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Abstract

It is becoming increasingly evident that many ma-
chine learning problems may be reduced to sub-
modular optimization. Previous work addresses
generic discrete approaches and specific relax-
ations. In this work, we take a generic view from
a relaxation perspective. We show a relaxation
formulation and simple rounding strategy that,
based on the monotone closure of relaxed con-
straints, reveals analogies between minimization
and maximization problems, and includes known
results as special cases and extends to a wider
range of settings. Our resulting approximation
factors match the corresponding integrality gaps.
For submodular maximization, a number of relax-
ation approaches have been proposed. A critical
challenge for the practical applicability of these
techniques, however, is the complexity of evaluat-
ing the multilinear extension. We show that this
extension can be efficiently evaluated for a num-
ber of useful submodular functions, thus making
these otherwise impractical algorithms viable for
real-world machine learning problems.

1 INTRODUCTION

Submodularity is a natural model for many real-world
problems including many in the field of machine learn-
ing. Submodular functions naturally model aspects like
cooperation, complexity, and attractive potentials in mini-
mization problems, and also notions of diversity, coverage,
and information in maximization problems. A function
f : 2V → R on subsets of a ground set V = {1, 2, . . . , n}
is submodular [37, 15] if for all subsets S, T ⊆ V , we
have f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). The gain
of an element j ∈ V with respect to S ⊆ V is defined as
f(j|S) , f(S ∪ j)− f(S). Submodularity is equivalent to
diminishing gains: f(j|S) ≥ f(j|T ),∀S ⊆ T, j /∈ T .

A large number of machine learning problems may be

phrased as submodular minimization or maximization prob-
lems. In this paper, we address the following two very
general forms of submodular optimization:

Problem 1: min
X∈C

f(X), Problem 2: max
X∈C

f(X)

Here, C denotes a family of feasible sets, described e.g.,
by cardinality constraints, or by combinatorial constraints
insisting that the solution be a tree, path, cut, matching, or a
cover in a graph.

Applications. Unconstrained submodular minimization
occurs in machine learning and computer vision in the
form of combinatorial regularization terms for sparse recon-
struction and denoising, and MAP inference, e.g. for image
segmentation [30]. Other applications are well modeled as
constrained submodular minimization. For example, a rich
class of models for image segmentation has been encoded
as minimizing a submodular function subject to cut con-
straints [28]. Similarly, [9] efficiently solves MAP inference
in a sparse higher-order graphical model through submodu-
lar vertex cover, and [48] proposes to interactively segment
images by minimizing a submodular function subject to
connectivity constraints, i.e., the selected set of vertices
must contain an s-t path. Moreover, bounded-complexity
corpus construction [36] can be modeled as cardinality
constrained submodular minimization. Constrained
submodular maximization is a fitting model for problems
such as optimal sensing [32], marketing [29], document
summarization [35], and speech data subset selection [34].

Previous Work. Since most instances of Problems 1 and
2 are NP-hard, one must strive for approximations that have
bounded error. Broadly speaking1, the algorithms can be
classified into discrete (combinatorial) and continuous relax-
ation based. The discrete approaches were initially proposed
for certain specific constraints [17, 27, 47, 41, 12, 4, 3], but
later made general and unified [25, 18, 24]. In the case of
submodular minimization, the discrete approaches have
been based on approximating the submodular function

1 Emphasized words in this paragraph correspond to headings
in Table 1, which also serves as a summary.



by tractable approximations [25, 18], while in the case
of submodular maximization, they have been based on
greedy and local search techniques [25, 41, 12, 4, 3]. Most
of these algorithms are fast and scalable. The continuous
relaxation techniques, on the other hand, have so far either
been analyzed for very specific constraints, or when general,
are too slow to use in practice. For example, in the case
of minimization, they were studied only for the specific
constraints of covers [20] and cuts [27], and in the case of
maximization, the techniques though general have yet to
show significant practical impact due to their prohibitive
computational costs [6, 5]. Hence discrete algorithms are
typically used in applications (e.g., [34]).

Constraints
or Function

Operation
(& speed)

Algorithm Approach
Combinatorial Relaxation

Specific

Min (fast) [17, 27] [20, 27]
Min (slow) [47] Unnecessary
Max (fast) [41, 12, 4, 3] This paper
Max (slow) Unnecessary [4, 5]

General

Min (fast) [25] This paper
Min (slow) [18] Unnecessary
Max (fast) [25] Open
Max (slow) Unnecessary [6]

Table 1: Past work & our contributions (see text for explanation).

