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ABSTRACT
Modern query engines are increasingly being required to pro-
cess enormous datasets in near real-time. While much can
be done to speed up the data access, a promising technique
is to reduce the need to access data through data skipping.
By maintaining some metadata for each block of tuples, a
query may skip a data block if the metadata indicates that
the block does not contain relevant data. The e↵ectiveness
of data skipping, however, depends on how well the blocking
scheme matches the query filters.

In this paper, we propose a fine-grained blocking tech-
nique that reorganizes the data tuples into blocks with a
goal of enabling queries to skip blocks aggressively. We first
extract representative filters in a workload as features using
frequent itemset mining. Based on these features, each data
tuple can be represented as a feature vector. We then for-
mulate the blocking problem as a optimization problem on
the feature vectors, called Balanced MaxSkip Partitioning,
which we prove is NP-hard. To find an approximate solu-
tion e�ciently, we adopt the bottom-up clustering frame-
work. We prototyped our blocking techniques on Shark, an
open-source data warehouse system. Our experiments on
TPC-H and a real-world workload show that our blocking
technique leads to 2-5x improvement in query response time
over traditional range-based blocking techniques.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design
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1. INTRODUCTION
Data analytics has been proven critical in many applica-

tions, ranging from business decision making to scientific
discovery. Many of these applications require interactively

unlocking insights from enormous data. To meet this need,
designs of modern query engines (e.g., [8, 37, 32, 2, 35]) are
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Figure 1: Blocking at Data Loading

striving to identify opportunities to shorten query response
time. One dimension of this e↵ort focuses on improving the
data scan throughput, such as memory caching, paralleliza-
tion, and data compression. Another dimension is to reduce

the data access. For example, columnar-oriented data layout
prevents the queries from accessing irrelevant columns, and
sampling provides approximate answers by scanning only a
small subset of data. Along these lines, there has recently
been an increasing interest in reducing data access through
data skipping [1, 6, 35, 37]. Intelligently skipping blocks of
tuples can significantly speed up the query processing.

1.1 Background
Traditionally, data skipping has long been implemented

via partition pruning. In a data warehouse environment,
many tables are partitioned by time and most queries have
a time range filter. A query can check the time ranges of
the partitions and decide which partitions to scan and which
to skip. While this is an e↵ective way to prune data, the
remaining partitions can still contain a lot of tuples.

Recent systems [28, 1, 34, 7, 6, 37, 35] support skipping
data blocks. A block in these systems is a horizontal parti-
tion that is fairly small (e.g., 1000’s or 10,000’s of tuples).
Each block is associated with some metadata such as min
and max values. Before scanning a block, data skipping first
evaluates the query filter against this metadata and then
decides if the block can be skipped, i.e., the block does not
need to be accessed. The salient features of data skipping
include avoiding random disk access and incurring minimal
storage and maintenance overhead [28, 34, 6, 35]. Block
skipping speeds up table scans by accessing less data, which
is beneficial to both disk- and memory-resident tables.

1.2 Goals
The e↵ectiveness of block skipping depends on how the

data tuples are partitioned into blocks. We refer to this
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Figure 2: Example of Blocking

process as blocking. Current systems adopt very small block
sizes for data skipping. For example, IBM DB2 BLU [35]
uses 1, 000-tuple blocks; Google’s PowerDrill [6] suggests
50, 000 tuples; Shark [37] skips data on HDFS blocks, each
of which is 128MB by default. These systems rely on range
partitioning to generate such blocks. While range partition-
ing has been useful for many purposes, it may not be ideal
for generating fine-grained blocks for skipping. Specifically,
range partitioning lacks of a principled way of: (1) setting
the fine-grained ranges on each column that matches the
data skew and workload skew, (2) allocating the number
of partitions for di↵erent columns and (3) capturing inter-
column data correlation and filter correlation.

In this paper, we propose a workload-driven blocking tech-
nique, with a goal of (horizontally) partitioning the data into
fine-grained, balance-sized blocks in a way that queries can
maximally skip the blocks. This is an o✏ine process that ex-
ecutes at data loading time and may be re-executed later to
account for a more recent workload. Figure 1 depicts the use
of blocking in an ETL process. Note that our blocking tech-
niques can co-exist with traditional horizontal partitioning
techniques, as these techniques may be used for a di↵erent
purpose, such as load balancing and roll-in/roll-out opera-
tions. Specifically, our techniques can be applied to further
segment each individual partition. As shown in Figure 1, we
take as input the data tuples and a query log, and write the
blocked tuples to the storage engine; if the incoming tuples
are partitioned, we can block each partition individually (in
parallel). A newly-inserted partition can be blocked on its
own and will not a↵ect existing partitions.

First, we extract some filter predicates as features from a
past query workload using frequent itemset mining. We then
generate feature vectors by precomputing these filter predi-
cates on the data and solve an optimization problem to guide
the data blocking. In many real-world workloads, especially
the reporting and scheduled workloads, similar queries are
repeatedly run on di↵erent time-ranged data. We also an-
alyze real-world workloads in Section 2, which show that
(1) a small set of representative filters are commonly used
by many queries and (2) many queries use recurring filters.
These findings suggest that our workload-driven approach
can be e↵ective for real query workloads.

Some previous work also utilizes workloads for physical
database design, e.g., [17, 21, 12, 10]. Specifically, our work
is related to materialized view selection (MVS) [16, 10]. Like
MVS, we exploit precomputation. However, our partition-
ing techniques are at the physical-record level and are com-
plementary to materialized views. In fact, our techniques
can be applied to partition large materialized views, e.g.,
data cubes. As we will show shortly, we maintain concise

feature-based metadata derived from precomputation. An-
other proposed data skipping technique involves the use of
small materialized aggregates (SMAs) associated with par-
titions [28, 34]. These SMAs have been shown to improve
query performance in range-partitioned systems. In con-
trast, our work is focused on constructing fine-grained par-
titions that more closely capture the access patterns of com-
plex analytics workloads. Like materialized views, SMAs are
also complementary to our approach and in fact could be im-
plemented on our partitions as well. We defer the detailed
discussion of related work to Section 8.

1.3 Example
Suppose we are given a table as shown in Figure 2(a), an

example log of online events. We first look at the log of
queries that were posed on this table and extract a set of
features, each of which is a representative filter with pos-
sibly multiple conjunctive predicates. Suppose the features
extracted are as shown in Figure 2(b). Given these features,
we then transform the data tuples into feature vectors. This
process can be done by scanning the table once and batch-
evaluating the features on each tuple. As shown in Fig-
ure 2(c), each feature vector is (in this case) a 3-dimensional
bit vector, whose i-th bit indicates whether this tuple sat-
isfies filter Fi. In practice, the number of features can be
kept small, e.g., < 50. We then partition the tuples accord-
ing to these vectors. Intuitively, tuples that do not satisfy
the same features should be placed in the same block such
that, when a query uses one of these features as filter, this
block of tuples can be skipped altogether. An example of
the resulting blocked tuples is shown in Figure 2(d). For
each block, we compute a union vector by taking a bitwise
OR of all the feature vectors in it. If the i-th bit of the union
vector is 0, then we know that no tuple in this block satis-
fies feature i. In this case, any query whose filter is Fi can
skip this block. For example, a query on F3 can skip the
blocks P1 and P3. More generally, a query can skip blocks if
its filter is subsumed by (i.e., is stricter than) some features.
For example, a query with filter event = ‘buy’ ^ product =

‘jeans’ is subsumed by both features F1 and F2, which lead
to the skipping of P2 and P3 respectively.

