
matches the requirements of these use cases by ensuring atomic vis-
ibility: either all or none of each transaction’s updates are observed
by other transactions. We present algorithms for Read Atomic Multi-
Partition (RAMP) transactions that enforce atomic visibility while
offering excellent scalability, guaranteed commit despite partial
failures (via synchronization independence), and minimized com-
munication between servers (via partition independence). These
RAMP transactions correctly mediate atomic visibility of updates
and provide readers with snapshot access to database state by using
limited multi-versioning and by allowing clients to independently
resolve non-atomic reads. We demonstrate that, in contrast with ex-
isting algorithms, RAMP transactions incur limited overhead—even
under high contention—and scale linearly to 100 servers.

1. INTRODUCTION
Faced with growing amounts of data and unprecedented query

volume, distributed databases increasingly split their data across
multiple servers, or partitions, such that no one partition contains
an entire copy of the database [7,13,18,19,22,29,43]. This strategy
succeeds in allowing near-unlimited scalability for operations that
access single partitions. However, operations that access multiple
partitions must communicate across servers—often synchronously—
in order to provide correct behavior. Designing systems and algo-
rithms that tolerate these communication delays is a difficult task
but is key to maintaining scalability [17, 28, 29, 35].

In this work, we address a largely underserved class of appli-
cations requiring multi-partition, atomically visible1 transactional
access: cases where all or none of each transaction’s effects should
be visible. The status quo for these multi-partition atomic transac-
tions provides an uncomfortable choice between algorithms that
1Our use of “atomic” (specifically, Read Atomic isolation) concerns all-or-nothing
visibility of updates (i.e., the ACID isolation effects of ACID atomicity; Section 3).
This differs from uses of “atomicity” to denote serializability [8] or linearizability [4].
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2588562.

are fast but deliver inconsistent results and algorithms that de-
liver consistent results but are often slow and unavailable under
failure. Many of the largest modern, real-world systems opt for
protocols that guarantee fast and scalable operation but provide
few—if any—transactional semantics for operations on arbitrary
sets of data items [11, 13, 15, 22, 26, 38, 44]. This results in incor-
rect behavior for use cases that require atomic visibility, includ-
ing secondary indexing, foreign key constraint enforcement, and
materialized view maintenance (Section 2). In contrast, many tra-
ditional transactional mechanisms correctly ensure atomicity of
updates [8, 17, 43]. However, these algorithms—such as two-phase
locking and variants of optimistic concurrency control—are often
coordination-intensive, slow, and, under failure, unavailable in a
distributed environment [5, 18, 28, 35]. This dichotomy between
scalability and atomic visibility has been described as “a fact of
life in the big cruel world of huge systems” [25]. The prolifera-
tion of non-transactional multi-item operations is symptomatic of a
widespread “fear of synchronization” at scale [9].

Our contribution in this paper is to demonstrate that atomically
visible transactions on partitioned databases are not at odds with
scalability. Specifically, we provide high-performance implementa-
tions of a new, non-serializable isolation model called Read Atomic
(RA) isolation. RA ensures that all or none of each transaction’s
updates are visible to others and that each transaction reads from an
atomic snapshot of database state (Section 3)—this is useful in the
applications we target. We subsequently develop three new, scalable
algorithms for achieving RA isolation that we collectively title Read
Atomic Multi-Partition (RAMP) transactions (Section 4). RAMP
transactions guarantee scalability and outperform existing atomic
algorithms because they satisfy two key scalability constraints. First,
RAMP transactions guarantee synchronization independence: one
client’s transactions cannot cause another client’s transactions to
stall or fail. Second, RAMP transactions guarantee partition inde-
pendence: clients never need to contact partitions that their trans-
actions do not directly reference. Together, these properties ensure
guaranteed completion, limited coordination across partitions, and
horizontal scalability for multi-partition access.

RAMP transactions are scalable because they appropriately con-
trol the visibility of updates without inhibiting concurrency. Rather
than force concurrent reads and writes to stall, RAMP transactions
allow reads to “race” writes: RAMP transactions can autonomously
detect the presence of non-atomic (partial) reads and, if necessary,
repair them via a second round of communication with servers. To
accomplish this, RAMP writers attach metadata to each write and
use limited multi-versioning to prevent readers from stalling. The
three algorithms we present offer a trade-off between the size of this
metadata and performance. RAMP-Small transactions require con-
stant space (a timestamp per write) and two round trip time delays
(RTTs) for reads and writes. RAMP-Fast transactions require meta-
data size that is linear in the number of writes in the transaction but
only require one RTT for reads in the common case and two in the
worst case. RAMP-Hybrid transactions employ Bloom filters [10] to
provide an intermediate solution. Traditional techniques like locking

couple atomic visibility and mutual exclusion; RAMP transactions
provide the benefits of the former without incurring the scalability,
availability, or latency penalties of the latter.

In addition to providing a theoretical analysis and proofs of cor-
rectness, we demonstrate that RAMP transactions deliver in practice.
Our RAMP implementation achieves linear scalability to over 7
million operations per second on a 100 server cluster (at overhead
below 5% for a workload of 95% reads). Moreover, across a range
of workload configurations, RAMP transactions incur limited over-
head compared to other techniques and achieve higher performance
than existing approaches to atomic visibility (Section 5).

While the literature contains an abundance of isolation models [2,
5], we believe that the large number of modern applications requiring
RA isolation and the excellent scalability of RAMP transactions
justify the addition of yet another model. RA isolation is too weak
for some applications, but, for the many that it can serve, RAMP
transactions offer substantial benefits.

2. OVERVIEW AND MOTIVATION
In this paper, we consider the problem of making transactional

updates atomically visible to readers—a requirement that, as we
outline in this section, is found in several prominent use cases today.
The basic property we provide is fairly simple: either all or none of
each transaction’s updates should be visible to other transactions.
For example, if a transaction T1 writes x = 1 and y = 1, then another
transaction T2 should not read x = 1 and y = null. Instead, T2 should
either read x = 1 and y = 1 or, possibly, x = null and y = null.
Informally, each transaction reads from an unchanging snapshot of
database state that is aligned along transactional boundaries. We call
this property atomic visibility and formalize it via the Read Atomic
isolation guarantee in Section 3.

The classic strategy for providing atomic visibility is to ensure
mutual exclusion between readers and writers. For example, if a
transaction like T1 above wants to update data items x and y, it
can acquire exclusive locks for each of x and y, update both items,
then release the locks. No other transactions will observe partial
updates to x and y, ensuring atomic visibility. However, this solution
has a drawback: while one transaction holds exclusive locks on x
and y, no other transactions can access x and y for either reads or
writes. By using mutual exclusion to enforce the atomic visibility
of updates, we have also limited concurrency. In our example, if x
and y are located on different servers, concurrent readers and writers
will be unable to perform useful work during communication delays.
These communication delays form an upper bound on throughput:
effectively, 1

message delay operations per second.
To avoid this upper bound, we separate the problem of providing

atomic visibility from the problem of maintaining mutual exclusion.
By achieving the former but avoiding the latter, the algorithms we
develop in this paper are not subject to the scalability penalties
of many prior approaches. To ensure that all servers successfully
execute a transaction (or that none do), our algorithms employ an
atomic commitment protocol (ACP). When coupled with a blocking
concurrency control mechanism like locking, ACPs are harmful to
scalability and availability: arbitrary failures can (provably) cause
any ACP implementation to stall [8]. (Optimistic concurrency con-
trol mechanisms can similarly block during validation.) We instead
use ACPs with non-blocking concurrency control mechanisms; this
means that individual transactions can stall due to failures or com-
munication delays without forcing other transactions to stall. In a
departure from traditional concurrency control, we allow multiple
ACP rounds to proceed in parallel over the same data.

The end result—our RAMP transactions—provide excellent scal-
ability and performance under contention (e.g., in the event of write

hotspots) and are robust to partial failure. RAMP transactions’ non-
blocking behavior means that they cannot provide certain guarantees
like preventing concurrent updates. However, applications that can
use Read Atomic isolation will benefit from our algorithms. The
remainder of this section identifies several relevant use cases from
industry that require atomic visibility for correctness.

2.1 Read Atomic Isolation in the Wild
As a simple example, consider a social networking application:

if two users, Sam and Mary, become “friends” (a bi-directional
relationship), other users should never see that Sam is a friend of
Mary but Mary is not a friend of Sam: either both relationships
should be visible, or neither should be. A transaction under Read
Atomic isolation would correctly enforce this behavior, and we can
further classify three general use cases for Read Atomic isolation:
1.) Foreign key constraints. Many database schemas contain in-
formation about relationships between records in the form of foreign
key constraints. For example, Facebook’s TAO [11], LinkedIn’s
Espresso [38], and Yahoo! PNUTS [15] store information about
business entities such as users, photos, and status updates as well
as relationships between them (e.g., the friend relationships above).
Their data models often represent bi-directional edges as two dis-
tinct uni-directional relationships. For example, in TAO, a user
performing a “like” action on a Facebook page produces updates
to both the LIKES and LIKED_BY associations [11]. PNUTS’s au-
thors describe an identical scenario [15]. These applications require
foreign key maintenance and often, due to their unidirectional re-
lationships, multi-entity update and access. Violations of atomic
visibility surface as broken bi-directional relationships (as with Sam
and Mary above) and dangling or incorrect references (e.g., Frank is
an employee of department.id=5, but no such department exists
in the department table).