In the present paper, we develop a continuous relaxation
methodology for Problems 1 and 2 that applies not only
for multiple types of constraints but that even establishes
connections between minimization and maximization prob-
lems. We summarize our contributions, in comparison to
previous work, in Table 1, which lists one problem as being
still open, and other problems as being unnecessary (given
a “fast” approach, the corresponding “slow” approach is un-
necessary). Our techniques are not only connective, but also
fast and scalable. In the case of constrained minimization,
we provide a formulation applicable for a large class of con-
straints. In the case of submodular maximization, we show
how for a large class of submodular functions of practical
interest, the generic slow algorithms can be made fast and
scalable. We note, however, that it is still an open problem
to provide a fast and scalable algorithmic framework (with
theoretical guarantees) based on continuous relaxations for
general submodular maximization.

The connections between minimization and maximization
is based on the up- or down-monotonicity of the constraint
set: up-monotone constraints are relevant for submodular
minimization problems, and down-monotone constraints are
relevant for submodular maximization problems. Our relax-
ation viewpoint, moreover, complements and improves on
the bounds found in [25]. For example, where [25] may have
an approximation bound of k, our results imply a bound of
n− k+ 1, where n = |V |, so considering both [25] and our
new work presented here, we obtain combined bounds of the
form min(k, n−k+1) (more specifics are given in Table 2).
This also holds for maximization – in certain cases discrete

algorithms obtain suboptimal results, while relaxation tech-
niques obtain improved, and sometimes optimal guarantees.

The idea of our relaxation strategy is as follows: the sub-
modular function f(S), which is defined on the vertices
of the n-dimensional hypercube, is extended to a function
defined on [0, 1]n. The two functions valuate identically if
the vector x ∈ [0, 1]n is the characteristic vector of a set.
We then solve a continuous optimization problem subject
to linear constraints. For minimization, the convex Lovász
extension defined in Eqn. (1) is a suitable extension of f .
Appropriately rounding the resulting optimal continuous
solutions leads to a number of approximation guarantees.
For maximization, ideally we could utilize a concave exten-
sion. Since the tightest concave extension of a submodular
function is hard to characterize [49], we instead use the
multilinear extension (see Eqn. (2)) that behaves like a con-
cave function in certain directions [6, 5]. Our resulting
algorithms often achieve better bounds than discrete greedy
approaches.

Paper Roadmap. For constrained minimization (Sec. 3),
we provide a generic approximation factor (Theorem 1), for
the general class of constraints defined in Eq. 4. We show
that many important constraints, including matroid, cardi-
nality, covers, cuts, paths, matchings, etc. can be expressed
as Eq. 4. As a corollary to our main result (Theorem 1), we
obtain known results (like covers [20] and cuts [27]), and
also novel ones (for spanning trees, cardinality constraints,
paths, matchings etc.). We also show bounds on integrality
gaps for constrained submodular minimization, which to
our knowledge is novel. In the context of maximization
(Sec. 4), we provide closed form multi-linear extensions
for several submodular functions useful in applications.
We also discuss the implications of these algorithmically.
Note that this is particularly important, given that many
optimal algorithms for several submodular maximization
problems are based on the multilinear extension. Lastly, we
extend our techniques to minimize the difference between
submodular functions, and provide efficient optimization
and rounding techniques for these problems (Sec. 5).

2 CONTINUOUS RELAXATIONS

Convex relaxation. The Lovász extension [37] reveals an
important connection between submodularity and convex-
ity, and is defined as follows. For each y ∈ [0, 1]n, we
obtain a permutation σy by ordering its elements in non-
increasing order, and thereby a chain of sets Σy0 ⊆ . . . ⊆ Σyn,
with Σyj = {σy(1), · · · , σy(j)} for j ∈ {1, 2, . . . , n}. The
Lovász extension f̆ of f is a weighted sum of the ordered
entries of y:

f̆(y) =

n∑
j=1

y[σy(j)] (f(Σyj )− f(Σyj−1)) (1)



The Lovász extension is unique (despite possibly non-
unique orderings if y has duplicate entries), and convex
if and only if f is submodular. Since it agrees with f
on the vertices of the hypercube, i.e., f(X) = f̆(1X), for
all X ⊆ V (where 1X is the characteristic vector of X ,
i.e., 1X(j) = I(j ∈ X)), f̆ is a natural convex extension
of a submodular function. The Lovász extension is a
non-smooth (piece-wise linear) convex function for which
a subgradient hfσy

at y can be computed efficiently via
Edmonds’ greedy algorithm [10]:

hfσy
(σy(j)) = f(Σyj )− f(Σyj−1), ∀j ∈ {1, 2, · · · , n}

The Lovász extension has also found applications in
defining norms for structured sparsity [1] and divergences
for rank aggregation [23].