1.4 Contributions
To realize this design, we address a few technical chal-

lenges as outlined below.
Feature Selection. Indeed, selecting the right features

to guide partitioning is critical. We develop a workload an-

alyzer to identify representative filters as features from a
query log. We consider a feature representative if it could be
used to help many queries. If some filter predicates are fre-



quently used together, we should combine these predicates
as one feature to skip data more e↵ectively, e.g., feature F3

in Figure 2. To capture both frequency and co-occurrence of
filters, we model the feature selection as a frequent itemset
mining problem. Due to their subsumption relations, some
features can be redundant. For example, revenue > 0 could
be redundant if there is already a feature revenue > 100.
We develop a principled way to eliminate redundancy.

Optimal Partitioning. Given a set of features, we com-
pute a feature bit-vector for each tuple. The problem then
is to find an optimal partitioning over these vectors. This
is clearly a hard problem, as di↵erent features may be con-
flicting, may be correlated, and may have di↵erent selec-
tivities. We formulate the Balanced MaxSkip partitioning
problem: given a desired number of tuples per block, find
a partitioning over a collection of tuples (represented as
bit vectors) that maximizes the number of tuples that can
be skipped. This objective is fundamentally di↵erent from
other well-known partitioning objectives, such as k-means
and distance-based clustering [29]. We prove that Balanced
MaxSkip is NP-hard, by a reduction from the hypergraph
bisection problem [24]. We conjecture that k-MaxSkip, a
variant without the balance constraint, is also NP-hard. To
find an approximate solution e�ciently, we adopt the clas-
sic bottom-up clustering framework, as it naturally incor-
porates our objective function and is a widely-understood
framework with scalable implementations, e.g., [38, 5].

Scalability. It is prohibitively expensive to run a clus-
tering algorithm on large datasets. Fortunately, we observe
that the input size can be reduced from the number of tuples
to the number of distinct feature vectors. The latter mostly
depends on the number of features and can be small (e.g.,
<10k) in practice. As shown in Section 7, although we run a
sophisticated partitioning algorithm on the vectors, the cost
bottleneck of the entire blocking process is still the actual
data movement instead of the partitioning algorithm.

We prototype our blocking techniques on Shark [37], an
open-source data warehouse system. We conduct experi-
ments on TPC-H benchmark and a real-world ad-hoc work-
load from a video streaming company. The results show that
our techniques reduce the data access by a factor of 4-7 over
existing skipping techniques on top of range partitioning.
We also demonstrate that this reduction can directly trans-
late to a reduction in query response time, on both disk and
memory resident data. Specifically, we improve the query re-
sponse time by 5-14x over full table scans without skipping
and by 2-5x over existing skipping techniques.

The remainder of paper is organized as follows. Sec-
tion 2 gives an overview of our blocking approach. Section 3
presents the workload analyzer. We discuss the partitioner
in Section 4. We show how skipping works during query ex-
ecution in Section 5. Section 6 discusses the practical issues.
We report our experimental results in Section 7. Section 8
reviews the related work and Section 9 concludes the paper.

2. OVERVIEW
In this section, we first discuss the assumptions for our

techniques and then give an overview of the workflow.

2.1 Workload Assumptions
We extract representative filters as features from the work-

load to guide the blocking. In order for our approach to work
well, we expect two properties of the workload:

(a) Filter Commonality (b) Filter Stability

Figure 3: Filter Analysis on Real Ad-hoc Workloads

Filter Commonality. We expect that there is a small
set of filters that are commonly used by many queries. If
each query uses a distinct filter, then it would be di�cult to
find representative filters.

Filter Stability. Since we base our blocking decision
on a past workload, it is important that most of the filters
in future queries have occurred before. In other words, we
expect that most of filters are recurring and only a small
portion are entirely new over time.

Obviously, the commonality and stability of filters can be
observed in recurring scheduled or reporting queries. Such
queries are usually generated from templates and the same
set of filters would be repeatedly used on the data of di↵erent
time ranges. The e↵ectiveness of using past queries to guide
database design was also evidenced in many previous works,
e.g., [10, 21, 17, 12].

We conducted empirical analysis on a real-world produc-
tion SQL workload from a video streaming company called
Conviva. These 8664 ad-hoc queries, spanning the period
from 06/2010 to 01/2012, were used for problem diagno-
sis and data analytics over an access log of video streams.
Note that each query uses possibly multiple filter predicates.
For each predicate, e.g., event = ‘click’, we count its fre-
quency, i.e., how many queries use it. In Figure 3(a), we
sort the filters by descending frequency and plot the cumu-
lative percentage of the queries that use the filters. A point
(x, y) indicates that the most frequent x% filters are used
by y% of queries. We can see that the filter usage is highly
skewed, e.g., 10% of the unique filters were used by 90% of
the queries. This implies that using only 10% of filters as
features can benefit 90% of the queries.

We then examine the queries in the order as they arrive.
To prevent our analysis from being biased towards a particu-
lar starting point, we divided the 8664 queries into 5 disjoint
time windows and plotted five curves. Figure 3(b) shows an
average over these five curves. A point (x, y) means that, as
we have seen x% of the queries (or x% workload prefix), the
filters in these x% are used by y% of all the queries in the
workload. If every query used completely new filters, i.e.,
there is no recurring filter, this curve would be a function
of y = x. The plot, however, shows that many queries use
recurring filters. In particular, 80% of the entire workload
uses the filters that already occur in the 30% prefix. Since
the filters are recurring, we can infer that most of the future
filters are predictable based on a past workload.

2.2 The Blocking Workflow
Having described our workload assumptions, we now over-

view the blocking overflow, as depicted in Figure 4. This
workflow consists of three standard data marshaling steps
(shaded arrows) and two important modules named the work-
load analyzer and the partitioner.
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Figure 4: The Blocking Workflow

The input is a table and a workload represented as a col-
lection of queries on this table. The query workload can be
obtained by collecting query logs of the system. We now
walk through the individual steps in the workflow:

(1) Workload Analyzer. The workload analyzer (Sec-
tion 3) extracts a set of features from the query workload.
A feature is a representative filter with possibly multiple
predicates.

(2) Featurization. Given the features, i.e., filters, from
Step 1, we scan the table once and batch evaluate these
filters for each tuple. This step transforms each tuple to a
(vector, tuple)-pair.

(3) Reduction. Since our blocking only depends on the
feature vectors, not the actual tuples, we group-by the (vec-
tor, tuple)-pairs into (vector, count)-pairs. This is an im-
portant step to reduce the input size for the partitioner.

(4) Partitioner. The partitioner (Section 4) runs a par-
titioning algorithm on the (vector, count)-pairs. This gen-
erates a blocking map (from a feature vector to a block id).

(5) Shu✏e. In this step, each of the augmented tuples
(output of Step 3) finds its destination block by consulting
the blocking map (output of Step 4).

(6) Catalog Update. We add the features and one
union vector (e.g., Figure 2(d)) for each block to the block

catalog (Section 5). After this step, we can drop the feature
vectors, and the blocked tuples are ready to serve queries.

