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ABSTRACT
The seminal 2003 paper by Cosley, Lab, Albert, Konstan,
and Reidl, demonstrated the susceptibility of recommender
systems to rating biases. To facilitate browsing and selec-
tion, almost all recommender systems display average rat-
ings before accepting ratings from users which has been
shown to bias ratings. This effect is called Social Influence
Bias (SIB); the tendency to conform to the perceived“norm”
in a community. We propose a methodology to 1) learn, 2)
analyze, and 3) mitigate the effect of SIB in recommender
systems. In the Learning phase, we build a baseline dataset
by allowing users to rate twice: before and after seeing the
average rating. In the Analysis phase, we apply a new non-
parametric significance test based on the Wilcoxon statistic
to test whether the data is consistent with SIB. If significant,
we propose a Mitigation phase using polynomial regression
and the Bayesian Information Criterion (BIC) to predict
unbiased ratings. We evaluate our approach on a dataset
of 9390 ratings from the California Report Card (CRC), a
rating-based system designed to encourage political engage-
ment. We found statistically significant evidence of SIB.
Mitigating models were able to predict changed ratings with
a normalized RMSE of 12.8% and reduce bias by 76.3%. The
CRC, our data, and experimental code are available at:
http://californiareportcard.org/data/

1. INTRODUCTION
In the 1950’s, Solomon Asch performed a well-known se-

ries of experiments [4,5,9] where subjects were asked to
choose which of a set of lines matched the length of a ref-
erence line. When working individually, 99% of the answers
were correct. But when answering in the presence of a group
of confederates who agreed on incorrect answers, 25% of
participants conformed to the incorrect consensus. These
results have been widely repeated to confirm what is now
known as social influence bias: the tendency for participants
to conform with the perceived community “norm” [15,27,36].

Susceptibility to influence has been studied in the con-
text of recommender systems [12], and, in particular, Cosley
et al. explored different rating scenarios and how system-
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Figure 1: Typical displays of aggregate prior rating
values (the mean or median) in Amazon, Netflix,
and the California Report Card that has the poten-
tial to bias users.

generated rating predictions may influence participant rat-
ings. They found that in a variety of scenarios including pre-
senting manipulated predictions, presenting predictions on
already rated items, and changing the rating scale had sta-
tistically significant influence on participants ratings. The
key conclusion of Cosley et al. is that rating and recom-
mender systems are easily biased and they argue that these
biases can mask a user’s true perception about a rated item.

In almost all recommender systems, participants see the
community “norm” in the form of aggregate statistics (the
average or median rating values) before entering a rating of
their own; potentially introducing social influence bias into
the rating data. This interface paradigm is, of course, rea-
sonable to facilitate browsing and selection in a large lists of
items. For example, online retailers such as Amazon display
the average rating value for products and Netflix displays
the average rating value of movies (Figure 1). Display of
average ratings values can also be used as an incentive [23]
to reveal information about peers after a participant enters
his or her own grade. Display of statistics also increases the
perceived transparency of open democracy platforms that
encourage political engagement [1,30,31]. Social influence
bias can yield ratings that are closer to the average, less
diverse, and less representative of participants’ true evalua-
tions for items, which can in turn affect similarity measures
between items and users and reduce the effectiveness of the
recommendation system.

In this paper, we propose a methodology to learn, an-
alyze, and mitigate the effects of social influence bias in
recommender systems. As a case study, we evaluate our
methodology on a new recommender system, the California



Report Card (CRC). In the CRC, participants assign rat-
ings (letter grades A+ to F, a 13 point scale) to the State
of California on six political issues. Then, the CRC uses the
ratings to place participants in a open-ended political dis-
cussion with an initial set of comments from those who rated
the state most similarly. Conformity ratings of the state can
degrade the performance of the “recommendation”, a set of
comments from like-minded participants.

The CRC has novel interface that allows us to learn the
effects of Social Influence Bias. The CRC interface reveals
median grade values to participants after they enter their
own rating and then allows participants to revise their rat-
ing. The key insight is that the combination of initial and
revised ratings pairs allows us to determine if the social in-
fluence bias is statistically significant, and if so, can be used
to build an inference model that can predict the biasing ten-
dency; thus mitigate the bias in a dataset of already biased
ratings.

Our methodology has three main components:

Learn To initialize with baseline data, an initial “learning”
phase asks an initial set of participants to rate a set of items
twice: before seeing the median rating, and again after the
median is revealed. This collects triplets of ratings for each
participant (initial rating, median rating, and final rating).

Analyze Given these triplets, we propose a new nonpara-
metric significance test based on the Wilcoxon statistic to
determine whether ratings that were changed are signifi-
cantly closer to the median, i.e. the degree of social influence
bias for each item.

Mitigate Using the Bayesian Information Criterion (BIC),
we learn a polynomial function of optimal degree that esti-
mates the initial rating from the final rating and the median.
This can be used in a post-learning phase (when medians are
always visible), or on historical ratings, to estimate what a
participant’s rating would be without social influence bias.