With RAMP transactions, when inserting new entities, applica-
tions can bundle relevant entities from each side of a foreign key
constraint into a transaction. When deleting associations, users
can “tombstone” the opposite end of the association (i.e., delete
any entries with associations via a special record that signifies dele-
tion) [45] to avoid dangling pointers.
2.) Secondary indexing. Data is typically partitioned across
servers according to a primary key (e.g., user ID). This allows fast
location and retrieval of data via primary key lookups but makes
access by secondary attributes (e.g., birth date) challenging. There
are two dominant strategies for distributed secondary indexing. First,
the local secondary index approach co-locates secondary indexes
and primary data, so each server contains a secondary index that only
references (and indexes) data stored on its server [7,38]. This allows
easy, single-server updates but requires contacting every partition
for secondary attribute lookups (write-one, read-all), compromising
scalability for read-heavy workloads [11, 17, 38]. Alternatively, the
global secondary index approach locates secondary indexes (which
may be partitioned, but by a secondary attribute) separately from
primary data [7, 15]. This alternative allows fast secondary lookups
(read-one) but requires multi-partition update (at least write-two).

Real-world services employ either local secondary indexing (e.g.,
Espresso [38], Cassandra, and Google Megastore’s local indexes [7])
or non-atomic (incorrect) global secondary indexing (e.g., Espresso
and Megastore’s global indexes, Yahoo! PNUTS’s proposed sec-
ondary indexes [15]). The former is non-scalable but correct, while
the latter is scalable but incorrect. For example, in a database
partitioned by id with an incorrectly-maintained global secondary
index on salary, the query ‘SELECT id, salary WHERE salary
> 6�,���’ might return records with salary less than $60,000 and
omit some records with salary greater than $60,000.

With RAMP transactions, the secondary index entry for a given
attribute can be updated atomically with base data. For example, if
a secondary index is stored as a mapping from secondary attribute
values to sets of item-versions matching the secondary attribute (e.g.,
the secondary index entry for users with blue hair would contain
a list of user IDs and last-modified timestamps corresponding to
all of the users with attribute hair-color=blue), then insertions
of new primary data require additions to the corresponding index
entry, deletions require removals, and updates require a “tombstone”
deletion from one entry and an insertion into another.
3.) Materialized view maintenance. Many applications precom-
pute (i.e., materialize) queries over data, as in Twitter’s Rainbird
service [44], Google’s Percolator [36], and LinkedIn’s Espresso
systems [38]. As a simple example, Espresso stores a mailbox of
messages for each user along with statistics about the mailbox mes-
sages: for Espresso’s read-mostly workload, it is more efficient to
maintain (i.e., pre-materialize) a count of unread messages rather
than scan all messages every time a user accesses her mailbox [38].
In this case, any unread message indicators should remain in sync
with the messages in the mailbox. However, atomicity violations
will allow materialized views to diverge from the base data (e.g., Su-
san’s mailbox displays a notification that she has unread messages
but all 63,201 messages in her inbox are marked as read).

With RAMP transactions, base data and views can be updated
atomically. The physical maintenance of a view depends on its
specification [14, 27], but RAMP transactions provide appropriate
concurrency control primitives for ensuring that changes are deliv-
ered to the materialized view partition. For select-project views, a
simple solution is to treat the view as a separate table and perform
maintenance as needed: new rows can be inserted/deleted according
to the specification, and, if necessary, the view can be (re-)computed
on demand (i.e., lazy view maintenance [46]). For more complex
views, such as counters, users can execute RAMP transactions over
specialized data structures such as the CRDT G-Counter [40].
In brief: Status Quo. Despite application requirements for Read
Atomic isolation, few large-scale production systems provide it. For
example, the authors of Tao, Espresso, and PNUTS describe several
classes of atomicity anomalies exposed by their systems, ranging
from dangling pointers to the exposure of intermediate states and
incorrect secondary index lookups, often highlighting these cases
as areas for future research and design [11, 15, 38]. These systems
are not exceptions: data stores like Bigtable [13], Dynamo [22], and
many popular “NoSQL” [34] and even some “NewSQL” [5] stores
do not provide transactional guarantees for multi-item operations.

The designers of these Internet-scale, real-world systems have
made a conscious decision to provide scalability at the expense of
multi-partition transactional semantics. Our goal with RAMP trans-
actions is to preserve this scalability but deliver correct, atomically
visible behavior for the use cases we have described.

3. SEMANTICS AND SYSTEM MODEL
In this section, we formalize Read Atomic isolation and, to cap-

ture scalability, formulate a pair of strict scalability criteria: syn-
chronization and partition independence. Readers more interested
in RAMP algorithms may wish to proceed to Section 4.

3.1 RA Isolation: Formal Specification
To formalize RA isolation, as is standard [2], we consider ordered

sequences of reads and writes to arbitrary sets of items, or transac-
tions. We call the set of items a transaction reads from and writes
to its read set and write set. Each write creates a version of an item
and we identify versions of items by a unique timestamp taken from

a totally ordered set (e.g., rational numbers). Timestamps induce
a total order on versions of each item (and a partial order across
versions of different items). We denote version i of item x as xi.

A transaction Tj exhibits fractured reads if transaction Ti writes
versions xm and yn (in any order, with x possibly but not necessarily
equal to y), Tj reads version xm and version yk, and k < n.

A system provides Read Atomic isolation (RA) if it prevents frac-
tured reads anomalies and also prevents transactions from reading
uncommitted, aborted, or intermediate data. Thus, RA provides
transactions with a “snapshot” view of the database that respects
transaction boundaries (see the Appendix for more details, including
a discussion of transitivity). RA is simply a restriction on write visi-
bility—if the ACID “Atomicity” property requires that all or none of
a transaction’s updates are performed, RA requires that all or none
of a transaction’s updates are made visible to other transactions.

3.2 RA Implications and Limitations
As outlined in Section 2.1, RA isolation matches many of our

use cases. However, RA is not sufficient for all applications. RA
does not prevent concurrent updates or provide serial access to data
items. For example, RA is an incorrect choice for an application
that wishes to maintain positive bank account balances in the event
of withdrawals. RA is a better fit for our “friend” operation because
the operation is write-only and correct execution (i.e., inserting both
records) is not conditional on concurrent updates.

From a programmer’s perspective, we have found RA isolation
to be most easily understandable (at least initially) with read-only
and write-only transactions; after all, because RA allows concur-
rent writes, any values that are read might be changed at any time.
However, read-write transactions are indeed well defined under RA.

3.3 System Model and Scalability
We consider databases that are partitioned, with the set of items

in the database spread over multiple servers. Each item has a single
logical copy, stored on a server—called the item’s partition—whose
identity can be calculated using the item. Clients forward opera-
tions on each item to the item’s partition, where they are executed.
Transaction execution terminates in commit, signaling success, or
abort, signaling failure. In our examples, all data items have the null
value (?) at database initialization. We do not model replication of
data items within a partition; this can happen at a lower level of the
system than our discussion (see Section 4.6) as long as operations
on each item are linearizable [4].
Scalability criteria. As we hinted in Section 1, large-scale de-
ployments often eschew transactional functionality on the premise
that it would be too expensive or unstable in the presence of failure
and degraded operating modes [9, 11, 13, 15, 22, 25, 26, 38, 44]. Our
goal in this paper is to provide robust and scalable transactional
functionality, and, so we first define criteria for “scalability”:

Synchronization independence ensures that one client’s transactions
cannot cause another client’s to block and that, if a client can con-
tact the partition responsible for each item in its transaction, the
transaction will eventually commit (or abort of its own volition).
This prevents one transaction from causing another to abort—which
is particularly important in the presence of partial failures—and
guarantees that each client is able to make useful progress. In the
absence of failures, this maximizes useful concurrency. In the dis-
tributed systems literature, synchronization independence for repli-
cated transactions is called transactional availability [5]. Note that
“strong” isolation models like serializability and Snapshot Isolation
violate synchronization independence and limit scalability.

While many applications can limit their data accesses to a single
partition via explicit data modeling [7,19,25,38] or planning [18,35],
this is not always possible. In the case of secondary indexing, there
is a tangible cost associated with requiring single-partition updates
(scatter-gather reads), while, in social networks like Facebook and
large-scale hierarchical access patterns as in Rainbird, perfect parti-
tioning of data accesses is near-impossible. Accordingly:

Partition independence ensures that, in order to execute a transac-
tion, a client never has to contact partitions that its transaction does
not access. Thus, a partition failure only affects transactions that
access items contained on the partition. This also reduces load on
servers not directly involved in a transaction’s execution. In the dis-
tributed systems literature, partition independence for replicated data
is called replica availability [5] or genuine partial replication [39].

In addition to the above requirements, we limit the metadata
overhead of algorithms. There are many potential solutions for
providing atomic visibility that rely on storing prohibitive amounts
of state. As a straw-man solution, each transaction could send
copies of all of its writes to every partition it accesses so that readers
observe all of its writes by reading a single item. This provides RA
isolation but requires considerable storage. Other solutions may
require extra data storage proportional to the number of servers in
the cluster or, worse, the database size (Section 6). We will attempt
to minimize this metadata—that is, data that the transaction did
not itself write but which is required for correct execution. In our
algorithms, we will specifically provide constant-factor metadata
overheads (RAMP-S, RAMP-H) or else overhead linear in transaction
size (but independent of data size; RAMP-F).