The above workflow can be executed as an o✏ine pro-
cess at data loading time and may be re-executed later to
account for workload changes. In the event that the data
arrival rate is high or that the new data needs to be queried
immediately, the blocking process can be postponed. As
stated in Section 1, in many data warehouse applications,
tables are partitioned by time ranges, and new tuples are
typically batch-inserted as a new partition. We can con-
sider our blocking as a “secondary” partitioning scheme un-
der each such coarse-grained partition. For example, when a
new partition dt=‘1994-11-03’ is added to the table logs:

ALTER TABLE logs ADD PARTITION (dt=‘1994-11-03’) . . .
we can invoke our blocking process on this newly inserted
partition without a↵ecting existing data. To re-block a hor-
izontally partitioned table, we can block each partition in-
dividually in parallel.

Having outlined the workflow, in the following sections,
we will discuss the di↵erent components in detail.

3. WORKLOAD ANALYSIS
The goal of workload analysis is to extract features from

the query trace. We follow two intuitions. First, we should
use representative filters as features to guide the blocking.
A feature is representative if it can potentially help a large
number of queries skip data. Second, the filter predicates
that are frequently used together should be considered as one
single feature, e.g., F3 in Figure 2, as these predicates will
likely be used together in the future queries and combining
them can greatly maximize block skipping. To take into
account the counting and co-occurrence of predicates, we
model the workload analysis as a frequent itemset mining

problem [22]. In this section, we first formulate the problem
and then present a principled approach for feature selection.

3.1 Workload Model
A workload is a collection of queries. Each query is asso-

ciated with a filter, which evaluates a data tuple and returns
a boolean value. Without loss of generality, we assume each
query uses a conjunction of predicates, where a predicate is a
disjunction of filter literals. A filter literal can be an equal-
ity or range condition, a string matching operation, or a
boolean user defined function. Since we are only concerned
with the filter part of the queries, we represent the work-
load by Q = {Q1, Q2, . . . , Qm}, where each Qi is a set of
(conjunctive) predicates. An example workload is given in
Example 1.

Example 1. An example workload, each of which is rep-

resented as a set of conjunctive predicates:

Q1: product = ‘shoes’
Q2: product in (‘shoes’, ‘shirts’), revenue > 32
Q3: product = ‘shirts’ ^ revenue > 21

The workload is thus modeled as a transactional database [9],
where a predicate is an item and a query is a transaction.
For example, Q1 can be viewed as a transaction of only one
item product=‘shoes’. Let F be the set of all predicates that
occurred in Q. We call any set of conjunctive predicates
Fi ✓ F a predicate set (analogous to itemset). By definition,
each Qi is a predicate set.

Two predicates are equal if all their components are equal,
including the columns, the constants and the filtering con-
dition. Given two predicates fi and fj , we use fi v fj to
denote that fi is subsumed by fj or fj subsumes fi, i.e.,
fi is equal to or stricter than fj . For example, the predi-
cate product = ‘shoes’ is subsumed by product in (‘shoes’,
‘shirts’). Given two predicate sets Fi and Fj , we say Fi is

subsumed by Fj , or Fj subsumes Fi, denoted by Fi v Fj ,
if for any fu 2 Fj , there exists fv in Fi such that fv v fu.
Clearly, Fi v Fj if Fj ✓ Fi.

3.2 Predicate Augmentation
We want to select representative predicate sets as features.

As discussed in Section 1 and Section 5, a feature can be used
to skip data blocks, but only for the queries it subsumes.
Let us show this using Example 1. Suppose we use {product
in (‘shoes’, ‘shirts’)} as a feature. We can see that this
feature subsumes both Q1 and Q2. If there is a block that
does not contain any tuple that satisfies {product in (‘shoes’,
‘shirts’)} (indicated by the union vector, as discussed), we
can then infer that no tuple in this block satisfies Q1 or Q2,
because these queries are subsumed by (i.e., even stricter



than) this feature. In this case, Q1 and Q2 can safely skip
this block.

Since a predicate set, if selected as a feature, is only help-
ful to the queries it subsumes, we should select the predi-
cate sets that subsume a lot of queries. This problem can
be modeled as frequent itemset mining. There is a di↵er-
ence, however, between the number of queries a predicate
set subsumes and the number of occurrences this predicate
set has. Directly applying a frequent itemset mining algo-
rithm on the queries would miss important features. For
example, {revenue > 21} subsumes both Q2 and Q3, and
{product in (‘shoes’,‘shirts’)} subsumes both Q1 and Q2;
each of these two predicate sets has only 1 occurrence but
subsumes 2 queries. To adjust this di↵erence, we perform a
filter augmentation step as follows. For each query Qi 2 Q,
we augment Qi with all the predicates in F that subsumes
Qi, using the following procedure.

for each Qi 2 Q:

for each fj 2 F :

if 9fk 2 Qi s.t. fk v fj :
Qi  Qi [ {fj}

After this augmentation step, the number of occurrences
of a predicate set equals to the number of queries it sub-
sumes. For example, the workload in Example 1 becomes:

Q1: prod.=‘shoes’, prod. in (‘shoes’, ‘shirts’)
Q2: prod. in (‘shoes’, ‘shirts’), revenue>32, revenue> 21
Q3: prod.=‘shirts’, revenue>21, prod. in (‘shoes’, ‘shirts’)

By setting a minimum frequency threshold T , we can now
use an o↵-the-shelf frequent itemset mining algorithm to
compute the predicate sets that subsume at least T queries.

3.3 Redundant Predicate Set Elimination
We now have obtained a set of predicate sets that subsume

at least T queries. Unfortunately, some of these predicate
sets may be redundant. For example, if there is a predicate
set {publisher=‘google’, revenue<0} in the result, both its
subsets {revenue<0} and {publisher= ‘google’} would also
be present, due to the apriori property [9]; but the predi-
cate set {publisher=‘google’, revenue<0} is only useful for
the queries that cannot be subsumed by either of the sub-
sets. In addition, the filter augmentation step may also in-
troduce redundant results. For example, if {revenue> 32}
is present, then {revenue>21} is also present due to the
augmentation. Again, {revenue>21} is only helpful for the
queries that cannot be subsumed by {revenue>32}. Exist-
ing approaches that keep only maximal or closed frequent
itemsets [22] do not capture the subsumption relations in
our specific problem.

We develop a principled way to remove redundancy from
the frequent predicate sets. Notice that the frequency thresh-
old T used in Section 3.2 indicates that we are only inter-
ested in the predicate sets that subsume at least T queries.
We will use the same principle for redundancy removal.
Specifically, let F be the frequent predicate sets, we con-
sider a predicate set Fi in F to be redundant and remove
it, if the number of queries Fi additionally subsumes, given
the predicate sets that are already in F , is less than the
threshold T . We denote by subsume(Fi,Q) ✓ Q the set of
queries in Q that are subsumed by Fi. We use the following
procedure to eliminate the redundant predicate sets:

sort F by the (partial) order of v, i.e., Fi v Fj for i < j

Qc  ;, R ;
for each Fi in F :

I(Fi) |subsume(Fi,Q)�Qc|
if I(Fi) < T :

remove Fi
else:

R R [ {(I(Fi), Fi)}
Qc  subsume(Fi,Q) [Qc

We examine the predicate sets in F in the (partial) order
of increasing generality, such that the eliminating decision of
the current predicate set does not a↵ect that of the previous
predicate sets. For each Fi, we calculate I(Fi), the number
of queries that Fi additionally subsumes. If I(Fi) is smaller
than T , Fi is removed; otherwise, we add the pair (I(Fi),
Fi) to R and update Qc, the cumulative set of queries sub-
sumed by all the predicate sets in R. At the end, we sort R.
Given a parameter numFeat, the workload analyzer returns
numFeat predicate sets from R with the highest I(·) values.