Multilinear relaxations. For maximization problems, the
relaxation of choice has frequently been the multilinear
extension [12]

f̃(x) =
∑
X⊆V

f(X)
∏
i∈X

xi
∏
i/∈X

(1− xi), (2)

where f is any set function. Since Eqn. (2) has an exponen-
tial number of terms, its evaluation is in general computa-
tionally expensive, or requires approximation.

One may define at least two types of gradients for the multi-
linear extension. The first, “standard” gradient is

∇j f̃(x) = ∂f̃/∂xj = f̃(x ∨ ej)− f̃(x ∨ ej − ej).

where ej = 1{j}, and {x ∨ y}(i) = max(x(i), y(i)). A
second gradient is∇aj f̃(x) = f̃(x ∨ ej)− f̃(x). The two
gradients are related component-wise as ∇j f̃(x) = (1 −
xj)∇aj f̃(x), and both can be computed in O(n) evaluations
of f̃ .

Optimization. Relaxation approaches for submodular op-
timization follow a two-stage procedure:

1. Find the optimal (or approximate) solution x̂ to the
problem minx∈PC f̆(x) (or maxx∈PC f̃(x)).

2. Round the continuous solution x̂ to obtain the discrete
indicator vector of set X̂ .

Here, PC denotes the polytope corresponding to the family C
of feasible sets – i.e., their convex hull or its approximation,
which is a “continuous relaxation” of the constraints C. The
final approximation factor is then f(X̂)/f(X∗), where X∗

is the exact optimizer of f over C.

An important quantity is the integrality gap that measures –
over the class S of all submodular (or monotone submod-
ular) functions – the largest possible discrepancy between
the optimal discrete solution and the optimal continuous
solution. For minimization problems, the integrality gap is
defined as:

ISC , sup
f∈S

minX∈C f(X)

minx∈PC f̆(x)
≥ 1. (3)

For maximization problems, we would take the supremum
over the inverse ratio. In both cases, ISC is defined only
for non-negative functions. The integrality gap largely
depends on the specific formulation of the relaxation.
Intuitively, it provides a lower bound on our approximation
factor: we usually cannot expect to improve the solution
by rounding, because any rounded discrete solution is also
a feasible solution to the relaxed problem. One rather only
hopes, when rounding, to not worsen the cost relative to that
of the continuous optimum. Indeed, integrality gaps can
often be used to show tightness of approximation factors
obtained from relaxations and rounding [7]. For a detailed
discussion on this connection, see [26].

3 SUBMODULAR MINIMIZATION

For submodular minimization, the optimization problem
in Step 1 is a convex optimization problem, and can be
solved efficiently if one can efficiently project onto the poly-
tope PC . Our second ingredient is rounding. To round, a
surprisingly simple thresholding turns out to be quite effec-
tive for a large number of constrained and unconstrained
submodular minimization problems: choose an appropri-
ate θ ∈ (0, 1) and pick all elements with “weights” above
θ, i.e., X̂θ = {i : x̂(i) ≥ θ}. We call this procedure the
θ-rounding procedure. In the following sections, we first
review relaxation techniques for unconstrained minimiza-
tion (which are known), and afterwards phrase a generic
framework for constrained minimization. Interestingly, both
constrained and unconstrained versions essentially admit
the same rounding strategy and algorithms.

3.1 UNCONSTRAINED MINIMIZATION

Continuous relaxation techniques for unconstrained sub-
modular minimization have been well studied [1, 15]. In
this case, PC = [0, 1]n, and importantly, the approximation
factor and integrality gap are both 1.

Lemma 1. [15] For any submodular function f , it holds
that minX⊆V f(X) = minx∈[0,1]n f̆(x). Given a continu-
ous minimizer x∗ ∈ argminx∈[0,1]n f̆(x), the discrete mini-
mizers are exactly those obtained by θ-rounding x∗, for any
θ ∈ (0, 1).

Since the Lovász extension is a non-smooth convex func-
tion, it can be minimized up to an additive accuracy of ε in
O(1/ε2) iterations of the subgradient method. This accu-
racy directly transfers to the discrete solution if we choose
the best set obtained with any θ ∈ (0, 1) [1]. For special
cases, such as submodular functions derived from concave
functions, smoothing techniques yield a convergence rate of
O(1/t) [45].