4. RAMP TRANSACTION ALGORITHMS
Given specifications for RA isolation and scalability, we present

algorithms for achieving both. For ease of understanding, we first
focus on providing read-only and write-only transactions with a
“last writer wins” overwrite policy, then subsequently discuss how
to perform read/write transactions. Our focus in this section is on
intuition and understanding; we defer all correctness and scalability
proofs to the Appendix, providing salient details inline.

At a high level, RAMP transactions allow reads and writes to
proceed concurrently. This provides excellent performance but, in
turn, introduces a race condition: one transaction might only read a
subset of another transaction’s writes, violating RA (i.e., fractured
reads might occur). Instead of preventing this race (hampering
scalability), RAMP readers autonomously detect the race (using
metadata attached to each data item) and fetch any missing, in-flight
writes from their respective partitions. To make sure that readers
never have to block for writes to arrive at a partition, writers use a
two-phase (atomic commitment) protocol that ensures that once a
write is visible to readers on one partition, any other writes in the
transaction are present on and, if appropriately identified by version,
readable from their respective partitions.

In this section, we present three algorithms that provide a trade-off
between the amount of metadata required and the expected number
of extra reads to fetch missing writes. As discussed in Section 2,
if techniques like distributed locking couple mutual exclusion with
atomic visibility of writes, RAMP transactions correctly control
visibility but allow concurrent and scalable execution.

4.1 RAMP-Fast
To begin, we present a RAMP algorithm that, in the race-free

case, requires one RTT for reads and two RTTs for writes, called
RAMP-Fast (abbreviated RAMP-F; Algorithm 1). RAMP-F stores meta-
data in the form of write sets (overhead linear in transaction size).

C1

PREPARE

PREPARE

lastCommit[x]= ∅
versions={x1}

x1, md={y}

y1, md={x}
lastCommit[y]= ∅

versions={y1}

COMMIT
tsc=1

COMMIT
tsc=1

GET
i=x, tsreq= ∅ GET

lastCommit[x]=1
versions={x1}

GET

x1, md={y}

y∅ , md={}

y1, md={x}

lastCommit[y]=1
versions={y1}

vlatest ←{x:1, y:1}

prepared

RESPONSE
prepared

i=y, tsreq= ∅

i=y, tsreq=1

lastCommit[x]= ∅
versions={}

lastCommit[y]= ∅
versions={}

BEGIN T1

committed
committed

BEGIN T2

COMMIT T1

COMMIT T2
resp={x1,y1}

RESPONSE

RESPONSE

RESPONSE

RESPONSE

RESPONSE
RESPONSE

C2 Px Py

[w(x1), w(y1)]

[r(x), r(y)]

Figure 1: Space-time diagram for RAMP-F execution for two
transactions T1 and T2 performed by clients C1 and C2 on par-
titions Px and Py. Because T1 overlaps with T2, T2 must per-
form a second round of reads to repair the fractured read be-
tween x and y. T1’s writes are assigned timestamp 1. Lightly-
shaded boxes represent current partition state (lastCommit and
versions), while the single darkly-shaded box encapsulates all
messages exchanged during C2’s execution of transaction T2.

Overview. Each write in RAMP-F (lines 14–21) contains a times-
tamp (line 15) that uniquely identifies the writing transaction as
well as a set of items written in the transaction (line 16). For now,
combining a unique client ID and client-local sequence number is
sufficient for timestamp generation (see also Section 4.5).

RAMP-F write transactions proceed in two phases: a first round
of communication places each timestamped write on its respective
partition. In this PREPARE phase, each partition adds the write to its
local database (versions, lines 1, 17–19). A second round of com-
munication marks versions as committed. In this COMMIT phase,
each partition updates an index containing the highest-timestamped
committed version of each item (lastCommit, lines 2, 20–21).

RAMP-F read transactions begin by first fetching the last (highest-
timestamped) committed version for each item from its respective
partition (lines 23–30). Using the results from this first round of
reads, each reader can calculate whether it is “missing” any versions
(that is, versions that were prepared but not yet committed on their
partitions). Combining the timestamp and set of items from each
version read (i.e., its metadata) produces a mapping from items to
timestamps that represent the highest-timestamped write for each
transaction that appears in this first-round read set (lines 26–29). If

the reader has read a version of an item that has a lower timestamp
than indicated in the mapping for that item, the reader issues a
second read to fetch the missing version (by timestamp) from its
partition (lines 30–32). Once all missing versions are fetched (which
can be done in parallel), the client can return the resulting set of
versions—the first-round reads, with any missing versions replaced
by the optional, second round of reads.
By example. Consider the RAMP-F execution depicted in Figure 1.
T1 writes to both x and y, performing the two-round write protocol
on two partitions, Px and Py. However, T2 reads from x and y while
T1 is concurrently writing. Specifically, T2 reads from Px after
Px has committed T1’s write to x, but T2 reads from Py before Py
has committed T1’s write to y. Therefore, T2’s first-round reads
return x = x1 and y = ?, and returning this set of reads would
violate RA. Using the metadata attached to its first-round reads,
T2 determines that it is missing y1 (since vlatest [y] = 1 and 1 >?)
and so T2 subsequently issues a second read from Py to fetch y1 by
version. After completing its second-round read, T2 can safely return
its result set. T1’s progress is unaffected by T2, and T1 subsequently
completes by committing y1 on Py.
Why it works. RAMP-F writers use metadata as a record of intent:
a reader can detect if it has raced with an in-progress commit round
and use the metadata stored by the writer to fetch the missing data.
Accordingly, RAMP-F readers only issue a second round of reads in
the event that they read from a partially-committed write transaction
(where some but not all partitions have committed a write). In this
event, readers will fetch the appropriate writes from the not-yet-
committed partitions. Most importantly, RAMP-F readers never have
to stall waiting for a write that has not yet arrived at a partition:
the two-round RAMP-F write protocol guarantees that, if a partition
commits a write, all of the corresponding writes in the transaction are
present on their respective partitions (though possibly not committed
locally). As long as a reader can identify the corresponding version
by timestamp, the reader can fetch the version from the respective
partition’s set of pending writes without waiting. To enable this,
RAMP-F writes contain metadata linear in the size of the writing
transaction’s write set (plus a timestamp per write).

RAMP-F requires 2 RTTs for writes: one for PREPARE and one for
COMMIT. For reads, RAMP-F requires one RTT in the absence of
concurrent writes and two RTTs otherwise.

RAMP timestamps are only used to identify specific versions and
in ordering concurrent writes to the same item; RAMP-F transactions
do not require a “global” timestamp authority. For example, if
lastCommit[k] = 2, there is no requirement that a transaction with
timestamp 1 has committed or even that such a transaction exists.

4.2 RAMP-Small: Trading Metadata for RTTs
While RAMP-F requires linearly-sized metadata but provides best-

case one RTT for reads, RAMP-Small (RAMP-S) uses constant-size
metadata but always requires two RTT for reads (Algorithm 2).
RAMP-S and RAMP-F writes are identical, but, instead of attaching
the entire write set to each write, RAMP-S writers only store the
transaction timestamp (line 7). Unlike RAMP-F, RAMP-S readers
issue a first round of reads to fetch the highest committed timestamp
for each item from its respective partition (lines 3, 9–11). Once
RAMP-S readers have recieved the highest committed timestamp for
each item, the readers send the entire set of timestamps they received
to the partitions in a second round of communication (lines 13–14).
For each item in the read request, RAMP-S servers return the highest-
timestamped version of the item that also appears in the supplied set
of timestamps (lines 5–6). Readers subsequently return the results
from the mandatory second round of requests.

Algorithm 1 RAMP-Fast
Server-side Data Structures

1: versions: set of versions hitem,value, timestamp tsv, metadata mdi
2: latestCommit[i]: last committed timestamp for item i

Server-side Methods

3: procedure PREPARE(v : version)
4: versions.add(v)
5: return
6: procedure COMMIT(tsc : timestamp)
7: Its {w.item | w 2 versions^w.tsv = tsc}
8: 8i 2 Its, latestCommit[i] max(latestCommit[i], tsc)

9: procedure GET(i : item, tsreq : timestamp)
10: if tsreq = /0 then
11: return v 2 versions : v.item = i^ v.tsv = latestCommit[item]
12: else
13: return v 2 versions : v.item = i^ v.tsv = tsreq

Client-side Methods

14: procedure PUT_ALL(W : set of hitem,valuei)
15: tstx generate new timestamp
16: Itx set of items in W
17: parallel-for hi,vi 2W
18: v hitem = i,value = v, tsv = tstx,md = (Itx�{i})i
19: invoke PREPARE(v) on respective server (i.e., partition)
20: parallel-for server s : s contains an item in W
21: invoke COMMIT(tstx) on s

22: procedure GET_ALL(I : set of items)
23: ret {}
24: parallel-for i 2 I
25: ret[i] GET(i, /0)
26: vlatest {} (default value: �1)
27: for response r 2 ret do
28: for itx 2 r.md do
29: vlatest [itx] max(vlatest [itx],r.tsv)

30: parallel-for item i 2 I
31: if vlatest [i]> ret[i].tsv then
32: ret[i] GET(i,vlatest [i])

33: return ret

By example. In Figure 1, under RAMP-S, Px and Py would respec-
tively return the sets {1} and {?} in response to T2’s first round of
reads. T2 would subsequently send the set {1,?} to both Px and Py,
which would return x1 and y1. (Including ? in the second-round
request is unnecessary, but we leave it in for ease of understanding.)
Why it works. In RAMP-S, if a transaction has committed on some
but not all partitions, the transaction timestamp will be returned
in the first round of any concurrent read transaction accessing the
committed partitions’ items. In the (required) second round of read
requests, any prepared-but-not-committed partitions will find the
committed timestamp in the reader-provided set and return the ap-
propriate version. In contrast with RAMP-F, where readers explicitly
provide partitions with a specific version to return in the (optional)
second round, RAMP-S readers defer the decision of which version
to return to the partition, which uses the reader-provided set to de-
cide. This saves metadata but increases RTTs, and the size of the
parameters of each second-round GET request is (worst-case) linear
in the read set size. Unlike RAMP-F, there is no requirement to return
the value of the last committed version in the first round (returning
the version, lastCommit[k], suffices in line 3).