The cost of workload analysis is dominated by the frequent
itemset mining phase. In practice, we expect this process to
be very e�cient, since most queries would not have many
predicates. Next, we discuss the partitioner, which incor-
porates the data-related aspects such as correlation and se-
lectivity, by solving a optimization problem on the feature
vectors.

4. THE PARTITIONING PROBLEM
In this section, we first formulate the optimization prob-

lem and prove its hardness. We then discuss the reduction
step which is critical to scaling. Finally, we present the
bottom-up framework.

4.1 Problem Definition
Suppose we have a set of m features obtained from the

workload analysis, denoted by F = {F1, F2, . . . , Fm}. We
denote by wj the weight of the features Fj , i.e., the number
of queries it subsumes. Based on these features, the data
tuples are augmented with binary vectors (Step (1) in Fig-
ure 4). We now formulate the partitioning problem on the
m-dimensional bit vectors.

Let V = {v1, v2, . . . , vn} be a collection of m-dimensional
bit vectors, where each vector corresponds to a tuple. We
will focus on our discussion on the vectors, finding as a par-
titioning on the vectors is equivalent to finding a blocking
on the tuples. The j-th bit of vi, denoted by vij , indicates
whether vi satisfies feature Fj . Let P = {P1, P2, . . . , Pk} be
a partitioning over V , i.e., P is a set of disjoint subsets of
V whose union is V . Let v(Pi) be the union vector of all
vectors in Pi, i.e., v(Pi) =

W
vj2Pi

vj . We say a feature Fj

prunes a partition Pi if none of the vectors in Pi satisfies
Fj , i.e., the j-th bit of v(Pi) is 0, denoted by v(Pi)j = 0.
If Fj prunes Pi, then Fj prunes |Pi| tuples, as each vector
corresponds to a tuple. Note that the weight wj of Fj is
the number of queries Fj subsumes in the workload. If Fj

prunes Pi, when we run all the queries in the workload, the
sum of tuples that can be skipped would be wj · |Pi|. Given
a partition Pi, we define the cost function C(Pi) as the sum
of tuples in Pi that can be skipped when we execute all the
queries in the workload, we have:

C(Pi) = |Pi|
X

1jm

wj(1� v(Pi)j) (1)



Consider the example blocking scheme P1 in Figure 2(d).
The union vector v(P1) is (1, 1, 0), so only feature F3 prunes
P1. We also know that |P1| = 2 and the weight of F3, w3,
is 10 as given in Figure 2(b). Therefore, we have: C(P1) =
2 ⇥ 10 = 20 using Equation 1. We then define the cost
function C(P) over a partitioning, which is the sum of C(Pi)
over all Pi in P:

C(P) =
X

Pi2P

C(Pi) (2)

Intuitively, the objective function C(P) is the sum of tuples
that can be skipped if we run all the queries in the work-
load. From the perspective of a real system, we also have to
constrain that the block sizes are almost balanced. If some
block is too small, it incurs significant overhead to process
the block and maintain block-level metadata; if some block
is much bigger than others, it may become a straggler in
parallel executions. We now define the Balanced MaxSkip

partitioning problem:

Problem 1 (Balanced MaxSkip Partitioning).

Given a set V of binary vectors, where |V | is a multiple of p,
find a partitioning P over V such that C(P) is maximized,

i.e.,

argmaxP C(P)

subject to |Pi| = p 8Pi 2 P

The balance constraint is important from the perspective
of a large-scale system, such as parallel processing of data
blocks, but not necessary for data skipping purposes. For
theoretical interests, we also formulate a k-MaxSkip parti-

tioning problem without the balance constraint:

Problem 2 (k-MaxSkip Partitioning). Given a set

V of binary vectors, find a k-partitioning P over V such that

C(P) is maximized.

In this paper, we will focus on Problem 1.

4.2 NP-Hardness
We now prove that Problem 1 is NP-hard even in the

special case where p = |V |/2, by reduction from hypergraph
bisection [18]. Given a hypergraph instance H = (V,E),
where V is a set of vectices and E is a set of hyper edges.
Since each hyper edge connects a set of vertices, we denote
by vi 2 Ej if vi is in Ej . The hypergraph bisection problem
finds a balanced 2-partitioning on the vectices such that the
number of hyperedges across the two partitions is minimum.
We construct an input to our problem from this instance

as follows. We construct a bit vector vi for each vertex.
Each vector has |E| dimensions, where the j-th dimension
corresponds to an edge ej in E. Specifically, the value vij
is 1 if vi 2 ej and 0 otherwise. By setting the partition size
to be |V |/2, a solution P = {P1, P2} to our problem is a
balanced partitioning over V . Let n1 and n2 be the number
of vectors in P1 and P2, respectively, and let m1, m2 and
mc be the number of hyperedges in P1, in P2 and across
both, respectively. The value of our objective function for
this solution is:

C(P) = n1m1 + n2m2 + nmc (3)

Now that the partitions are balanced, i.e., n1 = n2, we have:

C(P) =
1
2
nm1 +

1
2
nm2 + nmc = nm+ nmc (4)

Since n and m are constant, minimizing Equation 4 is equiv-
alent to minimizing mc. Hence, an optimal solution to our
problem solves the hypergraph bisection problem on H.

From Equation 3, we can see that our objective function
involves the product of number of vertex and number of
edges for each vertex partition. We conjecture that Prob-
lem 2, the variant that does not have the balance constraint,
is also NP-hard.

4.3 Reduction Step
The partitioning problem defined in Section 4.1 is solely

based on the vectors, not the actual tuples. As an optimiza-
tion step, we group-by the vectors into (vector, count)-pairs.
This step does not a↵ect the quality of partitioning, since
the same vectors should go to the same partition anyway.
Each vector now is associated with a weight, denoting the
number of tuples it represents. To compute Equation 1, we
simply replace |Pi| with the weighted sum of all the vectors
in Pi.

Note that this step is the key to scale our partitioning
techniques to large datasets. Theoretically, the number of
distinct vectors is upper-bounded by min(2m, n). In prac-
tice, however, this number is usually very small, e.g., <10k,
as many tuples may have the same feature vectors. We will
empirically examine this number in Section 7.

4.4 The Bottom Up Framework
Since Problem 1 is NP-hard, we will turn toWard’s method

as a heuristic algorithm to find an approximate solution ef-
ficiently. Ward’s method [36], originally proposed for min-
imizing the error sum of squares, is a general bottom-up
clustering framework and has been used for various objec-
tive functions [29].