A key priority is a nonparametric approach to modeling
social influence bias. Many earlier studies of social influence
bias have focused on binary ratings (eg. up or down) [28,37].
However, recommender systems often have multi-valued rat-
ing scales (eg. 5 stars). Discrete multi-valued rating scales
often exhibit multimodality and are not the optimal settings
for parametric significance tests (eg. t-test and χ2 test). In
fact, it is known that Wilcoxon Rank statistical significance
tests have far higher statistical power in these settings [24],
and are further robust to outliers and long tails. We use
these results and properties to derive a new significance test
for Social Influence Bias.

Not only is our testing framework nonparametric, but we
also show that we can relax assumptions about the struc-
ture of the social influence bias (eg. linear, conforming vs.
contrarian). We use the Bayesian Information Criterion to
jointly optimize over the model parameters and the complex-
ity hyperparameter in polynomial regression. The result is
a predictive model of social influence bias without having
to make a strong assumption about the distribution of the
data.

Results to date from the CRC suggest that given the op-
portunity, many participants will revise their grades/ratings:
862 out of 9390 ratings were changed after participants saw
the median value. We found statistically significant effects
of social influence bias, with ratings on average 19.3% closer
to the median value than ratings that were not changed.
We also conducted an independent reference survey using

SurveyMonkey to ask a random sample of 611 participants
from the company’s paid pool of California participants to
grade the same set of issues without displaying the median
values. This data did not exhibit the same clustering around
the median as the CRC, which comparably had ratings that
were statistically significantly closer to the median (12.0%),
suggesting that social influence bias is an important factor.

2. RELATED WORK
In their seminal 2003 work, Cosley, Lam, Albert, Kon-

stan, and Reidl [12] studied the broad problem of biases in
rating systems and tested the following relevant hypotheses:
can manipulated “predicted” ratings influence a participant
to change their rating, how consistent participants when re-
rating an item, and how does rating scale (eg. stars, binary,
unary) affect the average rating. The seminal result from
Cosley et al. is that all of these hypotheses yielded signif-
icant influencing tendencies. In this paper, we formulate a
predictive model for a specific type of bias, social influence
bias, which is learned and isolated through the unique inter-
face of the CRC. We also apply a nonparametric significance
testing methodology.

The Asch model for conformity is the theoretical basis
for what is sometimes called social herding, the tendency
to conform [6,33], and this is a well-known choice model
in economics [11,16,22]. Such models have also been stud-
ied in psychology and behavioral economics as “persuasion
bias” [14,15,20,21]. In 2011, Lorenz et al. described how
these biases can undermine the effectiveness of crowd intel-
ligence in estimation tasks [25]. They argue that movement
towards the group consensus causes a diminished diversity
of opinion potentially leading to inefficiencies and inaccurate
collective estimates. Danescu-Niculescu-Mizil et al. analyze
helpfulness ratings on Amazon product reviews [13]. They
found that the helpfulness ratings did not just depend on
the content of the review but also its aggregate score and
its relationship to other scores. In order to better distin-
guish social influence from other biases, Muchnik et. al de-
signed a randomized experiment in which comments in an
online forum were randomly up-treated or down-treated [28].
They concluded a statistically significant bias where a posi-
tive treatment increased the likelihood of positive ratings by
32%. In both Danescu-Niculescu-Mizil et al. and Muchnik
et al., they looked at the problem of social influence bias in
an a priori setting, where users see the aggregate statistic be-
fore giving their rating. Our work tests for a particular form
of social influence where users are given the opportunity to
change their opinions following the feedback.

Another line of relevant recommender systems research is
the study of the consistency of repeat ratings [2,3]. It is
an open problem, how to incorporate models of noisy rat-
ings into our framework, however, as our non-parametric
significance test is rank-based it statistically robust to small
amounts of random noise. There has also been work on
explaining recommendations [7,35], and one way to evalu-
ate these explanation systems is to give users the option to
change their ratings and evaluate how much (or how little)
the explanation changes the users rating.

Zhu et al. conducted an experiment in which users eval-
uate an image on a subjective question with binary scale
(eg. “Is this image cute?”), which was followed (either im-
mediately or later) by a presentation of the crowd consensus
opinion [37]. Users were given an opportunity to change
their response, and they concluded that there was a sig-
nificant tendency to change submissions. The tendency to
change was the strongest when users were asked to make



their second decision much later and not immediately after
the first. Along these lines, Sipos et al. argue that context
along with an aggregate rating plays a large role in the users’
ratings. That is, users may attempt to“correct” the average,
by voting in a more polarizing manner (more positively or
negatively) [34]. We extend this prior work to measure and
predict these changes when the input is more complex than
a binary scale, and propose a non-parametric methodology
that can be, in principle, extended to a variety of different
input mechanisms. Our model can also account for a chang-
ing aggregate statistic such as a median rating changing as
more data is collected.

3. LEARNING PHASE
In this section, we describe the learning phase of our tech-

nique where we collect the triplets (initial rating, final rat-
ing, and observed median) for building our model. We will
explain in detail the system design of the California Report
Card, how we record changed ratings, and define the nota-
tion that we will use in the following sections.