3.2 CONSTRAINED MINIMIZATION

We next address submodular minimization under constraints,
where rounding affects the accuracy of the discrete solution.
By appropriately formulating the problem, we show that
θ-rounding applies to a large class of problems. We assume
that the family C of feasible solutions can be expressed by
a polynomial number of linear inequalities, or at least that
linear optimization over C can be done efficiently, as is the
case for matroid polytopes [10].

A straightforward relaxation of C is the convex hull PC =
conv(1X , X ∈ C) of C. Often however, it is not possible to
obtain a decent description of the inequalities determining
PC , even in cases when minimizing a linear function over
C is easy (two examples are the s-t cut and s-t path poly-
topes [44]). In those cases, we relax C to its up-monotone
closure Ĉ = {X ∪ Y | X ∈ C and Y ⊆ V }. With Ĉ, a
set is feasible if it is in C or a superset of a set in C. The
convex hull of Ĉ is the up-monotone extension of PC within
the hypercube, i.e. PĈ = P̂C = (PC +Rn+)∩ [0, 1]n, which
is often easier to characterize than PC [26]. If C is already
up-monotone, then P̂C = PC .

Optimization. The relaxed minimization problem
minx∈P̂C f̆(x) is non-smooth and convex with linear
constraints, and therefore amenable to, e.g., projected
subgradient methods. We here assume that the submodular
function f is monotone nondecreasing (which often holds
in applications), and extend our results to non-monotone
functions in [26].

For projected (sub)gradient methods, it is vital that the pro-
jection on P̂C can be done efficiently. Indeed, this holds with
the above assumptions that we can efficiently solve a linear
optimization over P̂C . In this case, e.g. Frank-Wolfe meth-
ods [13] apply. The projection onto matroid polyhedra can
also be cast as a form of unconstrained submodular function
minimization and is hence polynomial time solvable [15].
To apply splitting methods such as the alternating directions
method of multipliers (ADMM) [2], we write the problem
as minx,y:x=y f̆(x) + I(y ∈ P̂C). ADMM needs a projec-
tion oracle onto the constraints – discussed above – and the
proximal operator of f . Computing the proximal operator of
the Lovász extension is equivalent to unconstrained submod-
ular minimization, or to solving the minimum norm point
problem. In special cases, faster algorithms apply [39, 45].

Rounding. Once we have obtained a minimizer x̂ of
f̆ over P̂C , we apply simple θ-rounding. Whereas in the
unconstrained case, X̂θ is feasible for any θ ∈ (0, 1), we
must now ensure X̂θ ∈ Ĉ. Hence, we pick the largest
threshold θ such that X̂θ ∈ Ĉ, i.e., the smallest X̂θ that is
feasible. This is always possible since Ĉ is up-monotone and
contains V . The threshold θ can be found using O(log n)
checks among the sorted entries of the continuous solution x̂.
The following lemma states how the threshold θ determines

a worst-case approximation:

Lemma 2. For a monotone submodular f and any x̂ ∈
[0, 1]V and θ ∈ (0, 1) such that X̂θ = {i | x̂i ≥
θ} ∈ Ĉ, it holds that f(X̂θ) ≤ 1

θ f̆(x̂). If, moreover,
f̆(x̂) ≤ βminx∈P̂C f̆(x), then it holds that f(X̂θ) ≤
β
θ minX∈C f(X).

The set X̂θ is in Ĉ and therefore guaranteed to be a superset
of a solution Ŷθ ∈ C. As a final step, we prune down X̂θ

to Ŷθ ⊆ X̂θ. Since the objective function is nondecreas-
ing, f(Ŷθ) ≤ f(X̂θ), Lemma 2 holds for Ŷθ as well. If,
in the worst case, θ = 0, then the approximation bound
in Lemma 2 is unbounded. Fortunately, in most cases of
interest we obtain polynomially bounded approximation
factors.

In the following, we will see that our P̂C provides the basis
for relaxation schemes under a variety of constraints, and
that these, together with θ-rounding, yield bounded-factor
approximations. We assume that there exists a familyW =
{W1,W2, . . . } of sets Wi ⊆ V such that the polytope P̂C
can be described as

P̂C =
{
x ∈ [0, 1]n

∣∣∣ ∑
i∈W

xi ≥ bW for all W ∈ W
}
. (4)

Analogously, this means that Ĉ = {X | |X ∩ W | ≥
bW , for all W ∈ W}. In our analysis, we do not requireW
to be of polynomial size, but a linear optimization over P̂C
or a projection onto it should be possible at least within a
bounded approximation factor. This is the case for s-t paths
and cuts, covering problems, and spanning trees.