Base on Ward’s method, every data point is a partition
by itself initially. At each iteration, we select two partitions
to merge that maximizes C(P). Recall that C(P) is a sum
of C(Pi) for all Pi 2 P. We denote by �(Pi, Pj) the change
of C(P) caused by merging partitions Pi and Pj , i.e.,

�(Pi, Pj) = C(P [ {Pi [ Pj}� {Pi, Pj})� C(P) (5)

When we merge Pi and Pj , their union vectors are ORed, i.e.,

v(Pi [ Pj) = v(Pi) _ v(Pj) (6)

Since the merging of Pi and Pj does not a↵ect the costs of
other partitions, we have:

�(Pi, Pj) = C(Pi [ Pj)� C(Pi)� C(Pj)

= |Pi|
X

1km

wk(v(Pi)k � v(Pi)k _ v(Pj)k)

+|Pj |
X

1km

wk(v(Pj)k � v(Pi)k _ v(Pj)k)

In the bottom up algorithm, we represent each partition
as Pi as a (v(Pi), |Pi|)-pair. Thus, �(Pi, Pj) can be evaluated
e�ciently (constant time to the size of partitions). We also
have the following lemma.

Lemma 1 (Monotonicity). The objective function

C(P) is non-increasing through a partition merge,

i.e., �(Pi, Pj)  0 for any Pi, Pj 2 P.

Lemma 1 guarantees that our objective function can fit
in Ward’s method correctly. The objective C(P) has the
maximal value when every vector is a partition by itself.



We iteratively find a pair of points whose merge hurts C(P)
the least.

In practice, we set a parameterminSize. A partition is re-
moved from being further merged if its size reachesminSize.
Thus, a merge of two blocks of size less than minSize would
be smaller than 2 ·minSize. We simply accept the blocks of
size in [minSize, 2 ·minSize). The bottom-up procedure is
shown as follows:

P  {{v1}, {v2}, . . . , {vn}}, R ;
while P is not empty :
· merge the pair Pi, Pj 2 P with the largest �(Pi, Pj)
· if |Pi [Pj | > minSize or Pi [Pj is the last one in P:

· remove Pi [ Pj from P and add it to R
return R

A straightforward implementation of this algorithm has a
complexity of O(n2 log n) [29]. As bottom-up clustering is
a classic algorithmic framework, scalable implementations
have been proposed, e.g., [38, 5]. Due to the reduction step,
the input size becomes much smaller than the number of tu-
ples. Our results in Section 7 indicate that the partitioning
algorithm can run e�ciently even with a näıve implementa-
tion, and the cost bottleneck of the entire blocking process
is still on the actual data movement, not on the partitioning
algorithm.

Constructing the blocking map. The output of the
algorithm is a partitioning of the vectors. We use this out-
put to construct a blocking map which returns a block id for
a given feature vector. A data tuple can be routed to the
right block by consulting the blocking map with its corrre-
sponding feature vector.

5. FEATURE-BASED DATA SKIPPING
In order to enhance the data skipping, we now introduce

the block catalog, which maintains the metadata for skip-
ping. We also discuss how a query optimizer might use it.

As mentioned earlier, many query engines support data
skipping using the value ranges or bloom filters. We could
import our block data to these systems and rely on the built-
in skipping mechanism. This, however, may miss some data
skipping opportunities. For example, the features we used
to guide partitioning can involve multiple columns (e.g.,F3

in Figure 2); checking the aggregates of the two columns in-
dividually may not be able to prune the block, while main-
taining multi-dimensional statistics is expensive. In addi-
tion, it is unclear how the aggregates can be used to prune
string matching and general user-define functions. To fully
exploit our blocking scheme for data skipping, we propose
a feature-based skipping mechanism, which can be used in
conjunction with existing data skipping mechanisms based
on the aggregates.

Block Catalog. After the blocking, we obtain a union
vector for each block. If the i-th bit of the union vector is
0, then we know that no tuple in this block satisfies fea-
ture i. Therefore, the queries that are subsumed by feature
i can safely skip this partition. To realize this, we store
the features used and one union vector for each block in a
block catalog, which can be part of the system catalog in a
database system. Figure 5 shows the partition catalog for
the example blocking in Figure 2. Note that the block cat-
alog is very compact: we store the features once and then
one bit vector for each block.

block catalogSELECT publisher, sum(revenue)
FROM events 
WHERE product = 'jeans' and event = 'buy'
GROUP BY publisher features

f1: event = 'buy'
f2: product = 'jeans'
f3: publisher = 'google', revenue < 0

union vectors
P1: (1,1,0) P2: (0,1,1) P3: (1,0,0)

query vector: (0,0,1)

product = 'jeans' AND event = 'buy'

blocks to scan: P1

Figure 5: Data Skipping in Query Execution

Query Execution. Let us see how a query interacts with
the block catalog in Figure 5. When a query comes, we first
extract the filter operator from the query. We check which
features in the block catalog can subsume this query. The
subsumption check can be implemented as hard-coded rules.
We find that F1 and F2 can subsume the query. We repre-
sent this information by a query vector (0, 0, 1), the i-th bit
of which is 0 if i-th feature subsumes the query. We then
compute, for each block, a bitwise OR between the query
vector and the union vector. For any block, if the result-
ing vector of the OR operation has at least one 0 bit, then
this block can be skipped. In Figure 5, the ORed vectors
for P1, P2 and P3 are (1, 1, 1), (0, 1, 1) and (1, 0, 1) respec-
tively. Thus, we know that we only need to scan P1. This
information is then passed to table scan operator.

The above procedure happens before the table scan op-
erator and is independent of the rest of query execution.
As we can see, we only need to maintain minimal metadata
and add an simple module between query compilation and
the start of the query execution. We have implemented this
functionality in less than 100 lines of code in Shark [37].

6. DISCUSSION
In this section, we discuss the practical issues of using our

techniques.
Data Update. Our blocking techniques were designed

for a data warehouse setting, where there are infrequent ad-
hoc updates and data are batch-inserted and batch-deleted
as partitions. We can apply our fine-grained blocking on
each partition separately. Therefore, the insertion or dele-
tion of partitions will not a↵ect other parts of data. Never-
theless, we now discuss how ad-hoc updates can be handled
for our blocked data.

Since our techniques produce small balanced-sized data
blocks, ad-hoc insertions should be put into new blocks in-
stead of modifying existing blocks. These new blocks are
ready to serve queries. Once we have accumulated enough
new data, e.g., 50 blocks’ worth of data, we can use our
techniques to re-organize these data. An ad-hoc deletion
can be handled trivially, as a tuple can be removed from a
block without modifying the block metadata. When there is
an ad-hoc update in a block, we check if we need to update
the block metadata, i.e., the union vector. To allow for high-
throughput updates, we can simply invalidate the union vec-
tor by setting all of its bits to 1’s to eliminate the checking
overhead. After many updates, the blocking scheme may
become ine↵ective, then we can re-partition the data.

Parameter Selection. Two key parameters were used
in our blocking process, namely, numFeat, the number of
features, and minSize, the minimum number of tuples per
block. For a real-world workload, we expect numFeat to be
small. We can use cross validations to choose an appropriate
number of features that prevents under- and over-fitting.



The choice ofminSize can depend on the underlying system.
In our prototype on Shark, we set minSize to be 50, 000,
which results in 64-128MB blocks. Each block nicely fits
with a Spark/HDFS block. Intuitively, if a block is bigger
than 128MB, the system will break it down into many HDFS
blocks anyway. If the blocks are too small, the metadata
storage and skip checking overhead may become significant.