3.1 The California Report Card
The California Report Card (CRC) 1 is a prototype cross-

platform web/mobile application designed to allow partici-
pants to advise California state leaders on timely policy is-
sues. The CRC extends our earlier work with Opinion Space
and Eigentaste [8,17–19,29]. In the CRC, participants assign
letter grades (A+ to F) to the state of California on the
following six issues: (1) Implementation of the Affordable
Care Act (“Obamacare”), (2) Quality of K-12 public educa-
tion, (3) Affordability of state colleges and universities, (4)
Access to state services for undocumented immigrants, (5)
Laws and regulations regarding recreational marijuana, and
(6) Marriage rights for same-sex partners. Grades (Ratings)
are assigned on a thirteen point scale (A+,A,A-,...,D-,F).
These issues are posed in a fixed order each with the same
input scale. Participants submit ratings using a click-and-
drag slider interface as illustrated in Figure 2. On mobile
devices, participants touch and drag to indicate the desired
rating.

Figure 2: After entering their rating, the median
rating over all participants is revealed. Participants
have the option to change their rating after seeing
the median.

Upon release of the slider, the CRC reveals the median
for that issue over all prior participants. Even after the
median is revealed the slider is still active and participants
can change their ratings. However, it is important to note
that participants were not explicitly told that they could
change their rating. Another important observation is that
participants who accessed the application at different times
may have seen different medians as they were calculated
based on the data up to that point. We recorded the initial
rating, the median that the participant observed, and any

1This study was approved by our Human Subjects commit-
tee as per IRB Protocol 2014-01-5918.

subsequent changes along with timestamps for each of the
events. Rating all of the six issues was not mandatory and
participant had the option to skip any of the issues. To
analyze this data, we mapped these 13 grade values linearly
onto a scale from 0 to 1, with 1 being an A+ and 0 being
an F.

3.2 Notation
Let P denote the set of all participants. For each partic-

ipant pj ∈ P , we associate a 3-tuple of ratings (gi[j], m[j],
gf [j]) which represent the initial rating, median observed
by the participant, and the final rating. For each issue, we
divided the participants into three subsets of P : ones who
did not change their ratings Pn, ones who changed Pc, and
ones who skipped the question Ps. Our primary objective
is to test the distributional properties of rating tuples from
participants in Pn compared to those in Pc.

To ensure that all participants in the set Pc had an op-
portunity to see the median and then react, we filtered this
group using the timestamps. The median appears in the
interface with an animation whose completion time varied
between devices, so we set a grace period of 3 seconds before
we categorized the participant into set Pc.

For consistency, we use the same notation to describe par-
ticipants in the reference survey. We denote the set of ref-
erence survey participants as set R, and each participant is
associated with a 3-tuple (gi[j], m[j], gf [j]). However, since
the reference survey does not reveal the median gi[j] = gf [j]
and m[j] is the hypothetical median of the prior participants
(which is not shown).

4. ANALYSIS PHASE
In the analysis phase, we determine whether social in-

fluence bias is statistically significant by analyzing spread of
ratings around the median for the participants that changed
their ratings. There are three principle challenges in test-
ing this hypothesis. The first challenge is that parametric
significance tests comparing two sample means such as the
two sample t-test and z-test are known to perform poorly for
multimodal and discrete distributions. Another significance
test that is commonly applied to compare spreads of distri-
butions is the F-test, which is also known to perform poorly
for many non-normal distributions [26]. Furthermore, this
test is usually used to test the spread of data around the
mean, which only in very special conditions, such as normal
distributions, aligns with the median which is the parameter
of interest in the CRC. The discreteness of our data leads
to multi-modal distributions which are not optimal for these
testing methods.

The second challenge is that there is a natural tendency
for ratings to concentrate around the median even with-
out a bias. Consider the following participant behavioral
model. Suppose that participants are not accustomed to a
slider-based input. We can model the first rating that the
participant leaves as uniformly randomly anywhere on the
slider. As the participant begins to understand how to use
the slider, their use becomes more accurate, ultimately set-
tling on a rating from our observed distribution of final rat-
ings. This model, the first rating is uniformly random and
the second rating is a sample from the observed distribution,
would result in a strong regression towards the median; even
if there is no causal link with seeing the median.

Finally, the median mi changes as ratings arrive and thus
can be different for each participant. The median rating
is calculated over all prior participants and thus is depen-
dent on when the participant submitted their first rating.



In practice, the median will eventually converge for a large
number of participants, but it would be incorrect to measure
concentration around a final median.

To address these three challenges, we propose a nonpara-
metric model based on the Wilcoxon statistic to test the
hypothesis that the group of participants that changed their
ratings are more tightly centered around the median value
that those participants observed. Our tests compare abso-
lute deviations around the median for Pn, Pc, and R; which,
as a relative comparison, controls for the natural tendency
for ratings group around the median. Furthermore, it is
more robust to the effects of alternate models such as the
one described in our second challenge in comparison to a
direct test of correlation (see Section 6.2.1).

4.1 Non-parametric Significance Test
Recall that Pn is the set of participants that did not

change their ratings and Pc be the set of participants that
changed their ratings. We define a set Xc, Xn of absolute
deviations from the observed median of the final rating for
each group:

Xc = {|m[j]− gf [j]|} ∀j ∈ Pc (1)

Xn = {|m[j]− gf [j]|} ∀j ∈ Pn (2)

For the purposes of hypothesis testing, we ignore the sign
of the deviation. However, in Section 5, where we build a
predictive model for the changes, we include the sign.