4.3 RAMP-Hybrid: An Intermediate Solution
RAMP-Hybrid (RAMP-H; Algorithm 3) strikes a compromise be-

tween RAMP-F and RAMP-S. RAMP-H and RAMP-S write protocols are
identical, but, instead of storing the entire write set (as in RAMP-F),

Algorithm 2 RAMP-Small
Server-side Data Structures

same as in RAMP-F (Algorithm 1)

Server-side Methods

PREPARE, COMMIT same as in RAMP-F

1: procedure GET(i : item, tsset : set of timestamps)
2: if tsset = /0 then
3: return v 2 versions : v.item = i^ v.tsv = latestCommit[k]
4: else
5: tsmatch = {t | t 2 tsset ^9v 2 versions : v.item = i^ v.tv = t}
6: return v 2 versions : v.item = i^ v.tsv = max(tsmatch)

Client-side Methods

7: procedure PUT_ALL(W : set of hitem,valuei)
same as RAMP-F PUT_ALL but do not instantiate md on line 18

8: procedure GET_ALL(I : set of items)
9: tsset {}
10: parallel-for i 2 I
11: tsset .add(GET(i, /0).tsv)
12: ret {}
13: parallel-for item i 2 I
14: ret[i] GET(i, tsset)

15: return ret

RAMP-H writers store a Bloom filter [10] representing the transaction
write set (line 1). RAMP-H readers proceed as in RAMP-F, with a
first round of communication to fetch the last-committed version of
each item from its partition (lines 3–5). Given this set of versions,
RAMP-H readers subsequently compute a list of potentially higher-
timestamped writes for each item (lines 7–10). Any potentially
missing versions are fetched in a second round of reads (lines 12).
By example. In Figure 1, under RAMP-H, x1 would contain a
Bloom filter with positives for x and y and y? would contain an
empty Bloom filter. T2 would check for the presence of y in x1’s
Bloom filter (since x1’s version is 1 and 1 > ?) and, finding a
match, conclude that it is potentially missing a write (y1). T2 would
subsequently fetch y1 from Py.
Why it works. RAMP-H is effectively a hybrid between RAMP-F
and RAMP-S. If the Bloom filter has no false positives, RAMP-H reads
behave like RAMP-F reads. If the Bloom filter has all false positives,
RAMP-H reads behave like RAMP-S reads. Accordingly, the number
of (unnecessary) second-round reads (i.e., which would not be per-
formed by RAMP-F) is controlled by the Bloom filter false positive
rate, which is in turn (in expectation) proportional to the size of the
Bloom filter. Any second-round GET requests are accompanied by a
set of timestamps that is also proportional in size to the false positive
rate. Therefore, RAMP-H exposes a trade-off between metadata size
and expected performance. To understand why RAMP-H is safe, we
simply have to show that any false positives (second-round reads)
will not compromise the integrity of the result set; with unique
timestamps, any reads due to false positives will return null.

4.4 Summary of Basic Algorithms
The RAMP algorithms allow readers to safely race writers with-

out requiring either to stall. The metadata attached to each write
allows readers in all three algorithms to safely handle concurrent
and/or partial writes and in turn allows a trade-off between metadata
size and performance (Table 1): RAMP-F is optimized for fast reads,
RAMP-S is optimized for small metadata, and RAMP-H is, as the name
suggests, a middle ground. RAMP-F requires metadata linear in trans-
action size, while RAMP-S and RAMP-H require constant metadata.
However, RAMP-S and RAMP-H require more RTTs for reads com-
pared to RAMP-F when there is no race between readers and writers.

Algorithm 3 RAMP-Hybrid
Server-side Data Structures

Same as in RAMP-F (Algorithm 1)

Server-side Methods

PREPARE, COMMIT same as in RAMP-F
GET same as in RAMP-S

Client-side Methods

1: procedure PUT_ALL(W : set of hitem,valuei)
same as RAMP-F PUT_ALL but instantiate md on line 18
with Bloom filter containing Itx

2: procedure GET_ALL(I : set of items)
3: ret {}
4: parallel-for i 2 I
5: ret[i] GET(i, /0)
6: v f etch {}
7: for version v 2 ret do
8: for version v0 2 ret : v0 6= v do
9: if v.tsv > v0.tsv ^ v.md.lookup(v0.item)! True then
10: v f etch[v0.item].add(v.tsv)
11: parallel-for item i 2 v f etch
12: ret[i] GET(k,v f etch[i]) if GET(k,v f etch[i]) 6=?
13: return ret

Algorithm RTTs/transaction Metadata (+stamp)
W R (stable) R (O) Stored Per-Request

RAMP-F 2 1 2 txn items -
RAMP-S 2 2 2 - stamp/item
RAMP-H 2 1+ e 2 Bloom filter stamp/item

Table 1: Comparison of basic algorithms: RTTs required for
writes (W), reads (R) without concurrent writes and in the
worst case (O), stored metadata and metadata attached to read
requests (in addition to a timestamp for each).

When reads and writes race, in the worst case, all algorithms require
two RTTs for reads. Writes always require two RTTs to prevent
readers from stalling due to missing, unprepared writes.

RAMP algorithms are scalable because clients only contact par-
titions relative to their transactions (partition independence), and
clients cannot stall one another (synchronization independence).
More specifically, readers do not interfere with other readers, writ-
ers do not interfere with other writers, and readers and writers can
proceed concurrently. When a reader races a writer to the same
items, the writer’s new versions will only become visible to the
reader (i.e., be committed) once it is guaranteed that the reader will
be able to fetch all of them (possibly via a second round of com-
munication). A reader will never have to stall waiting for writes to
arrive at a partition (for details, see Invariant 1 in the Appendix).

4.5 Additional Details
In this section, we discuss relevant implementation details.

Multi-versioning and garbage collection. RAMP transactions
rely on multi-versioning to allow readers to access versions that
have not yet committed and/or have been overwritten. In our initial
presentation, we have used a completely multi-versioned storage
engine; in practice, multi-versioning can be implemented by using
a single-versioned storage engine for retaining the last committed
version of each item and using a “look-aside” store for access to
both prepared-but-not-yet-committed writes and (temporarily) any
overwritten versions. The look-aside store should make prepared
versions durable but can—at the risk of aborting transactions in the
event of a server failure—simply store any overwritten versions in

memory. Thus, with some work, RAMP algorithms are portable to
legacy, non-multi-versioned storage systems.

In both architectures, each partition’s data will grow without
bound if old versions are not removed. If a committed version of
an item is not the highest-timestamped committed version (i.e., a
committed version v of item k where v < lastCommit[k]), it can be
safely discarded (i.e., garbage collected, or GCed) as long as no
readers will attempt to access it in the future (via second-round
GET requests). It is easiest to simply limit the running time of read
transactions and GC overwritten versions after a fixed amount of real
time has elapsed. Any read transactions that take longer than this GC
window can be restarted [32, 33]. Therefore, the maximum number
of versions retained for each item is bounded by the item’s update
rate, and servers can reject any client GET requests for versions that
have been GCed (and the read transaction can be restarted). As a
more principled solution, partitions can also gossip the timestamps
of items that have been overwritten and have not been returned in
the first round of any ongoing read transactions.
Read-write transactions. Until now, we have focused on read-
only and write-only transactions. However, we can extend our
algorithms to provide read-write transactions. If transactions pre-
declare the data items they wish to read, then the client can execute
a GET_ALL transaction at the start of transaction execution to pre-
fetch all items; subsequent accesses to those items can be served
from this pre-fetched set. Clients can buffer any writes and, upon
transaction commit, send all new versions to servers (in parallel) via
a PUT_ALL request. As in Section 3, this may result in anomalies
due to concurrent update but does not violate RA isolation. Given
the benefits of pre-declared read/write sets [18, 35, 43] and write
buffering [17, 41], we believe this is a reasonable strategy. For
secondary index lookups, clients can first look up secondary index
entries then subsequently (within the same transaction) read primary
data (specifying versions from index entries as appropriate).
Timestamps. Timestamps should be unique across transactions,
and, for “session” consistency (Appendix), increase on a per-client
basis. Given unique client IDs, a client ID and sequence number
form unique transaction timestamps without coordination. Without
unique client IDs, servers can assign unique timestamps with high
probability using UUIDs and by hashing transaction contents.
Overwrites. In our algorithms, we have depicted a policy in which
versions are overwritten according to a highest-timestamp-wins
policy. In practice, and, for commutative updates, users may wish
to employ a different policy upon COMMIT: for example, perform
set union. In this case, lastCommit[k] contains an abstract data type
(e.g., set of versions) that can be updated with a merge operation [22,
42] (instead of updateI f Greater) upon commit. This treats each
committed record as a set of versions, requiring additional metadata
(that can be GCed as in Section 4.7).