Overhead of Skip Checking. In many large-scale
query engines, the query optimizer runs in a single node.
We can easily perform the skip checking (Section 5) in a
single-node optimizer. This might seem counter-intuitive,
as a large table can have many blocks. To see if this makes
sense, we can do some back-of-the-envelope analysis. As-
suming an average block size of 128MB, 100TB of data
would have less than 1 million blocks. It only takes 13MB to
store the bit vectors for all these partitions if each vector is
128-bit, i.e., 128 features used. The block catalog can easily
fit in the memory of a single machine. In a modern CPU,
a bitwise operation of two 128-bit vectors can be computed
using only a single instruction. The block checking incurs
minimal overhead even for interactive queries.

Objective Function. Our objective function for parti-
tioning (Equation 2) is defined as the sum of query costs in
the workload, where the cost of a query is quantified as the
number of tuples scanned. We chose the current objective
function as it is simple, commonly used in database designs
(e.g., [20]) and works reasonably well in practice. In some
applications, we may want to define the objective di↵erently,
e.g., we can maximize the number of queries in the workload
that can finish in 30 seconds. In this case, we may need to
estimate the query costs and weight the queries based on
their costs. Incorporating these in our framework would be
an interesting avenue of future work.

7. EXPERIMENTAL EVALUATION
In this section, we report the experiment results. All ex-

periments were conducted on an Amazon Spark EC2 cluster
of 25 m2.4xlarge instances, each with 8 ⇥ 2.66 GHz CPU
cores, 64.8 GB of RAM and 2 ⇥ 840 GB disk storage. The
datasets are stored in HDFS.

7.1 System Prototype
We prototype our blocking techniques on Shark [37], a

fully Apache Hive [8]-compatible data warehousing system
using Apache Spark [25] as runtime. Shark parses and com-
piles HiveQL (SQL-like) queries to a query plan, which are
then translated to Spark tasks. A Shark table is stored as a
Spark data abstraction called Resilient Distributed Dataset
(RDD), which is physically stored as a list of data blocks,
each of which can be either memory- or disk-resident. Each
block in Spark is a data processing unit and has a default
size of 128MB. Shark supports data skipping over such data
blocks. At data import time, Shark collects the data statis-
tics for each block. These statistics are maintained in the
system catalog. Before a table scan, the query filter is ap-
plied on these statistics, and then the block ids to be scanned
are passed to the table scan operator.

We now briefly discuss how our techniques were imple-
mented on Shark.

Workload Analyzer. We can collect a query trace from
the query logging system of Shark or from an external source.
We used Shark’s query parser to convert each query string
into a set of conjunctive filter operators. We implemented

a isSubsume(f1, f2) function using a set of rules to check if
filter f1 subsumes filter f2. A module was added in Shark
to implement the techniques in Section 3.

Featurization, Reduce. We wrote a map function for
featurization and a reduce function to group by the vectors.

Partition, Shu✏e. We implemented a bottom-up clus-
tering algorithm as a module in Shark. Note that this mod-
ule is independent of the other parts of the blocking work-
flow, and thus external libraries could be used here. We then
constructed a Spark Partitioner, which returns the destina-
tion block id for an (vector, tuple) pair. The table (an RDD)
are then shu✏ed using this Partitioner.

Catalog Update. We added the metadata described in
Section 5 to the Shark system catalog. A table scan now can
utilize two tiers of skipping mechanisms: our feature-based
skipping (Section 5) and the existing skipping.

7.2 Datasets
TPC-H. We use the TPC-H benchmark with a scale fac-

tor of 100. To focus on the e↵ect of reduced table scan, we
denormalize all the tables against the lineitem table, which
results in a single table of roughly 600 million rows and 700
GB in size. We select eight query templates (q3, q5, q6, q8,
q10, q12, q14, q19) from the TPC-H workload, as these tem-
plates involve the lineitem table and have selective filters.
The FROM clauses in these templates were all changed to
be the denormalized table. In a query template, some fil-
ters are fixed while the others are parametric. For exam-
ple, the return item reporting query (q10) has a fixed filter
l returnflag = ’R’, which will appear in every query gener-
ated from this template, and a parametric filter o orderdate

>= date ’[DATE]’, where [DATE] is replaced with a con-
stant at each run. Using the TPC-H query generator, we
generate 800 queries as the training workload, 100 from
each template. We then independently generate 80 queries
for testing, 10 from each template. TPC-H represents a
workload of template-generated queries, which is very com-
mon in real-world applications. Note that our approach can
greatly take advantage of the fixed filters in a template (e.g.,
l returnflag = ’R’), as they are perfectly predictable.

TPC-H Skewed. The TPC-H query generator assumes
a uniform distribution for the predicate constants. In many
real-world workloads, the constant distributions are skewed.
For example, region=’North America’ may be queried much
more often than the other regions for a U.S. company. To
test a skewed distribution, we modified the TPC-H query
generator to follow a Zipf distribution. As most parameters
in the query templates have a small number of possible val-
ues, we chose a high skew factor of 3. For example, REGION
only has 5 possible values, and by using a skew factor of 3,
the most frequent 20% values occur in 84.3% of the gener-
ated queries. Note that we only added the skewness to the
non-date filters, while [DATE] is still uniformly distributed.
We similarly generate 800 train queries and 80 test queries
under this Zipf distribution.

Conviva. The Conviva data is an anonymized user access
log of video streams. The data consists of a single large fact
table with 104 columns, such as customer ID, city, media
URL, genre, date, time, browser type and request response
time. We also obtained an in-production SQL query trace
from Conviva, which has 735 queries for problem diagnosis
and data analytics issued on the log data. The queries were
between 08/01/2012 and 11/30/2012. We split the query
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Figure 6: Query Performance on TPC-H

trace at the date of 11/24/2012, which results in 674 train-
ing queries (before 11/24/2012) and 61 testing queries (on
and after 11/24/2012). Based on the training queries, we
partition the log data from 11/24/2012 to 11/30/2012. This
snapshot of the log has 680 million tuples and is roughly 1
TB in size when stored as text. We evaluate the performance
of running the test queries on the blocked data.

7.3 TPC-H Results
7.3.1 Query Performance
We evaluate the e↵ect of our blocking techniques on query

performance. We measure the number of tuples scanned and
end-to-end query response time for di↵erent blocking and
skipping schemes in Figure 6. Specifically, we compare the
following alternatives:
fullscan: We disable the data skipping and do a full scan

for each query. The blocking scheme is immaterial here.
range1: We perform a workload-oblivious partitioning on

o orderdate and each date is a partition. This leads to
roughly 2300 partitions. Shark’s data skipping is used.
range2: We manually devise a composite range partition-

ing scheme on multiple columns. By identifying the fre-
quently queried columns from the workload, we perform
a range partitioning on {o orderdate (by month, 78 parti-
tions), r name (customer region name, 5 partitions), c mkt-

segment (5 partitions), quantity (5 partitions)}. This results
in roughly 9000 partitions. Shark’s data skipping is used.
fineblock: This is our approach. We first partition by

month on o orderdate. We use the workload analyzer to ex-
tract 15 features from the 800 training queries (by setting
numFeat=15). Note that we do not consider any date filters
as features and will rely on the month partitions to prune
data. Using these features, we run a partitioner instance
on each month partition in parallel. An average month par-
tition has 7.7 million tuples. By setting minSize= 50k, a
month partition has around 100 blocks. The total number
of blocks is roughly 8000. We used both our feature-based
skipping (Section 5) and Shark’s existing skipping.