Now, for the set Xc, we calculate the Wilcoxon rank-sum
statistic. We assign a rank to each of the absolute deviations
in the union set X = Xc ∪ Xn (ie. the largest change has
rank 1 and the smallest has rank |Xc∪Xn|. For Xc, we sum
the ranks of the deviations within its set:

Wc =
∑
j∈Pc

Rj (3)

The Null Hypothesis is that absolute deviations in Xc
are the same size as Xn. Under this null hypothesis
median(Xn) = median(Xc), the ranks will be evenly dis-
tributed between each group. Therefore, the null expected
value and variance of W is:

E(W ) =
(|X|+ 1) · |Xc|

2
(4)

var(W ) =
(|X|+ 1) · |Xc| · |Xn|

12
(5)

For the significance level α, we can test the probability that
our calculated Wc comes from the null distribution. In other
words, the test calculates the probability that a random
subset of users (ignoring the categorization Pn and Pc) can
have the observed difference in rank-sum values. A signif-
icant result means that for the participants that changed
their ratings the changed changes are more tightly centered
around the median they observed. For many distributions,
the Wilcoxon statistic is more robust as it uses ranks rather
than the actual values, making it more resilient to outliers.
Even in the case where the data is normally distributed,
the optimal condition for the t-test, the relative efficiency of
the Wilcoxon rank-sum statistic compared to the typically
used t-statistic is 3

π
= 95.4%. We trade off a small amount

of efficiency in the normally distributed case, for increased
efficiency and robustness in many non-normal distributions
(eg. exponential 3× more efficient). Recommender system
data is almost always collected from discrete inputs which
are usually not normally distributed.

The same analysis can be used to test Xc against the
absolute deviations in the reference survey Xr

Xr = {|m[j]− gi[j]|} ∀j ∈ R (6)

or for initial vs. final ratings in the change group X ′c:

X ′c = {|m[j]− gi[j]|} ∀j ∈ Pc (7)

4.2 Quantifying Concentration of Ratings
In addition to testing social influence bias, we can also

estimate by how much the absolute deviations differ. The
Wilcoxon statistic can be inverted to estimate a most likely
shift parameter ∆, that is a shift ∆ in the distribution of ab-
solute deviations Xc that maximally aligns them with Xn.
In other words, Xc + ∆ is most supported by the null hy-
pothesis (no social influence bias), or the distance from this
hypothesis. An intuitive interpretation of ∆ is that it mea-
sures how much our deviations have to be increased so that
the no social influence bias hypothesis is the most likely con-
clusion. Since Xc is a set of absolute deviations, ∆ tells us
how much more concentrated Xc is than Xn around the ob-
served medians. This parameter is relevant to the design of
recommendation algorithms use similarity (eg. clustering or
nearest neighbors), as it characterizes how much more on
average are participants closer to the median.

We refer to [24] on the derivation of ∆ and its confidence
interval:

D = {xn[j]− xc[i]} ∀i, j ∈ Xn, Xc (8)

∆ = median(D) (9)

5. BIAS MITIGATION
In our learning phase, we collect rating triplets (gi[j], m[j],

gf [j]), and in our analysis phase, we determine whether the
triplets exhibit statistically significant social influence bias.
In the mitigation phase, we propose two models: a correc-
tion model (infers the initial rating given a final rating and
the median), and a prediction model (predicts final ratings
given an initial rating and the median). Once trained, the
correction model can be applied to correct final grades col-
lected without the triplet (either historical or post-learning).
The prediction model can be used to analyze properties of
the social influence bias eg. are ratings above the median
affected the same way as ratings below the median.

Previous work, suggests that social influence is not a ho-
mogeneous bias, namely, positive influences are different
from negative influences. In Muchnik et al. [28], they found
that when they positively treated posts with higher up-vote
counts it lead to a significant increase in the likelihood of
additional up votes (32% more likely). On the other hand,
they argue negative treatments inspired correction behav-
ior; where some participants wanted to correct what they
felt was an incorrect score. They found that this also in-
creased the likelihood of up-voting (88% more likely); as op-
posed to the conforming response which would be increased
down-votes.

These results suggest that the effects of viewing median
ratings can be non-linear and are very context/question de-
pendent. Similar to the previous section where we applied
non-parametric tests that did not make a strong assump-
tion about the distribution of the data, we propose a infor-
mation theoretic polynomial function search that does not
make strong assumptions about the nature of the relation-
ship.

5.1 Correction Model
Recall that gf [j] is the final rating for participant j, and

m[j] − gi[j] is the difference between the median and the
initial rating. We want to find a polynomial function f such
that:

f(gf [j]) ≈ m[j]− gi[j] (10)



Let f ∈ Pk be a polynomial of degree k. The square loss of
f , is the error in predicting m[j]− gi[j] from f(gf [j]):

L(Xc; f, k) =
∑
j

((m[j]− gi[j])− f(gf [j]))2 (11)

For a given k, the best-fit polynomial minimizes this square-
loss:

f∗k = arg min
f
L(Xc; f, k) (12)

For a given k, this problem can be solved with least squares.
To search over the space of polynomial models, we apply a
well-studied technique called the Bayesian Information Cri-
terion (BIC) [10,32]. This technique converts the optimiza-
tion problem into a penalized problem that jointly optimizes
over the “complexity parameter” k. This penalty can be
interpreted as bias towards lower degree models, in other
words, an Occam’s Razor prior belief. Cross-validation is an
alternate method to empirically determine optimal model,
and in practice, they give very similar results. BIC, however,
is derived through maximum likelihood estimate and is not
an empirical estimate so the learned model has a notion of
optimality conditioned on the BIC prior belief.