4.6 Distribution and Fault Tolerance
RAMP transactions operate in a distributed setting, which poses

challenges due to latency, partial failure, and network partitions.
Synchronization independence ensures that failed clients do not
cause other clients to fail, while partition independence ensures that
clients only have to contact partitions for items in their transactions.
This provides fault tolerance and availability as long as clients can
access relevant partitions, but here we further elucidate RAMP
interactions with replication and stalled operations.
Replication. A variety of mechanisms including traditional database
master-slave replication with failover, quorum-based protocols, and
state machine replication and can ensure availability of individual
partitions in the event of individual server failure [8]. To control

durability, clients can wait until the effects of their operations (e.g.,
modifications to versions and lastCommit) are persisted locally on
their respective partitions and/or to multiple physical servers before
returning from PUT_ALL calls (either via master-to-slave replication
or via quorum replication and by performing two-phase commit
across multiple active servers). Notably, because RAMP trans-
actions can safely overlap in time, replicas can process different
transactions’ PREPARE and COMMIT requests in parallel.
Stalled Operations. RAMP writes use a two-phase atomic com-
mitment protocol that ensures readers never block waiting for writes
to arrive. As discussed in Section 2, every ACP may block dur-
ing failures [8]. However, due to synchronization independence, a
blocked transaction (due to failed clients, failed servers, or network
partitions) cannot cause other transactions to block. Blocked writes
instead act as “resource leaks” on partitions: partitions will retain
prepared versions indefinitely unless action is taken.

To “free” these leaks, RAMP servers can use the Cooperative
Termination Protocol (CTP) described in [8]. CTP can always
complete the transaction except when every partition has performed
PREPARE but no partition has performed COMMIT. In CTP, if a
server Sp has performed PREPARE for transaction T but times out
waiting for a COMMIT, Sp can check the status of T on any other
partitions for items in T ’s write set. If another server Sc has received
COMMIT for T , then Sp can COMMIT T . If Sa, a server responsible
for an item in T , has not received PREPARE for T , Sa and Sp can
promise never to PREPARE or COMMIT T in the future and Sp can
safely discard its versions. A client recovering from a failure can
read from the servers to determine if they unblocked its write. Writes
that block mid-COMMIT will also become visible on all partitions.

CTP (evaluated in Section 5) only runs when writes block (or
time-outs fire) and runs asynchronously with respect to other op-
erations. CTP requires that PREPARE messages contain a list of
servers involved in the transaction (a subset of RAMP-F metadata but
a superset of RAMP-H and RAMP-S) and that servers remember when
they COMMIT and “abort” writes (e.g., in a log file). Compared to
alternatives (e.g., replicating clients [24]), we have found CTP to be
both lightweight and effective.

4.7 Further Optimizations
RAMP algorithms also allow several possible optimizations:
Faster commit detection. If a server returns a version in response
to a GET request and the version’s timestamp is greater than the
highest committed version of that item (i.e., lastCommit), then trans-
action writing the version has committed on at least one partition.
In this case, the server can mark the version as committed. This
scenario will occur when all partitions have performed PREPARE
and at least one server but not all partitions have performed COMMIT
(as in CTP). This allows faster updates to lastCommit (and therefore
fewer expected RAMP-F and RAMP-H RTTs).
Metadata garbage collection. Once all of transaction T ’s writes
are committed on each respective partition (i.e., are reflected in
lastCommit), readers are guaranteed to read T ’s writes (or later
writes). Therefore, non-timestamp metadata for T ’s writes stored in
RAMP-F and RAMP-H (write sets and Bloom filters) can therefore be
discarded. Detecting that all servers have performed COMMIT can
be performed asynchronously via a third round of communication
performed by either clients or servers.
One-phase writes. We have considered two-phase writes, but, if
a user does not wish to read her writes (thereby sacrificing session
guarantees outlined in the Appendix), the client can return after
issuing its PREPARE round (without sacrificing durability). The
client can subsequently execute the COMMIT phase asynchronously,

or, similar to optimizations presented in Paxos Commit [24], the
servers can exchange PREPARE acknowledgements with one another
and decide to COMMIT autonomously. This optimization is safe
because multiple PREPARE phases can safely overlap.

5. EXPERIMENTAL EVALUATION
We proceed to experimentally demonstrate RAMP transaction

scalability as compared to existing transactional and non-transactional
mechanisms. RAMP-F, RAMP-H, and often RAMP-S outperform exist-
ing solutions across a range of workload conditions while exhibit-
ing overheads typically within 8% and no more than 48% of peak
throughput. As expected from our theoretical analysis, the per-
formance of our RAMP algorithms does not degrade substantially
under contention and scales linearly to over 7.1 million operations
per second on 100 servers. These outcomes validate our choice to
pursue synchronization- and partition-independent algorithms.

5.1 Experimental Setup
To demonstrate the effect of concurrency control on performance

and scalability, we implemented several concurrency control algo-
rithms in a partitioned, multi-versioned, main-memory database
prototype. Our prototype is in Java and employs a custom RPC
system with Kryo 2.20 for serialization. Servers are arranged as
a distributed hash table with partition placement determined by
random hashing. As in stores like Dynamo [22], clients can con-
nect to any server to execute operations, which the server will per-
form on their behalf (i.e., each server acts as a client in our RAMP
pseudocode). We implemented RAMP-F, RAMP-S, and RAMP-H and
configure a wall-clock GC window of 5 seconds as described in
Section 4.5. RAMP-H uses a 256-bit Bloom filter based on an im-
plementation of MurmurHash2.0, with four hashes per entry; to
demonstrate the effects of filter saturation, we do not modify these
parameters in our experiments. Our prototype utilizes the “Faster
commit detection” optimization from Section 4.5 but we chose not
to employ the latter two optimizations in order to preserve session
guarantees and because metadata overheads were generally minor.
Algorithms for comparison. As a baseline, we do not employ any
concurrency control (denoted NWNR, for no write and no read locks);
reads and writes take one RTT and are executed in parallel.

We also consider three lock-based mechanisms: long write locks
and long read locks, providing Repeatable Read isolation (PL-2.99;
denoted LWLR), long write locks with short read locks, providing
Read Committed isolation (PL-2L; denoted LWSR; does not provide
RA), and long write locks with no read locks, providing Read Un-
committed isolation [2] (LWNR; also does not provide RA). While
only LWLR provides RA, LWSR and LWNR provide a useful basis for
comparison, particularly in measuring concurrency-related locking
overheads. To avoid deadlocks, the system lexicographically orders
lock requests by item and performs them sequentially. When locks
are not used (as for reads in LWNR and reads and writes for NWNR),
the system parallelizes operations.

We also consider an algorithm where, for each transaction, des-
ignated “coordinator” servers enforce RA isolation—effectively,
the Eiger system’s 2PC-PCI mechanism [33] (denoted E-PCI; Sec-
tion 6). Writes proceed via prepare and commit rounds, but any reads
that arrive at a partition and overlap with a concurrent write to the
same item must contact a (randomly chosen, per-write-transaction)
“coordinator” partition to determine whether the coordinator’s pre-
pared writes have been committed. Writes require two RTTs, while
reads require one RTT during quiescence and two RTTs in the pres-
ence of concurrent updates (to a variable number of coordinator
partitions—linear in the number of concurrent writes to the item).

Using a coordinator violates partition independence but not syn-
chronization independence. We optimize 2PC-PCI reads by having
clients determine a read timestamp for each transaction (eliminating
an RTT) and do not include happens-before metadata.

This range of lock-based strategies (LWNR, LWSR, LWNR), recent
comparable approach (E-PCI), and best-case (NWNR; no concurrency
control) baseline provides a spectrum of strategies for comparison.
Environment and benchmark. We evaluate each algorithm us-
ing the YCSB benchmark [16] and deploy variably-sized sets of
servers on public cloud infrastructure. We employ cr1.8xlarge
instances on Amazon EC2 and, by default, deploy five partitions on
five servers. We group sets of reads and sets of writes into read-only
and write-only transactions (default size: 4 operations), and use the
default YCSB workload (workloada, with Zipfian distributed item
accesses) but with a 95% read and 5% write proportion, reflecting
read-heavy applications (Section 2, [11, 33, 44]; e.g., Tao’s 500 to
1 reads-to-writes [11, 33], Espresso’s 1000 to 1 Mailbox applica-
tion [38], and Spanner’s 3396 to 1 advertising application [17]).

By default, we use 5000 concurrent clients split across 5 separate
EC2 instances and, to fully expose our metadata overheads, use a
value size of 1 byte per write. We found that lock-based algorithms
were highly inefficient for YCSB’s default 1K item database, so we
increased the database size to 1M items by default. Each version
contains a timestamp (64 bits), and, with YCSB keys (i.e., item IDs)
of size 11 bytes and a transaction length L, RAMP-F requires 11L
bytes of metadata per version, while RAMP-H requires 32 bytes. We
successively vary several parameters, including number of clients,
read proportion, transaction length, value size, database size, and
number of servers and report the average of three sixty-second trials.