We evaluate the performance of running 80 test queries
(as mentioned in Section 7.2) using the above alternatives.
Figure 6(a) shows the percentage of tuples scanned for the
80 queries relative to fullscan. As we can see, the existing
data skipping with range1 and range2 only scan 25% and
19% of the tuples scanned by fullscan respectively. The
tuples scanned by fineblock is only 3.9% of fullscan, a
5x improvement over the manual range partitioning scheme
range2. As a reference, the bar actual shows the percentage

Figure 7: E↵ect of minSize on TPC-H

of tuples that must be scanned, i.e., the tuples that actually
satisfy the filters, which is 0.7% of fullscan.

To test the end-to-end query response time, we consider
two scenarios: when the table is entirely on disk and when
the data is entirely in memory. Figure 6(b) shows the query
response times for on-disk data. We run the 80 test queries
in a sequence and record the sum of their response time. We
cleared the OS cache before running each query. As shown,
the query response time for range1 and range2 are 30% and
21% of that for fullscan. fineblock only took 7% of the
time for fullscan, 23% for range1 and 30% for range2. This
is an 3-4x improvement over the range partitioning schemes.
Figure 6 shows the query response time for memory-resident
data. In Shark, we can simply cache a table in memory by
executing:

create table tpch_cached as select * from tpch;

We configured our distributed RAM cache to be large
enough to hold the entire table. As we can see, fineblock
only took 30% and 32% of the time taken for range1 and
range2, respectively. This is roughly a 3x improvement.
It is interesting to note that the end-to-end improvement
for in-memory data is slightly smaller than that for on-disk
data. As scanning in-memory data is much faster, the e↵ect
of skipping in-memory blocks is less significant.

We also tested the end-to-end performance for TPC-H
Skewed. The amount of tuples scanned by fineblock is only
8% and 10% of that by range1 and range2 respectively. For
the on-disk data, fineblock took 20% and 23% of the time
for range1 and range2 respectively; for the in-memory data,
fineblock took 22% and 29% of the time for range1 and
range2 respectively. Note that our improvement for TPC-H
Skewed is better than for TPC-H. The skewness in the filter
distribution allows a small number of features to subsume
even more queries, and thus makes our techniques even more
e↵ective for TPC-H Skewed.

On both TPC-H and TPC-H Skewed, we observe that
our approaches significantly reduce the data scanned, which
e↵ectively translate to an improvement in end-to-end query
response time for both disk- and memory-resident data.

7.3.2 Effect of minSize

Intuitively, the smaller the block size is, the more chance
we can skip data. In Figure 7, we plot the total number of
tuples scanned using our approach for answering the 80 test
queries in TPC-H and TPC-H Skewed by varing minSize,
with numFeat=15. Since the two curves represent two dif-
ferent workloads, for fair comparison, we plot the ratio of
the number of tuples scanned to the number of tuples that
have to be scanned. Thus, a y-value of 5 in the curve means
we scanned 5 times as many tuples as necessary.
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Figure 8: E↵ect of numFeat on TPC-H

We make several observations. First, for both curves, we
scan more data as the block size increases. Second, data
skipping is even more e↵ective on TPC-H skewed. Recall
our workload assumptions in Section 2, many real work-
loads tend to have skewed predicate distribution. If the filter
predicates are skewed, a small set of features can cover more
queries. Third, the number of tuples scanned is not sensitive
to the block size. In particular, increasing minSize from 5k
to 200k only make the scan twice as much for both work-
loads. This gives us a wide range of choosing minSize. For
example, in our experiment on Shark, we set minSize=50k,
which make each block nicely fit in a Spark/HDFS block file
(128MB by default).

7.3.3 Effect of numFeat

Figure 8 plots the number of tuples scanned by varying
numFeat. The numbers are also normalized as in Figure 7.
As we can see, when using too few features, e.g., < 5, we
have to scan a lot of more tuples, as these features are not
representative enough for the workload. As we add more
features, the e↵ectiveness of skipping quickly stabilizes and
TPC-H Skewed consistently benefits more from our block-
ing. We can see that, for both TPC-H and TPC-H Skewed,
a small set of features is su�cient. Even though the pred-
icates in TPC-H are uniformly distributed, the fixed filters
play an important role as features. For example, the feature
l returnflag = ’R’ in template q10 can subsume 100 out of
800 training queries (and also 10 out of 80 testing queries),
since all the queries generated from template q10 have this
filter. TPC-H Skewed performs even better due to the skew-
ness in the parametric predicates. This curve also suggests
that adding more features will not significantly hurt the ef-
fectiveness of skipping, though this may hurt the blocking
e�ciency. This is because the highly weighted features will
dominate and adding more features with small weights will
not dramatically change the blocking solution.

As discussed, one important e↵ect of numFeat is on the
number of distinct feature vectors. We cannot a↵ord to run
a bottom-up clustering algorithm if the number of distinct
vectors is too large, e.g., close to the number of tuples. The-
oretically, with m features and n tuples, the number of dis-
tinct vectors is upper-bounded min(2m, n). In Figure 8,
we plot the actual number of distinct vectors by varying
numFeat in base-2 log scale. The plot shows that the num-
ber of distinct vectors is much smaller than either 2m or n.
This is because these features have low selectivities and can
be correlated.

7.3.4 Blocking Time
Figure 9 shows the breakdown cost of blocking a month

partition in TPC-H. An average month partition has 7.7 mil-
lion tuples and 8G in size and can be divided into roughly

Figure 9: Breakdown of blocking time

100 blocks. We set numFeat = 15 and minSize = 50. It
took about 1 minute for the entire workflow. When load-
ing multiple partitions simultaneously, we can run multiple
blocking processes in parallel. As we can see, the shu✏ing
is still the bottleneck, although we run sophisticated algo-
rithms in the workload analyzer and the partitioner. The
workload analyzer runs a frequent itemset-based algorithm
from 800 queries. The partitioner runs a bottom-up cluster-
ing algorithm on 1315 feature vectors. In our experiments,
we only used our own vanilla implementations for these al-
gorithms running on a single thread, which were su�ciently
e�cient. Notice that both components can be further opti-
mized, e.g., using an o↵-the-shelf library. We combined the
cost of featurization and reduce, as they were implemented
as Spark map and reduce functions which can pipelined.

7.4 Conviva Results
7.4.1 Query Performance
For evaluating the query performance, we compare the

following alternatives:
fullscan: We perform a full scan for each query.
range: We perform a range partitioning on date and a

frequently queried column. We use Shark’s data skipping.
fineblock: We first partition by date. After extracting 40

features from the training queries (numFeat=40), we block
each date partition with minSize =50k. We use both our
feature-based and Shark’s existing skipping mechanisms.