Thus, we reformulate the optimization problem in the fol-
lowing way to incorporate the BIC penalty:

arg min
f,k
|Xc| log(L(Xc; f, k)) + k log(|Xc|) (13)

The resulting optimal polynomial will tell how to correct a
final rating to infer the initial one. Let q:

q(j) = m[j]− f(gf [j]) (14)

the predicted initial grade, and this value can be the input
to our recommendation algorithm.

5.2 Applying the Corrections
There are two ways in which we can apply the correction

model to existing recommender systems data. First, we can
train our correction on all triplets, including ones that did
not change, to get a correction that we can then apply to
all ratings in the post-learning phase. The second way is to
estimate the probability that a rating is changed, and if that
probability is above a threshold α (eg. 50%) we can apply
the correction. With the second way, the correction model
is only trained on those triplets where the initial rating is
different from the final one. To estimate this probability, we
can apply a logistic regression model to predict whether or
not a rating has been changed from all other ratings. Let
c(i, j) be 1 if participant j changed his or her rating for issue
i and 0 if not. Our feature vector is the vector of all final
ratings for that participant v[j]f = [g1

f [j], ..., g6
f [j]]. Then,

we can apply this logistic regression model to estimate the
probability that c(i, j) = 1, using the logistic function:

P [c(i, j) = 1] =
1

e−β
T v[j]f

(15)

We include results from both approaches in our experiments.

5.3 Prediction Model
For the prediction model, we make the dependent variable

m[j] − gi[j] and the independent variable gf [j] − gi[j]. We
apply the polynomial regression with the BIC optimization
as before, and find an optimal function f such that

f(m[j]− gi[j]) ≈ gf [j]− gi[j] (16)

f is a function of the difference between the initial rating and
the median, that predicts the change in rating. This model
allows us to reason about the nature of the social influence
bias in the system. For example, if |f(x)| > |f(−x)| for
x > 0, we know that ratings above the median lead to a
larger rating change. Additionally, f ′(x) tells us how the

change varies as the observed difference with the median
increases.

6. RESULTS

6.1 Dataset Description
The data for our case study was collected from the Cali-

fornia Report Card between January 18th to April 20th. We
also conducted an independent reference survey using Sur-
veyMonkey’s paid random panel system between March 8th
and March 14th. As mentioned, ratings of six political issues
were collected on a 13-point letter grade scale (A+,A,...,F)
and for analysis we mapped these ratings linearly onto a
scale from 0 to 1, with an F as 0 and A+ as 1. Participants
also had the option to “skip” issues (not assign a grade).
There were 1575 participants from the CRC and 611 partic-
ipants from SurveyMonkey. Rating activity is summarized
below.

Issue No Change Change Skip Median

CRC
Obamacare 749 223 593 B (0.6667)
K12 849 172 544 C+ (0.5000)
College 923 139 503 C- (0.3333)
Immigration 693 105 767 C (0.4167)
Marijuana 881 118 566 C (0.4167)
Marriage Rights 929 105 531 B+ (0.7500)

Reference
Obamacare 498 - 113 B (0.6667)
K12 561 - 50 C (0.4167)
College 573 - 38 C- (0.3333)
Immigration 375 - 236 C+ (0.5000)
Marijuana 498 - 113 C (0.4167)
Marriage Rights 554 - 57 B+ (0.7500)

For any given political issue, between 10% and 20% of
those who assigned ratings registered a rating change. In all,
556 out of the 1575 CRC participants changed their rating
at least once (Figure 3). We also found that the aggregate
results of the reference survey matched the CRC nearly per-
fectly. On only two of the question (K12 and Immigration),
we found a observed differences which were both less than a
letter grade (+ or -).

Figure 3: Among CRC participants, 65% changed
none of their ratings, 22.0% changed one rating,
8.6% changed two, and 6.5% changed three or more.
The lower figure omits those who didn’t change and
indicates that majority of rating changes were to-
wards the median.



6.2 Analysis

6.2.1 Correlation vs. Absolute Deviation
In Section 4, we argued that using correlation as a test

statistic can lead to erroneous conclusions of social influence
bias, and proposed testing the absolute deviations around
the median. We ran an experiment to illustrate the prob-
lems of using correlation instead of absolute deviation. In
this experiment, we iterated through the initial ratings each
of participants in the change group Pc. For each rating, we
randomly sampled a final rating from group Pn, the ones
that did not change. In this model, since we sample final
ratings from the no change group, we know that the social
influence bias hypothesis is not true, since in distribution
those who changed their ratings and those who didn’t are
exactly the same. However, when we calculate the Pearson
correlation coefficient between gf [j]−m[j] (the set of actual
differences, not absolute deviations, between the final grade
and the median) and gi[j] − m[j] (the set of actual differ-
ences, not absolute deviations, between the initial grade and
the median), we find statistically significant correlations.