The following main result (proven in [26]) states approxima-
tion bounds and integrality gaps for the class of problems
described by Equation (4).

Theorem 1. The θ-rounding scheme for constraints C
whose relaxed polytope P̂C can be described by Equa-
tion (4) achieves a worst case approximation bound of
maxW∈W |W | − bW + 1.

We also show [26] that this factor matches the integrality
gap for the constraints considered in this paper.

A result similar to Theorem 1 was shown in [31] for a dif-
ferent, greedy algorithmic technique. While their result also
holds for a large class of constraints, for the constraints in
Equation (4) they obtain a factor of maxW∈W |W |, which
is worse than Theorem 1 if bW > 1. This is the case, for in-
stance, for matroid span constraints, cardinality constraints,
trees and multiset covers.

Pruning. The final piece of the puzzle is the pruning step,
where we reduce the set X̂θ ∈ Ĉ to a final solution Ŷθ ⊆ X̂θ

that is feasible: Ŷθ ∈ C. This is important when the true
constraints C are not up-monotone, as is the case for cuts
or paths. Since we have assumed that the function f is



monotone, pruning can only reduce the objective value. The
pruning step means finding any subset of X̂θ that is in C,
which is often not hard. We propose the following heuris-
tic for this: if C admits (approximate) linear optimization,
as is the case for all the constraints considered here, then
we may improve over a given rounded subset by assigning
additive weights: w(i) = ∞ if i /∈ X̂θ, and otherwise use
either uniform (w(i) = 1) or non-uniform (w(i) = 1−x̂(i))
weights. We then solve Ŷθ ∈ argminY ∈C

∑
i∈Y w(i). Uni-

form weights lead to the solution with minimum cardinality,
and non-uniform weights will give a bias towards elements
with higher certainty in the continuous solution. Truncation
via optimization works well for paths, cuts, matchings or
matroid constraints. In the extended version [26], we dis-
cuss how to handle non-monotone submodular functions
and down-monotone constraints.

To demonstrate the utility of Theorem 1, we apply it to a
variety of problems. We state only the results, all proofs
are in [26]. Many of the constraints below are based on a
graph G = (V, E), and in that case the ground set is the set
E of graph edges. When the context is clear, we overload
notation and refer to n = |V| and m = |E|. Results are
summarized in Table 2.

3.2.1 MATROID CONSTRAINTS

An important class of constraints are matroid span or base
constraints, with cardinality constraints (uniform matroids)
and spanning trees (graphic or cycle matroids) as special
cases. A matroidM = (IM, rM) is defined by its down-
monotone family of independent sets IM or its rank func-
tion rM : 2V → R. A set Y is a spanning set if its
rank is that of V : rM (Y ) = rM (V ). It is a base if
|Y | = rM (Y ) = rM (V ). Hence, the family of all span-
ning sets is the up-monotone closure of the family of all
bases (e.g., supersets of spanning trees of a graph in the
case of a graphic matroid). See [44] for more details on
matroids. Let SM denote the spanning sets of matroid
M, and set k = rM(V ). It is then easy to see that with
C = SM, the polytope PC is the matroid span polytope,
which can be described as PC = {x ∈ [0, 1]n, x(S) ≥
rM(V )− rM(V \S),∀S ⊆ V } [44]. This is clearly in the
form of Eqn. 4. Although this polytope is described via an
exponential number of inequalities, it can be projected onto
efficiently via submodular minimization [15].

Corollary 1. Let Ŷθ be the rounded and pruned solution
obtained from minimizing the Lovász extension over the
span polytope. Then f(Ŷθ) ≤ (n − k + 1)f(X∗). The
integrality gap is also n− k + 1.

In general, the rounding step will only provide an X̂θ that
is a spanning set, but not a base. We can prune it to a
base by greedily finding a maximum weight base among
the elements of X̂θ. The worst-case approximation factor

2These results were shown in [17, 20, 47]

of n − k + 1 complements other known results for this
problem [25, 18]. The semi-gradient framework of [25]
guarantees a bound of k, while more complex (and less
practical) approximations [18] yield factors ofO(

√
n). The

factor k of [25] is the best for small k, while our continuous
relaxation works well when k is large.

Cardinality Constraints. This is a special class of ma-
troid, called the uniform matroid. Since it suffices to analyze
monotone submodular functions, the constraint of interest
is C = {X : |X| = k}. In this case, the corresponding
polytope takes a very simple form: PC = {x ∈ [0, 1]n :∑
i xi = k}. Furthermore, the rounding step in this context

is very intuitive. It corresponds to choosing the elements
with the k largest entries in x̂.