Figure 10(a) shows the percentage of tuples scanned for
evaluating the test queries, relative to fullscan. As we
can see, range already reduced the scan to be 1.81% of
fullscan, fineblock only scans 0.23% of the data. The
average selectivity of these queries (i.e., actual is 0.03% of
fullscan. Figure 10(b) shows the query response times for
on-disk data. We can find that range spent 13% the time
as fullscan, and fineblock further reduced the time to be
2.6% of fullscan. This is a 5x improvement over range.
Figure 10(c) shows the query time for in memory data. We
find that range and fineblock used 16% and 8.1% of the
time taken by fullscan. The improvement of fineblock
over the range partitioning schemes is 2x.

As scanning in-memory data is fast, the e↵ect of data
scan reduction is diminished by the cost from other parts
of the query evaluation such as aggregations. Specifically,
we observed that some Conviva queries computed many ag-
gregated values in the SELECT statement, which can be
CPU-intensive after the data scan. Incorporating techniques
that speed up these aggregations (e.g., materializations) may
make our end-to-end improvement more significant.

7.4.2 Effect of numFeat

We now study the e↵ect of numFeat on the Conviva work-
load. Figure 11(a) plots the scan ratio by varying numFeat.
The number of tuples scanned is dramatically reduced as
numFeat is increased from 2 to 20. As we continue to add
more features, however, the curve is relative flat. This is
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Figure 10: Query Performance on Conviva

inline with the results on TPC-H (Figure 8), except that
this curves starts to stabilize at 20 instead of 10. This result
confirms that a small number of features is su�cient for a
real workload. In Figure 11(b), we can see that the number
of distinct vectors is small.

We can conclude that, in a real-world workload, (1) our
blocking can e↵ectively help queries skip data and in turn
reduce the query response time significantly for both on-
disk and in-memory data, and (2) the blocking can be done
e↵ectively and e�ciently with a small number of features.

8. RELATED WORK
In this section, we review the related work.
Horizontal Partitioning. Range and hash partition-

ing are the most widely used horizontal partitioning tech-
niques and serve for many purposes, such as load balancing.
Advanced and automated partitioning techniques have also
been extensively studied [15, 39, 30, 11], but they were built
on top of range or hash partitioning. Although the block-
ing problem we study is a form of horizontal partitioning,
we generate a tuple-level partitioning map by solving an
optimization problem instead of using explicit range con-
straints. Our techniques can be used to further segment a
date-range partition into finer blocks for skipping purposes.
While Schism [17] also used fine-grained tuple-level parti-
tioning, they had a di↵erent objective, which is reducing
cross-machine transactions for OLTP workloads.

Materialized Aggregates and Skipping. Many data-
bases utilize range partitions to enhance query performance.
Partition pruning (e.g., Oracle [3] and Postgres [4]) allows
queries to skip partitions based on partition key ranges (e.g.,
date). Extending this idea, other works [28, 34] have pro-
posed maintaining small materialized aggregates (SMAs) for
each range-partitioned block, such as min, max, count, sum
and histograms for each column. For a given query, these
SMAs can be used to classify the data blocks into three cat-
egories: (C1) irrelevant blocks, the ones in which no tuple
satisfies the query, (C2) relevant blocks, the ones in which
all the tuples satisfy the query, and (C3) suspect blocks, the
ones in which some tuples may satisfy the query.

Obviously, the blocks in C1 can be safely skipped. The
C3 blocks can also be skipped when the requested aggregates
can be answered by SMAs. We note that the opportunity of
identifying and skipping C3 blocks can be rather limited in
practice, as it requires that 1) all the (conjunctive) filters of
the query subsume the block’s min and max ranges and 2)
all the requested aggregates can be answerable by the chosen

(a) % tuples vs. numFeat (b) # vectors vs. numFeat

Figure 11: E↵ect of numFeat on Conviva

SMAs and if the query contains a group-by, the SMAs must
be stored for all of the potentially relevant groups. A num-
ber of systems, e.g., [7, 37, 6, 35], use a simplified version
of SMAs, which only skip C1 blocks and do not distinguish
C2 from C3 blocks. Similar to these systems, our techniques
only consider skipping C1 blocks. While these previous ap-
proaches are built on top of range partitioning, our main
contribution is to develop a novel fine-grained partitioning
technique based on workload analysis, which can turn more
blocks into C1 blocks than a range partitioning. Neverthe-
less, the idea of using SMAs to skip C3 blocks can also be
implemented on top of our partitioning scheme.

Materialized View Selection. Our work is related
to the well studied problem of materialized view selection
(MVS), since both exploit pre-computations for query per-
formance improvement. These two problems, however, di↵er
fundamentally in several ways. First, our partitioning is at
the file-organization level, while MVS is at the application
level; in fact, our techniques can be used to partition large
materialized views. Second, we utilize pre-computation to
guide the tuple re-arrangement and only need to maintain
minimal metadata (i.e., a bit vector per block), while MVS
does not change the original data but store the precomputed
results, which can incur significant space overhead, e.g., data
cubes. Third, MVS is an optimization problem constrained
on space [20, 10] or maintenance cost [19], while ours is con-
strained on the number of partitions.

Similar to our approach, some MVS approaches also ex-
ploit workload information. Most of these focus on the
group-by columns of the queries (e.g., [16, 14]) for deciding
which columns to pre-aggregate. Others (e.g., [10]) also con-
sider which columns are filtered on for selecting indexes and
materialized views in an integrated manner. Di↵erent from
this work, our workload analysis aims to identify representa-
tive filters, including both filter columns and constants, and
their subsumption relations for skipping purposes. We con-
sider all kinds of filters, such as equality/range conditions,
string matching and user defined functions.

Workload-driven Physical Design. Many research ef-
forts have been devoted to utilizing workload information for
automating database design. For example, the AutoAdmin
project [10, 11] integrates many physical design problems,
such as selecting indexes and materialized views; Database
Cracking [21] reorders the data columns as a byproduct of
query processing to benefit future queries; ARF [12] tunes a
range-based filter for skipping cold data; BlinkDB [31] pre-
pares samples o✏ine based on the workload.

Optimization Problems for Partitioning. Finding
an optimal partitioning over a set of data points is an im-
portant problem in many applications, such as data mining,
computer vision [33], gene expression analysis [23] and VLSI
design [24]. The partitioning problem is NP-hard for many



objective functions, e.g., [13]. To the best of our knowledge,
no existing work has formulated the k-MaxSkip problem be-
fore, although we found k-MaxSkip and BalancedMaxSkip
are closely related to several partitioning problems, such as
hypergraph cut [24], discrete basis partitioning problem [27]
and row-exclusive biclustering [26].

9. CONCLUSION
We presented fine-grained data blocking techniques, which

partition the data tuples into blocks in a way that could help
queries skip data. The key components were: (1) a workload
analyzer, which generates a set of features from a query log,
(2) a partitioner, which computes a blocking scheme by solv-
ing a optimization problem, (3) a feature-based block skip-
ping framework used in query execution. We prototyped our
techniques on Shark, which showed that our blocking mod-
ules can be easily added to an existing query engine and the
data flow can be executed using standard data marshalling
steps, such as map and reduce.

We evaluated the e↵ectiveness of our techniques using
TPC-H workload and a real-world ad-hoc workload, which
showed that our blocking scheme made the queries scan 5-
7x less data than traditional range-based blocking schemes.
The results also indicated that the reduction on data scan
can directly translate to the reduction on query response
time, for both memory- and disk-resident data.
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