Issue corr p-val

Obamacare 0.709 5.2e-56
K12 0.659 4.73e-38

College 0.673 2.26e-36
Immigration 0.704 2.95e-32

Marijuana 0.689 1.42e-34
Marriage Rights 0.679 3.27e-41

There is a natural tendency for ratings to group around
the median and the correlation coefficient does not account
for this. However, if we measure the absolute deviation, we
will find there is no statistically significant difference be-
tween the absolute deviations since they are the same in
distribution.

6.2.2 Significance in CRC
Using the non-parametric test proposed in Section 4, we

tested the hypothesis of whether rating changes led to signif-
icantly more concentration around the median. In our first
experiment (Figure 4), we tested the absolute deviations of
the CRC participants. We compared the group of partici-
pants that did not change their ratings to the group that
changed their ratings. We found that while there were no
statistically significant differences between the initial ratings
of the two groups, the final ratings of the group that changed
were statistically significantly more concentrated than both
their own initial ratings and the ratings of the no change
group. On average, the ratings were 19.3% closer to the me-
dian in the change group. The results of the hypothesis test
for the set of participants who changed their ratings Pc and
those who did not Pn are (we denote initial grades from Pc
as i and final as f):
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Figure 4: For those participants that changed their
ratings, final ratings were significantly more concen-
trated around the median than their initial ratings.

Issue p-val(Pc vs. Pn) p-val(i vs. f)

Obamacare 0.0286 0.0161
K12 2.1314e-06 0.0086

College 1.3033e-04 0.0415
Immigration 7.3456e-07 4.4170e-05

Marijuana 2.7549e-10 4.2560e-05
Marriage Rights 3.5946e-06 2.4644e-10

These results are consistent with social influence bias.
When participants change their ratings, they are more likely
to concentrate around the median. It is however an encour-
aging and positive result that the two groups of participants
Pn and Pc are very similar in terms of initial ratings, and
the data suggests that a participant’s susceptibility to social
influence is not correlated with initial ratings.

6.2.3 Comparison to Reference Survey
In our second experiment (Figure 5), we apply the same

testing procedure to compare the ratings from the CRC to
to those in the reference survey. We compare absolute devi-
ations of the group of participants who changed their ratings
in the CRC against participants from the reference survey.
The final ratings were 12.0% closer to the median in the CRC
change group than in the reference survey. We also found
that there was no statistically significant difference between
the reference survey and initial ratings. The results of the
hypothesis test for the set of participants who changed their
ratings Pc and the reference group R are (we denote initial
grades from Pc as i and final as f):
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Figure 5: We found that final ratings were signifi-
cantly more concentrated in the CRC compared to
ratings in the reference survey, however the refer-
ence and the initial ratings did not differ signifi-
cantly.

Issue p-val(R vs. i) p-val(R vs. f)

Obamacare 0.5386 0.0015
K12 0.8283 0.0097

College 0.1452 0.0091
Immigration 0.3765 1.1787e-04

Marijuana 0.7288 9.3111e-06
Marriage Rights 0.2478 0.0161

The results of our two experiments are consistent with
social influence bias. We not only found that participants’
changed ratings were statistically significantly more likely to
concentrate around the median, they were also more likely
in comparison to the reference survey.

6.3 Mitigation

6.3.1 Classifying Final Grades As Changed
In Section 5, we discussed how we could use logistic re-

gression to estimate the probability that a rating has been
changed. We applied logistic regression, as described in that
section, and inferred which ratings were changed. In Figure
7, as is typically used to evaluate binary classifiers, we show
the ROC plot of the logistic regression predictor. The pre-
diction results were quite accurate with average AUC score
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Figure 6: We plot the difference between ratings and the median (X-axis), and the change in rating (Y-axis).
We overlay the optimal polynomial model to represent the relationship f(x) = y. Below each plot, is the BIC
objective function showing how we picked an optimal degree of polynomial.
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Figure 7: The true positive rate (correct classifica-
tions) as a function of the false positive rate. Sub-
stantially better than random (dashed line) with an
average AUC score of 0.8670.

over all issues of 0.8670. At the .50 probability threshold
(classified as changed if the estimated probability is greater
than 0.5), we achieved an average precision of 84.7% and a
recall of 70.0%.

6.3.2 Correction Model
In the first experiment, we train the polynomial/BIC cor-

rection model proposed in Section 5, and evaluated it in
terms of RMSE (Figure 8). We look at model only for those
changed their grades, and measure how accurate is the model
in predicting the grade changes. We held out a random 20%
of rating triplets and calculated the inference error in the
correction model. We found that on average over all issues
the RMSE was 0.1286 which corresponds to a little bit more
than a + or - grade.