Spanning Trees. Here, the ground set V = E is the edge
set in a graph and C is the set of all spanning trees. The
corresponding polytope PC is then the spanning tree poly-
tope. Our bound in this setting is m− n+ 1. The discrete
algorithms of [25, 17] achieve a complementary bound of
|V| = n. For dense graphs, the discrete algorithms admit
better worst case guarantees, while for sparse graphs (e.g.,
embeddable into r-regular graphs for small r), our guaran-
tees are better.

3.2.2 SET COVERS

A fundamental family of constraints are set covers. Given
a universe U , and a family of sets {Si}i∈V , the task is
to find a subset X ⊆ V that covers the universe, i.e.,⋃
i∈X Si = U , and has minimum cost as measured by

a submodular function f : 2S → R. The set cover
polytope is up-monotone, constitutes the set of frac-
tional covers, and is easily represented by Eqn. (4) as
PC = {x ∈ [0, 1]|V | |

∑
i:u∈Si

x(i) ≥ 1,∀u ∈ U}. The
following holds for minimum submodular set cover:

Corollary 2. The approximation factor of our algorithm,
and the integrality gap for the minimum submodular set
cover problem is γ = maxu∈U |{i : u ∈ Si}|.

The approximation factor in Corollary 2 (without the
integrality gap) was first shown in [20]. The quantity γ cor-
responds to the maximum frequency of the elements in U .

A generalization of set cover is the multi-set cover prob-
lem [43], where every element u is to be covered multiple
(cu) times. The multi-cover constraints can be formalized
as PC = {x ∈ [0, 1]|S| |

∑
i:u∈Si

x(i) ≥ cu,∀u ∈ U}.
Corollary 3. The approximation factor and integrality gap
of the multi-set cover problem is maxu∈U |{i : u ∈ Si}| −
cu + 1.

This result also implies the bound for set cover (with cu =
1). Since the rounding procedure above yields a solution
that is already a set cover (or a multi set cover), a subsequent
pruning step is not necessary.



Matroid Constraints Set Covers Paths, Cuts and Matchings
Cardinality Trees Vertex Covers Edge Covers Cuts Paths Matchings

CR. n− k + 1 m− n+ 1 2 deg(G) ≤ n Pmax ≤ n Cmax ≤ m deg(G) ≤ n
SG k n |V C| ≤ n |EC| ≤ n Cmax ≤ m Pmax ≤ n |M | ≤ n
EA

√
n

√
m

√
n

√
m

√
m

√
m

√
m

Integrality Gaps Ω(n− k + 1) Ω(m− n+ 1) 2 Ω(n) Ω(n) Ω(m) Ω(n)

Hardness2 Ω(
√
n) Ω(n) 2− ε Ω(n) Ω(

√
m) Ω(n2/3) Ω(n)

Table 2: Comparison of the results of our framework (CR) with the semigradient framework of [25] (SG), the Ellipsoidal
Approximation (EA) algorithm of [18], hardness [17, 20, 47], and the integrality gaps of the corresponding constrained
submodular minimization problems. Note the complementarity between CR and SG.

Vertex Cover. A vertex cover is a special case of a set
cover, where U is the set of edges in a graph, V is the set
of vertices, and Sv is the set of all edges incident to v ∈
V . Corollary 2 implies a 2-approximation for submodular
vertex cover, which matches the integrality gap and the
lower bound in [17]. The 2-approximation for vertex cover
was also shown in [17, 20].

Edge Cover. In the Edge Cover problem, U is the set of
vertices in a graph, V is the set of edges and Sv contains the
two vertices comprising edge v. We aim to find a subset of
edges such that every vertex is covered by some edge in the
subset. It is not hard to see that the approximation factor we
obtain is the maximum degree of the graph deg(G), which
is upper bounded by |V|, but is often much smaller. The
algorithm in [25] has an approximation factor of the size
of the edge cover |EC|, which is also upper bounded by
O(|V|). These factors match the lower bound shown in [17].

3.2.3 CUTS, PATHS AND MATCHINGS

Even though Eqn. (4) is in the form of covering constraints,
it can help solve problems with apparently very different
types of constraints. The covering generalization works if
we relax C to its up-monotone closure: Ĉ demands that a
feasible set must contain (or “cover”) a set in C. To go from
Ĉ back to C, we prune in the end.