5.2 Experimental Results: Comparison
Our first set of experiments focuses on two metrics: performance

compared to baseline and performance compared to existing tech-
niques. The overhead of RAMP algorithms is typically less than
8% compared to baseline (NWNR) throughput, is sometimes zero, and
is never greater than 50%. RAMP-F and RAMP-H always outperform
the lock-based and E-PCI techniques, while RAMP-S outperforms
lock-based techniques and often outperforms E-PCI. We proceed to
demonstrate this behavior over a variety of conditions:
Number of clients. RAMP performance scales well with increased
load and incurs little overhead (Figure 2). With few concurrent
clients, there are few concurrent updates and therefore few second-
round reads; performance for RAMP-F and RAMP-H is close to or
even matches that of NWNR. At peak throughput (at 10,000 clients),
RAMP-F and RAMP-H pay a throughput overhead of 4.2% compared
to NWNR. RAMP-F and RAMP-H exhibit near-identical performance; the
RAMP-H Bloom filter triggers few false positives (and therefore few
extra RTTs compared to RAMP-F). RAMP-S incurs greater overhead
and peaks at almost 60% of the throughput of NWNR. Its guaranteed
two-round trip reads are expensive and it acts as an effective lower
bound on RAMP-F and RAMP-H performance. In all configurations,
the algorithms achieve low latency (RAMP-F, RAMP-H, NWNR less than
35ms on average and less than 10 ms at 5,000 clients; RAMP-S less
than 53ms, 14.3 ms at 5,000 clients).

In comparison, the remaining algorithms perform less favorably.
In contrast with the RAMP algorithms, E-PCI servers must check a
coordinator server for each in-flight write transaction to determine
whether to reveal writes to clients. For modest load, the overhead
of these commit checks places E-PCI performance between that
of RAMP-S and RAMP-H. However, the number of in-flight writes
increases with load (and is worsened due to YCSB’s Zipfian dis-
tributed accesses), increasing the number of E-PCI commit checks.

RAMP-F RAMP-S RAMP-H NWNR LWNR LWSR LWLR E-PCI

0 2000 4000 6000 8000 10000
0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

2000 4000 6000 8000 10000
Concurrent Clients

10�1

100

101

102

Av
g.

La
te

nc
y

(m
s)

Figure 2: Throughput and latency under varying client load.
We omit latencies for LWLR, which peaked at over 1.5s.

This in turn decreases throughput, and, with 10,000 concurrent
clients, E-PCI performs so many commit checks per read (over 20%
of reads trigger a commit check, and, on servers with hot items,
each commit check requires indirected coordinator checks for an
average of 9.84 transactions) that it underperforms the LWNR lock-
based scheme. Meanwhile, multi-partition locking is expensive [35]:
with 10,000 clients, the most efficient algorithm, LWNR, attains only
28.6% of the throughput of NWNR, while the least efficient, LWLR,
attains only 1.6% (peaking at 3,412 transactions per second).

We subsequently varied several other workload parameters, which
we briefly discuss below and plot in Figure 3:
Read proportion. Increased write activity leads to a greater
number of races between reads and writes and therefore additional
second-round RTTs for RAMP-F and RAMP-H reads. With all write
transactions, all RAMP algorithms are equivalent (two RTT) and
achieve approximately 65% of the throughput of NWNR. With all
reads, RAMP-F, RAMP-S, NWNR, and E-PCI are identical, with a sin-
gle RTT. Between these extremes, RAMP-F and RAMP-S scale near-
linearly with the write proportion. In contrast, lock-based protocols
fare poorly as contention increases, while E-PCI again incurs penal-
ties due to commit checks.
Transaction length. Increased transaction lengths have variable
impact on the relative performance of RAMP algorithms. Synchro-
nization independence does not penalize long-running transactions,
but, with longer transactions, metadata overheads increase. RAMP-F
relative throughput decreases due to additional metadata (linear in
transaction length) and RAMP-H relative performance also decreases
as its Bloom filters saturate. (However, YCSB’s Zipfian-distributed
access patterns result in a non-linear relationship between length
and throughput.) As discussed above, we explicitly decided not to
tune RAMP-H Bloom filter size but believe a logarithmic increase in
filter size could improve RAMP-H performance for large transaction
lengths (e.g., 1024 bit filters should lower the false positive rate for
transactions of length 256 from over 92% to slightly over 2%).
Value size. Value size similarly does not seriously impact relative
throughput. At a value size of 1B, RAMP-F is within 2.3% of NWNR.
However, at a value size of 100KB, RAMP-F performance nearly
matches that of NWNR: the overhead due to metadata decreases, and
write request rates slow, decreasing concurrent writes (and subse-

0 25 50 75 100
Percentage Reads)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

2 4 8 16 32 64 128
Transaction Size (operations)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

1 10 100 1000 10000 100000
Value Size (bytes)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

10 100 1000 10K 100K 1M 10M
Database Size (items)

0

30K

60K

90K

120K

150K

180K

Th
ro

ug
hp

ut
(tx

n/
s)

Figure 3: Algorithm performance across varying workload con-
ditions. RAMP-F and RAMP-H exhibit similar performance to NWNR
baseline, while RAMP-S’s 2 RTT reads incur a greater perfor-
mance penalty across almost all configurations. RAMP trans-
actions consistently outperform RA isolated alternatives.

quently second-round RTTs). Nonetheless, absolute throughput
drops by a factor of 24 as value sizes moves from 1B to 100KB.
Database size. RAMP algorithms are robust to high contention for
a small set of items: with only 1000 items in the database, RAMP-F
achieves throughput within 3.1% of NWNR. RAMP algorithms are
largely agnostic to read/write contention, although, with fewer items
in the database, the probability of races between readers and in-
progress writers increases, resulting in additional second-round
reads for RAMP-F and RAMP-H. In contrast, lock-based algorithms
fare poorly under high contention, while E-PCI indirected commit
checks again incurred additional overhead. By relying on clients
(rather than additional partitions) to repair fractured writes, RAMP-F,
RAMP-H, and RAMP-S performance is less affected by hot items.

Overall, RAMP-F and RAMP-H exhibit performance close to that of
no concurrency control due to their independence properties and
guaranteed worst-case performance. As the proportion of writes

NWNR RAMP-F RAMP-H RAMP-S

0 25 50 75 100
0

2M

4M

6M

8M
Th

ro
ug

hp
ut

(o
ps

/s
)

0 25 50 75 100
Number of Servers

0
40K
80K

120K
160K
200K

op
er

at
io

ns
/s

/s
er

ve
r

Figure 4: RAMP transactions scale linearly to over 7 million
operations/s with comparable performance to NWNR baseline.

increases, an increasing proportion of RAMP-F and RAMP-H opera-
tions take two RTTs and performance trends towards that of RAMP-S,
which provides a constant two RTT overhead. In contrast, lock-
based protocols perform poorly under contention while E-PCI trig-
gers more commit checks than RAMP-F and RAMP-H trigger second
round reads (but still performs well without contention and for par-
ticularly read-heavy workloads). The ability to allow clients to
independently verify read sets enables good performance despite a
range of (sometimes adverse) conditions (e.g., high contention).

5.3 Experimental Results: CTP Overhead
We also evaluated the overhead of blocked writes in our imple-

mentation of the Cooperative Termination Protocol discussed in
Section 4.6. To simulate blocked writes, we artificially dropped
a percentage of COMMIT commands in PUT_ALL calls such that
clients returned from writes early and partitions were forced to com-
plete the commit via CTP. This behavior is worse than expected
because “blocked” clients continue to issue new operations. The
table below reports the throughput reduction as the proportion of
blocked writes increases (compared to no blocked writes) for a
workload of 100% RAMP-F write transactions:

Blocked % 0.01% 0.1% 25% 50%
Throughput No change 99.86% 77.53% 67.92%

As these results demonstrate, CTP can reduce throughput because
each commit check consumes resources (here, network and CPU
capacity). However, CTP only performs commit checks in the event
of blocked writes (or time-outs; set to 5s in our experiments), so
a modest failure rate of 1 in 1000 writes has a limited effect. The
higher failure rates produce a near-linear throughput reduction but,
in practice, a blocking rate of even a few percent is likely indicative
of larger systemic failures. As Figure 3 hints, the effect of additional
metadata for the participant list in RAMP-H and RAMP-S is limited,
and, for our default workload of 5% writes, we observe similar
trends but with throughput degradation of 10% or less across the
above configurations. This validates our initial motivation behind
the choice of CTP: average-case overheads are small.

5.4 Experimental Results: Scalability
We finally validate our chosen scalability criteria by demonstrat-

ing linear scalability of RAMP transactions to 100 servers. We
deployed an increasing number of servers within the us-west-2
EC2 region and, to mitigate the effects of hot items during scal-
ing, configured uniform random access to items. We were unable

to include more than 20 instances in an EC2 “placement group,”
which guarantees 10 GbE connections between instances, so, past 20
servers, servers communicated over a degraded network. Around 40
servers, we exhausted the us-west-2b “availability zone” (datacen-
ter) capacity and had to allocate our instances across the remaining
zones, further degrading network performance. However, as shown
in Figure 4, each RAMP algorithm scales linearly, even though in
expectation, at 100 servers, all but one in 100M transactions is a
multi-partition operation. In particular, RAMP-F achieves slightly
under 7.1 million operations per second, or 1.79 million transactions
per second on a set of 100 servers (71,635 operations per partition
per second). At all scales, RAMP-F throughput was always within
10% of NWNR. With 100 servers, RAMP-F was within 2.6%, RAMP-S
within 3.4%, and RAMP-S was within 45% of NWNR. In light of our
scalability criteria, this behavior is unsurprising.