In the second experiment, we simulated a true post-
learning setting. We used the logistic regression model to
predict the probability that the participant changed their
grade. Then, if this probability was above a threshold, we
used 70% which was determined empirically, we then ap-
ply the polynomial correction model to infer the unbiased
grade. Since the majority of participants did not change
their grades, it would not be correct to simply measure
RMSE error which would average predictions for those who
changed and did not change. Thus, we invert the signifi-
cance test proposed in Section 4, to calculate a parameter
∆ which measures the distance from the null hypothesis.
That is, how much would we have to shift the distribution
of absolute deviations so the null hypothesis (of no social
influence bias) is the most likely hypothesis. In Figure 8, we
show a before and after for apply the correction model. We

found that there was on average a 76.3% reduction in ∆ for
the entire pipeline predicting a change and then correcting
for it.
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Figure 8: We found that we could predict changes in
all of the issues with less than 2/3 of a letter grade
RMSE error. In the lower figure, we applied this
model to correct for the social influence bias and
found that, on average, we could reduce the effects
by 76.3%

6.3.3 Prediction Model
We applied the prediction from Section 5 and the results

are shown in Figure 6. Our model search and optimization
through the BIC discovered that for four out of the six issues,
K12, College, Immigration, and Marijuana, the model was
linear. This suggests homogeneity in positive and negative
social influence effects for these issues. What this implies
is that on average participants who rated above the median
and below the median moved towards the median with the
same magnitude. However, for Obamacare and Marriage
Rights, we found that the relationship was quadratic. In-
terestingly enough, over the domain of changes, the learned
quadratic function had steeper slope for ratings above the
median. In other words, participants who initially rated the
state higher than the median had a more significant ten-
dency to change downwards, in comparison to the upward
tendency of those who rated less than the median.

7. CONCLUSION AND FUTURE WORK
These results suggest that social influence bias can be sig-

nificant in recommender systems and that this bias can be



substantially reduced with machine learning. To apply this
methodology to other recommender systems, a key question
for future work is how is how to extend the approach to
other recommender systems. We see an opportunity for this
methodology in systems that combine their browsing and
rating interfaces. For example, after selection, ie. users pur-
chase a product, click on a movie, etc. the rating can be
hidden. Once the user is ready to rate the item, which can
be significant time after selection, we can reveal the average
rating again after they have assigned a rating of their own.
Then, we can apply our methodology to learn, analyze, and
mitigate bias in the recommender systems.

An open question is how to extend this work to large
item inventories and how much training data is required
in such cases. One idea is to cluster/classify items into
a small number of representative categories and train a
model for each category. We believe that selecting an
optimal set of items for training in this context may be
posed as a submodular maximization problem. We are
looking at applying this methodology to recommender
systems in other domains (eg. movies) with alternative
regression methods, such as Gaussian Process Regression
and LOESS. We are also interested in performing more user
studies where a false median is presented (as in the Asch
experiments) and exploring methods to optimally classify
participants as conformers and non-conformists. We would
also like to study and quantify the role of social influence
on textual data.

We like to thank Brandie Nonnecke, Allen Huang, Camille Critten-
den, John Scott, Tanja Aitamurto, Daniel Catterson, Matti Nelimarkka,
Henry Brady, and Lt. Governor Gavin Newsom for their work on the
CRC project. This work is supported in part by NSF CISE Expeditions
Award CCF-1139158, LBNL Award 7076018, and DARPA XData Award
FA8750-12-2-0331, the Blum Center for Developing Economies and the
Development Impact Lab (USAID Cooperative Agreement AID-OAA-
A-12-00011), part of the USAID Higher Education Solutions Network,
gifts from Amazon Web Services, Google, SAP, The Thomas and Stacey
Siebel Foundation, Apple, Inc., C3Energy, Cisco, Cloudera, EMC, Er-
icsson, Facebook, GameOnTalis, Guavus, HP, Huawei, Intel, Microsoft,
NetApp, Pivotal, Splunk, Virdata, VMware, WANdisco and Yahoo!.

8. REFERENCES
[1] J. Albors, J. C. Ramos, and J. L. Hervas. New learning

network paradigms: Communities of objectives,
crowdsourcing, wikis and open source. International Journal
of Information Management, 28(3):194–202, 2008.

[2] X. Amatriain, J. M. Pujol, and N. Oliver. I like it... i like it
not: Evaluating user ratings noise in recommender systems.
In User Modeling, Adaptation, and Personalization, pages
247–258. Springer, 2009.

[3] X. Amatriain, J. M. Pujol, N. Tintarev, and N. Oliver. Rate
it again: increasing recommendation accuracy by user
re-rating. In Proceedings of the third ACM conference on
Recommender systems, pages 173–180. ACM, 2009.

[4] S. E. Asch. Opinions and social pressure. Readings about the
social animal, pages 17–26, 1955.

[5] S. E. Asch. Studies of independence and conformity.
American Psychological Association, 1956.

[6] A. V. Banerjee. A simple model of herd behavior. The
Quarterly Journal of Economics, 107(3):797–817, 1992.

[7] M. Bilgic and R. J. Mooney. Explaining recommendations:
Satisfaction vs. promotion. In Beyond Personalization
Workshop, IUI, volume 5, 2005.

[8] E. Bitton. A spatial model for collaborative filtering of
comments in an online discussion forum. In Proceedings of
the third ACM conference on Recommender systems, pages
393–396. ACM, 2009.