Cuts and Paths. Here, we aim to find an edge set X ⊆ E
that forms an s-t path (or an s-t cut), and that minimizes the
submodular function f . Both the s-t path and s-t cut poly-
topes are hard to characterize. However, their up-monotone
extension P̂C can be easily described. Furthermore, both
these polytopes are intimately related to each other as a
blocking pair of polyhedra (see [44]). The extended poly-
tope for s-t paths can be described as a cut-cover [44] (i.e.,
any path must hit every cut at least once): P̂C = {x ∈
[0, 1]|E| |

∑
e∈C x(e) ≥ 1, for every s-t cut C ⊆ E}. The

closure of the s-t path constraint (or the cut-cover) is also
called s-t connectors [44]. Conversely, the extended s-t cut
polytope can be described as a path-cover [44, 27]: P̂C =
{x ∈ [0, 1]|E| |

∑
e∈P x(e) ≥ 1, for every s-t path P ⊆ E}.

Corollary 4. The relaxation algorithm yields an approxi-
mation factor of Pmax ≤ |V| and Cmax ≤ |E| for minimum
submodular s-t path and s-t cut, respectively (Pmax and

Cmax refer to the maximum size simple s-t path and s-t cut).
These match the integrality gaps for both problems.

While the description of the constraints as covers reveals
approximation bounds, it does not lead to tractable
algorithms for minimizing the Lovász extension. However,
the extended cut and the extended path polytopes can be
described exactly by a linear number of inequalities [42, 44].
The pruning step for paths and covers becomes a shortest
path or minimum cut problem, respectively. As in the
other cases, the approximations obtained from relaxations
complement the bounds of Pmax for paths and Cmax for
cuts shown in [25].

Perfect Matchings. Given a graph G = (V, E), the goal
is to find a set of edges X ⊆ E , such that X is a perfect
matching in G and minimizes the submodular function f .
For a bipartite graph, the polytope P̂C can be characterized
as PC = {x ∈ [0, 1]|E| |

∑
e∈δ(v) x(e) = 1 for all v ∈ V},

where δ(v) denotes the set of edges incident to v. Similar
to the case of Edge Cover, Theorem 1 implies an approx-
imation factor of deg(G) ≤ |V|, which matches the lower
bound shown in [17, 24].

4 SUBMODULAR MAXIMIZATION

To relax submodular maximization, we use the multilin-
ear extension. We first show that this extension can be
efficiently computed for a large subclass of submodular
functions (deferring detailed derivations to [26]). As above,
C denotes the family of feasible sets, and PC the polytope
corresponding to C. For maximization, it makes sense to
consider C to be down-monotone (particularly when the
function is monotone). Such a down-monotone C could rep-
resent, for example, matroid independence constraints, or
upper bounds on the cardinality C = {X : |X| ≤ k}. Anal-
ogous to the case of minimization [26], an approximation
algorithm for down-monotone constraints can be extended
to up-monotone constraints, by using f ′(X) = f(V \X).

The relaxation algorithms use the multilinear extension
(Eqn. (2)) which in general requires repeated sampling and
can be very expensive to compute. Below, we show how this
can be computed efficiently and exactly for many practical
and useful submodular functions.



Weighted Matroid Rank Functions. A common class
of submodular functions are sums of weighted matroid
rank functions, defined as: f(X) =

∑
i max{wi(A)|A ⊆

X,A ∈ Ii}, for linear weights wi(j). These functions
form a rich class of coverage functions for summarization
tasks [34]. The multilinear extension can be efficiently com-
puted for a number of specific instances of this function.
One such special case is the facility location objective [34]:
f(X) =

∑
i∈V maxj∈X sij , for pairwise similarities sij .

The facility location function admits a nice representation
of the multilinear extension (the full derivation is in [26]):
f̃(x) =

∑
i∈V

∑n
l=1 sijlixijli

∏l
m=1(1 − xijli), where for

each i ∈ V , the indices j1
i , j

2
i , · · · , jni denote in sorted or-

der the elements closest to i (in terms of similarity sij).
We can similarly obtain closed form expressions with other
forms of matroids, including uniform matroids or partition
matroids. Due to limited space, detailed derivations are all
given in [26].

Set Cover function. This function is widely used in appli-
cations, capturing notions of coverage [34]. Given a collec-
tion of sets {S1, · · · , Sn} and the universe U = ∪iSi, define
f(X) = w(∪i∈XSi), where wj denotes the weight of item
j ∈ U . This setup can alternatively be expressed via a neigh-
borhood function Γ : 2V → 2U such that Γ(X) = ∪i∈XSi.
Then f(X) = w(Γ(X)). Let Γ−1(j) = {i ∈ V : j ∈
Γ(i)}. Then the multilinear extension has a simple form:
f̃(x) =

∑
j∈U wj [1−

∏
i∈Γ−1(j)(1− xi)]. Again, for full

derivations see [26].