6. RELATED WORK
Replicated databases offer a broad spectrum of isolation guaran-

tees at varying costs to performance and availability [8]:
Serializability. At the strong end of the isolation spectrum is
serializability, which provides transactions with the equivalent of
a serial execution (and therefore also provides RA). A range of
techniques can enforce serializability in distributed databases [3, 8],
multi-version concurrency control (e.g. [37]) locking (e.g. [31]), and
optimistic concurrency control [41]. These useful semantics come
with costs in the form of decreased concurrency (e.g., contention
and/or failed optimistic operations) and limited availability during
partial failure [5, 21]. Many designs [19, 29] exploit cheap serializ-
ability within a single partition but face scalability challenges for
distributed operations. Recent industrial efforts like F1 [41] and
Spanner [17] have improved performance via aggressive hardware
advances but, their reported throughput is still limited to 20 and 250
writes per item per second. Multi-partition serializable transactions
are expensive and, especially under adverse conditions, are likely to
remain expensive [18, 28, 35].
Weak isolation. The remainder of the isolation spectrum is more
varied. Most real-world databases offer (and often default to) non-
serializable isolation models [5, 34]. These “weak isolation” levels
allow greater concurrency and fewer system-induced aborts com-
pared to serializable execution but provide weaker semantic guaran-
tees. For example, the popular choice of Snapshot Isolation prevents
Lost Update anomalies but not Write Skew anomalies [2]; by pre-
venting Lost Update, concurrency control mechanisms providing
Snapshot Isolation violate synchronization independence [5]. In
recent years, many “NoSQL” designs have avoided cross-partition
transactions entirely, effectively providing Read Uncommitted isola-
tion in many industrial databases such PNUTS [15], Dynamo [22],
TAO [11], Espresso [38], Rainbird [44], and BigTable [13]. These
systems avoid penalties associated with stronger isolation but in turn
sacrifice transactional guarantees (and therefore do not offer RA).
Related mechanisms. There are several algorithms that are closely
related to our choice of RA and RAMP algorithm design.

COPS-GT’s two-round read-only transaction protocol [32] is
similar to RAMP-F reads—client read transactions identify causally
inconsistent versions by timestamp and fetch them from servers.
While COPS-GT provides causal consistency (requiring additional
metadata), it does not support RA isolation for multi-item writes.

Eiger provides its write-only transactions [33] by electing a coor-
dinator server for each write. As discussed in Section 5 (E-PCI), the
number of “commit checks” performed during its read-only trans-
actions is proportional to the number of concurrent writes. Using
a coordinator violates partition independence but in turn provides

causal consistency. This coordinator election is analogous to G-
Store’s dynamic key grouping [19] but with weaker isolation guaran-
tees; each coordinator effectively contains a partitioned completed
transaction list from [12]. Instead of relying on indirection, RAMP
transaction clients autonomously assemble reads and only require
constant factor (or, for RAMP-F, linear in transaction size) metadata
size compared to Eiger’s PL-2L (worst-case linear in database size).

RAMP transactions are inspired by our earlier proposal for Mono-
tonic Atomic View (MAV) isolation: transactions read from a mono-
tonically advancing view of database state [5]. MAV is strictly
weaker than RA and does not prevent fractured reads, as required
for our applications (i.e., reads are not guaranteed to be transac-
tionally aligned). The prior MAV algorithm we briefly sketched
in [5] is similar to RAMP-F but, as a consequence of its weaker
semantics, allows one-round read transactions. The RAMP algo-
rithms described here are portable to the highly available (i.e., non-
linearizable, “AP/EL” [1, 23]) replicated setting of [5], albeit with
necessary penalties to latency between updates and their visibility.

Overall, we are not aware of a concurrency control mechanism for
partitioned databases that provides synchronization independence,
partition independence, and at least RA isolation.

7. CONCLUSION
This paper described how to achieve atomically visible multi-

partition transactions without incurring the performance and avail-
ability penalties of traditional algorithms. We first identified a new
isolation level—Read Atomic isolation—that provides atomic visi-
bility and matches the requirements of a large class of real-world
applications. We subsequently achieved RA isolation via scalable,
contention-agnostic RAMP transactions. In contrast with techniques
that use inconsistent but fast updates, RAMP transactions provide
correct semantics for applications requiring secondary indexing, for-
eign key constraints, and materialized view maintenance while main-
taining scalability and performance. By leveraging multi-versioning
with a variable but small (and, in two of three algorithms, constant)
amount of metadata per write, RAMP transactions allow clients to
detect and assemble atomic sets of versions in one to two rounds of
communication with servers (depending on the RAMP implemen-
tation). The choice of synchronization and partition independent
algorithms allowed us to achieve near-baseline performance across a
variety of workload configurations and scale linearly to 100 servers.
While RAMP transactions are not appropriate for all applications,
the many for which they are well suited will benefit measurably.

Acknowledgments The authors would like to thank Peter Alvaro,
Giselle Cheung, Neil Conway, Aaron Davidson, Mike Franklin, Au-
rojit Panda, Nuno Preguiça, Edward Ribeiro, Shivaram Venkatara-
man, and the SIGMOD reviewers for their insightful feedback.
This research is supported by NSF CISE Expeditions award CCF-
1139158 and DARPA XData Award FA8750-12-2-0331, the Na-
tional Science Foundation Graduate Research Fellowship (grant
DGE-1106400), and gifts from Amazon Web Services, Google, SAP,
Apple, Inc., Cisco, Clearstory Data, Cloudera, EMC, Ericsson, Face-
book, GameOnTalis, General Electric, Hortonworks, Huawei, Intel,
Microsoft, NetApp, NTT Multimedia Communications Laborato-
ries, Oracle, Samsung, Splunk, VMware, WANdisco and Yahoo!.

8. REFERENCES
[1] D. J. Abadi. Consistency tradeoffs in modern distributed database system design:

CAP is only part of the story. IEEE Computer, 45(2):37–42, 2012.
[2] A. Adya. Weak consistency: a generalized theory and optimistic implementations

for distributed transactions. PhD thesis, MIT, 1999.
[3] D. Agrawal and V. Krishnaswamy. Using multiversion data for non-interfering

execution of write-only transactions. In SIGMOD 1991.

[4] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). John Wiley Interscience, March 2004.

[5] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Highly Available Transactions: Virtues and Limitations. In VLDB 2014.

[6] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. The potential
dangers of causal consistency and an explicit solution. In SOCC 2012.

[7] J. Baker, C. Bond, J. Corbett, J. Furman, et al. Megastore: Providing scalable,
highly available storage for interactive services. In CIDR 2011.

[8] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Addison-wesley New York, 1987.

[9] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud computing research
agenda. SIGACT News, 40(2):68–80, June 2009.

[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. CACM,
13(7):422–426, 1970.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chukka, P. Dimov, et al. TAO:
Facebook’s distributed data store for the social graph. In USENIX ATC 2013.

[12] A. Chan and R. Gray. Implementing distributed read-only transactions. IEEE
Transactions on Software Engineering, (2):205–212, 1985.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, et al.
Bigtable: A distributed storage system for structured data. In OSDI 2006.

[14] R. Chirkova and J. Yang. Materialized views. Foundations and Trends in
Databases, 4(4):295–405, 2012.

[15] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, et al.
PNUTS: Yahoo!’s hosted data serving platform. In VLDB 2008.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In ACM SOCC 2010.

[17] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, et al. Spanner:
Google’s globally-distributed database. In OSDI 2012.

[18] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. In VLDB 2010.

[19] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable data store for
transactional multi key access in the cloud. In ACM SOCC 2010.

[20] K. Daudjee and K. Salem. Lazy database replication with ordering guarantees. In
ICDE 2004, pages 424–435.

[21] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned
networks. ACM Computing Surveys, 17(3):341–370, 1985.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, et al.
Dynamo: Amazon’s highly available key-value store. In SOSP 2007.

[23] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[24] J. Gray and L. Lamport. Consensus on transaction commit. ACM TODS,
31(1):133–160, Mar. 2006.

[25] P. Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR
2007.

[26] S. Hull. 20 obstacles to scalability. Commun. ACM, 56(9):54–59, 2013.
[27] N. Huyn. Maintaining global integrity constraints in distributed databases.

Constraints, 2(3/4):377–399, Jan. 1998.
[28] E. P. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency control for

partitioned main memory databases. In SIGMOD 2010.
[29] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, et al. H-Store: a high-performance,

distributed main memory transaction processing system. In VLDB 2008.
[30] R. J. Lipton and J. S. Sandberg. PRAM: a scalable shared memory. Technical

Report TR-180-88, Princeton University, September 1988.
[31] F. Llirbat, E. Simon, D. Tombroff, et al. Using versions in update transactions:

Application to integrity checking. In VLDB 1997.
[32] W. Lloyd, M. J. Freedman, et al. Don’t settle for eventual: scalable causal

consistency for wide-area storage with COPS. In SOSP 2011.
[33] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger

semantics for low-latency geo-replicated storage. In NSDI 2013.
[34] C. Mohan. History repeats itself: Sensible and NonsenSQL aspects of the

NoSQL hoopla. In EDBT 2013.
[35] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database partitioning

in shared-nothing, parallel OLTP systems. In SIGMOD 2012.
[36] D. Peng and F. Dabek. Large-scale incremental processing using distributed

transactions and notifications. In OSDI 2010.
[37] S. H. Phatak and B. Badrinath. Multiversion reconciliation for mobile databases.

In ICDE 1999.
[38] L. Qiao, K. Surlaker, S. Das, T. Quiggle, et al. On brewing fresh Espresso:

LinkedIn’s distributed data serving platform. In SIGMOD 2013.
[39] N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine partial replication in wide

area networks. In IEEE SRDS 2010.
[40] M. Shapiro et al. A comprehensive study of convergent and commutative

replicated data types. Technical Report 7506, INRIA, 2011.
[41] J. Shute et al. F1: A distributed SQL database that scales. In VLDB 2013.
[42] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B.