[9] R. Bond and P. B. Smith. Culture and conformity: A
meta-analysis of studies using asch’s (1952b, 1956) line
judgment task. Psychological bulletin, 119(1):111, 1996.

[10] K. P. Burnham and D. R. Anderson. Model selection and
multimodel inference: a practical information-theoretic
approach. Springer, 2002.

[11] R. E. Burnkrant and A. Cousineau. Informational and
normative social influence in buyer behavior. Journal of
Consumer research, pages 206–215, 1975.

[12] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and
J. Riedl. Is seeing believing?: how recommender system
interfaces affect users’ opinions. In Proceedings of the
SIGCHI conference on Human factors in computing systems,
pages 585–592. ACM, 2003.

[13] C. Danescu-Niculescu-Mizil, G. Kossinets, J. Kleinberg, and
L. Lee. How opinions are received by online communities: a
case study on amazon. com helpfulness votes. In Proceedings
of the 18th international conference on World wide web,
pages 141–150. ACM, 2009.

[14] S. DellaVigna and M. Gentzkow. Persuasion: empirical
evidence. Technical report, National Bureau of Economic
Research, 2009.

[15] P. M. DeMarzo, D. Vayanos, and J. Zwiebel. Persuasion
bias, social influence, and unidimensional opinions. The
Quarterly Journal of Economics, 118(3):909–968, 2003.

[16] U. M. Dholakia, S. Basuroy, and K. Soltysinski. Auction or
agent (or both)? a study of moderators of the herding bias
in digital auctions. International Journal of Research in
Marketing, 19(2):115–130, 2002.

[17] S. Faridani. Using canonical correlation analysis for
generalized sentiment analysis, product recommendation
and search. In Proceedings of the fifth ACM conference on
Recommender systems, pages 355–358. ACM, 2011.

[18] S. Faridani, E. Bitton, K. Ryokai, and K. Goldberg.
Opinion space: a scalable tool for browsing online
comments. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1175–1184.
ACM, 2010.

[19] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval, 4(2):133–151, 2001.

[20] B. Golub and M. O. Jackson. Naive learning in social
networks and the wisdom of crowds. American Economic
Journal: Microeconomics, pages 112–149, 2010.

[21] H. Hong, J. D. Kubik, and J. C. Stein. Social interaction
and stock-market participation. The journal of finance,
59(1):137–163, 2004.

[22] J.-H. Huang and Y.-F. Chen. Herding in online product
choice. Psychology & Marketing, 23(5):413–428, 2006.

[23] L. Jian, J. MacKie-Mason, B. Chiao, A. Levchenko,
A. Zellner, J. Kmenta, J. Dreze, and W. Oberhofer.
Incentive-centered design for user-contributed content. The
Oxford Handbook of the Digital Economy, Oxford University
Press Oxford, pages 399–433, 2012.

[24] E. L. Lehmann and H. J. D’Abrera. Nonparametrics:
statistical methods based on ranks. Springer New York, 2006.

[25] J. Lorenz, H. Rauhut, F. Schweitzer, and D. Helbing. How
social influence can undermine the wisdom of crowd effect.
Proceedings of the National Academy of Sciences,
108(22):9020–9025, 2011.

[26] C. A. Markowski and E. P. Markowski. Conditions for the
effectiveness of a preliminary test of variance. The American
Statistician, 44(4):322–326, 1990.

[27] S. Moscovici and C. Faucheux. Social influence, conformity
bias, and the study of active minorities. Advances in
experimental social psychology, 6:149–202, 1972.

[28] L. Muchnik, S. Aral, and S. J. Taylor. Social influence bias:
A randomized experiment. Science, 341(6146):647–651,
2013.

[29] T. Nathanson, E. Bitton, and K. Goldberg. Eigentaste 5.0:
constant-time adaptability in a recommender system using
item clustering. In Proceedings of the 2007 ACM conference
on Recommender systems, pages 149–152. ACM, 2007.

[30] B. S. Noveck. Wiki-government. Democracy: A Journal of
Ideas (7), 2008.

[31] K. O’Hara. Transparency, open data and trust in
government: Shaping the infosphere. In Proceedings of the
3rd Annual ACM Web Science Conference, pages 223–232.
ACM, 2012.

[32] G. Schwarz et al. Estimating the dimension of a model. The
annals of statistics, 6(2):461–464, 1978.

[33] S. Sharma and S. Bikhchandani. Herd behavior in financial
markets-a review. International Monetary Fund, 2000.

[34] R. Sipos, A. Ghosh, and T. Joachims. Was this review
helpful to you?: it depends! context and voting patterns in
online content. In Proceedings of the 23rd international
conference on World wide web, pages 337–348. International
World Wide Web Conferences Steering Committee, 2014.

[35] N. Tintarev and J. Masthoff. A survey of explanations in
recommender systems. In Data Engineering Workshop, 2007
IEEE 23rd International Conference on, pages 801–810.
IEEE, 2007.

[36] W. Wood. Attitude change: Persuasion and social influence.
Annual review of psychology, 51(1):539–570, 2000.

[37] H. Zhu, B. Huberman, and Y. Luon. To switch or not to
switch: understanding social influence in online choices. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2257–2266. ACM, 2012.