Welch. Session guarantees for weakly consistent replicated data. In PDIS 1994.
[43] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. Abadi. Calvin: Fast

distributed transactions for partitioned database systems. In SIGMOD 2012.
[44] K. Weil. Rainbird: Real-time analytics at Twitter. Strata 2011

http://slidesha.re/hjMOui.
[45] S. B. Zdonik. Object-oriented type evolution. In DBPL, pages 277–288, 1987.
[46] J. Zhou et al. Lazy maintenance of materialized views. In VLDB 2007.

http://slidesha.re/hjMOui

APPENDIX: Proofs and Isolation Details
RAMP-F Correctness. To prove RAMP-F provides RA isolation, we show
that the two-round read protocol returns a transactionally atomic set of
versions. To do so, we formalize criteria for atomic (read) sets of versions
in the form of companion sets. We will call the set of versions produced
by a transaction sibling versions and call two items from the same write set
sibling items.

Given two versions xi and y j , we say that xi is a companion to y j if xi
is a transactional sibling of y j or x is a sibling item of y j and i > j. We
say that a set of versions V is a companion set if, for every pair (xi,y j) of
versions in V where x is a sibling item of y j , xi is a companion to y j . In
Figure 1, the versions returned by T2’s first round of reads ({x1,y?}) do
not comprise a companion set because y? has a lower timestamp than x1’s
sibling version of y (that is, x1 has sibling version y1 and but ?< 1 so y?
has too low of a timestamp). Subsets of companion sets are also companion
sets and companion sets also have a useful property for RA isolation:

Claim 1 (Companion sets are atomic). Companion sets do not contain
fractured reads.
Proof. Claim 1 follows from the definitions of companion sets and fractured
reads. If V is a companion set, then every version xi 2V is also a companion
to every other version y j 2V where v j contains x in its sibling items. If V
contained fractured reads, V would contain two versions xi,y j such that the
transaction that wrote y j also wrote a version xk , i < k. However, in this case,
xi would not be a companion to y j , a contradiction. Therefore, V cannot
contain fractured reads.

To provide RA, RAMP-F clients assemble a companion set for the requested
items (in vlatest), which we prove below:

Claim 2. RAMP-F provides Read Atomic isolation.
Proof. Each write in RAMP-F contains information regarding its siblings,
which can be identified by item and timestamp. Given a set of RAMP-F
versions, recording the highest timestamped version of each item (as recorded
either in the version itself or via sibling metadata) yields a companion set
of item-timestamp pairs: if a client reads two versions xi and y j such that
x is in y j’s sibling items but i < j, then vlatest [x] will contain j and not
i. Accordingly, given the versions returned by the first round of RAMP-F
reads, clients calculate a companion set containing versions of the requested
items. Given this companion set, clients check the first-round versions
against this set by timestamp and issue a second round of reads to fetch
any companions that were not returned in the first round. The resulting
set of versions will be a subset of the computed companion set and will
therefore also be a companion set. This ensures that the returned results do
not contain fractured reads. RAMP-F first-round reads access lastCommit, so
each transaction corresponding to a first-round version is committed, and,
therefore, any siblings requested in the (optional) second round of reads
are also committed. Accordingly, RAMP-F never reads aborted or non-final
(intermediate) writes. This establishes that RAMP-F provides RA.

RAMP-F Scalability and Independence. RAMP-F also provides the in-
dependence guarantees from Section 3.3. The following invariant over
lastCommit is core to RAMP-F GET request completion:

Invariant 1 (Companions present). If a version xi is referenced by lastCommit
(that is, lastCommit[x] = i), then each of xi’s sibling versions are present in
versions on their respective partitions.

Invariant 1 is maintained by RAMP-F’s two-phase write protocol. lastCommit
is only updated once a transaction’s writes have been placed into versions
by a first round of PREPARE messages. Siblings will be present in versions
(but not necessarily lastCommit).

Claim 3. RAMP-F provides synchronization independence.
Proof. Clients in RAMP-F do not communicate or coordinate with one an-
other and only contact servers. Accordingly, to show that RAMP-F provides
synchronization independence, it suffices to show that server-side operations
always terminate. PREPARE and COMMIT methods only access data stored
on the local partition and do not block due to external coordination or other
method invocations; therefore, they complete. GET requests issued in the
first round of reads have tsreq =? and therefore will return the version cor-
responding to lastCommit[k], which was placed into versions in a previously
completed PREPARE round. GET requests issued in the second round of
client reads have tsreq set to the client’s calculated vlatest [k]. vlatest [k] is a
sibling of a version returned from lastCommit in the first round, so, due to

Invariant 1, the requested version will be present in versions. Therefore, GET
invocations are guaranteed access to their requested version and can return
without waiting. The success of RAMP-F operations do not depend on the
success or failure of other clients’ RAMP-F operations.

Claim 4. RAMP-F provides partition independence.
Proof. RAMP-F transactions do not access partitions that are unrelated to each
transaction’s specified data items and servers do not contact other servers in
order to provide a safe response for operations.

RAMP-S Correctness. RAMP-S writes and first-round reads proceed iden-
tically to RAMP-F writes, but the metadata written and returned is different.
Therefore, the proof is similar to RAMP-F, with a slight modification for the
second round of reads.

Claim 5. RAMP-S provides Read Atomic isolation.
Proof. To show that RAMP-S provides RA, it suffices to show that RAMP-S
second-round reads (resp) are a companion set. Given two versions xi,y j 2
resp such that x 6= y, if x is a sibling item of y j , then xi must be a companion
to y j . If xi were not a companion to y j , then it would imply that x is not
a sibling item of y j (so we are done) or that j > i. If j > i, then, due
to Invariant 1 (which also holds for RAMP-S writes due to identical write
protocols), y j’s sibling is present in versions on the partition for x and would
have been returned by the server (line 6), a contradiction. Each second-round
GET request returns only one version, so we are done.

RAMP-S Scalability and Independence. RAMP-S provides synchroniza-
tion independence and partition independence. For brevity, we again omit
full proofs, which closely resemble those of RAMP-F.
RAMP-H Correctness. The probabilistic behavior of the RAMP-H Bloom
filter admits false positives. However, given unique transaction timestamps
(Section 4.5), requesting false siblings by timestamp and item does not affect
correctness:

Claim 6. RAMP-H provides Read Atomic isolation.
Proof. To show that RAMP-H provides Read Atomic isolation, it suffices to
show that any versions requested by RAMP-H second-round reads that would
not have been requested by RAMP-F second-round reads (call this set v f alse)
do not compromise the validity of RAMP-H’s returned companion set. Any
versions in v f alse do not exist: timestamps are unique, so, for each version
xi, there are no versions x j of non-sibling items with the same timestamp as
xi (i.e., where i = j). Therefore, requesting versions in v f alse do not change
the set of results collected in the second round.

RAMP-H Scalability and Independence. RAMP-H provides synchroniza-
tion independence and partition independence. We omit full proofs, which
closely resemble those of RAMP-F. The only significant difference from
RAMP-F is that second-round GET requests may return ?, but, as we showed
above, these empty responses correspond to false positives in the Bloom
filter and therefore do not affect correctness.
Comparison to other isolation levels. The fractured reads anomaly is
similar to Adya’s “Missing Transaction Updates” definition, only applied to
immediate read dependencies (rather than all transitive dependencies). RA
is stronger than PL-2 (Read Committed), but weaker than PL-SI, PL-CS, and
PL-2.99 (notably, RA does not prevent anti-dependency cycles, or Adya’s
G2 or G-SIa—informally, it allows concurrent updates) [2].

RA does not (by itself) provide ordering guarantees across transactions.
Our RAMP implementations provide a variant of PRAM consistency, where,
for each item, each user’s writes are serialized [30] (i.e., “session” order-
ing [20]), and, once a user’s operation completes, all other users will observe
its effects (regular register semantics, applied at the transaction level). This
provides transitivity with respect to each user’s operations. For example,
if a user updates her privacy settings and subsequently posts a new photo,
the photo cannot be read without the privacy setting change [15]. However,
PRAM does not respect the happens-before relation [4] across users. If
Sam reads Mary’s comment and replies to it, other users may read Sam’s
comment without Mary’s comment. In this case, RAMP transactions can
leverage explicit causality [6] via foreign key dependencies, but happens-
before is not provided by default. If required, we believe it is possible to
enforce happens-before but, due to scalability concerns regarding metadata
and partition independence (e.g., [6] and Section 5), do not further explore
this possibility. An “active-active” replicated implementation can provide
available [5, 23] operation at the cost of these recency guarantees.

	Introduction
	Overview and Motivation
	Read Atomic Isolation in the Wild

	Semantics and System Model
	RA Isolation: Formal Specification
	RA Implications and Limitations
	System Model and Scalability

	RAMP Transaction Algorithms
	RAMP-Fast
	RAMP-Small: Trading Metadata for RTTs
	RAMP-Hybrid: An Intermediate Solution
	Summary of Basic Algorithms
	Additional Details
	Distribution and Fault Tolerance
	Further Optimizations

	Experimental Evaluation
	Experimental Setup
	Experimental Results: Comparison
	Experimental Results: CTP Overhead
	Experimental Results: Scalability

	Related Work
	Conclusion
	References