Probabilistic Coverage Functions. A probabilistic gen-
eralization of covering functions of the form f(X) =∑
i∈U wi[1−

∏
j∈X(1−pij)] has been used for summariza-

tion problems [11]. If pij is binary (either i covers j or not),
we obtain a standard set cover function. The multilinear
extension of probabilistic coverage functions is also effi-
ciently computable [26]: f̃(x) =

∑
i∈U wi[1−

∏
j∈V (1−

pijxj)].

Graph Cut functions. Graph cuts are a widely used
class of functions. Their multilinear extension also a
admits closed form representation. The function and
its multilinear extension can be written as: f(X) =∑
i∈X,j /∈X sij , f̃(x) =

∑
i,j∈V sijxi(1 − xj). A re-

lated function is a similarity-penalizing function: f(X) =
−
∑
i,j∈X sij . This function has been used for encourag-

ing diversity [35, 34]. Its multilinear extension is f̃(x) =
−
∑
i,j∈V sijxixj . The detailed derivations of both these

expressions are in [26].

Sparse Pseudo-Boolean functions. For graphical mod-
els, in particular in computer vision, set functions are often
written as polynomials [19]. Any set function can be writ-
ten as a polynomial, pf (x) =

∑
T⊆V αT

∏
i∈T xi, where

x ∈ {0, 1}n is the characteristic vector of a set. In other

3This extends to top-k facility location too.
4This is for soft-max extension [16].

words, f(S) =
∑
T⊆S αT . Submodular functions are a

subclass of these polynomials. This representation directly
gives the multilinear extension as the same polynomial,
f̃(x) =

∑
T⊆V αT

∏
i∈T xi, and is efficiently computable

if the polynomial is sparse, i.e., has few nonzero coefficients
αT [26]. This is the case for graph cut like functions above
and for the functions considered in [46, 19]. This analogy
is implicitly known, but we formalize it for completeness.

Proposition 1. The polynomial representation is the multi-
linear extension: f̃(x) = pf (x).

Spectral functions. Diversity can also be encouraged via
spectral regularizers [8]. Given a positive definite matrix
S ∈ Rn×n, define SX to be the |X| × |X| sub-matrix of
the rows and columns indexed by X . Any scalar function
ψ whose derivative is operator-antitone defines a submod-
ular function, f(X) =

∑|X|
i=1 ψ(λi(SX)), by applying it

to the eigenvalues of SX [14]. The resulting class of sub-
modular functions includes the log determinants occurring
in DPP inference [16], and, more generally, a smoothed
log-determinant function f(X) = log det(SX + δIX) =∑|X|
i=1 log(λi(SX) + δ). It is monotone for δ ≥ 1, and has

an efficiently computable soft-max extension that is similar
to the multilinear extension [16]. A related function that en-
courages diversity is f(X) = −

∑|X|
i=1(λi(SX)−1)2 [8]. It

has a surprisingly simple multilinear extension: f̃(x) =
−
∑
i,j∈V s

2
ijxixj +

∑
i∈V (2sii + 1). For the detailed

derivation of this, see [26].

Given expressions for the functions above, we can also
handle weighted combinations f(X) =

∑
i λifi(X), since

its multilinear extension is f̃(x) =
∑
i λif̃i(x). In the

following sections, we briefly describe relaxation algorithms
and rounding schemes for maximization.

4.1 MONOTONE MAXIMIZATION

We first investigate monotone submodular maximization
subject to matroid independence constraints I. The tech-
nique for maximizing the multilinear extension is the con-
tinuous greedy algorithm [50], which is a slight modifi-
cation of the Frank-Wolfe algorithm [13], with a fixed
step size. In each iteration, the algorithm takes a step
xt+1 = xt + δht (with step size δ = 1/n2) in the di-
rection ht = argmaxh′∈PC 〈h

′,∇af̃(xt)〉 best aligned with
the alternate gradient. This continuous greedy procedure ter-
minates in O(n2) iterations, after which we are guaranteed
to obtain a point x such that f̃(x) ≥ (1−1/e)f̃(x∗) [5, 49].
Moreover, using the pipage rounding technique (in particu-
lar, the deterministic variant [50]) ensures that we can round
the continuous solution to a set in O(n2) function calls.

A naı̈ve computation of the generic multilinear extension in
Eqn. (2) or its gradient takes exponential time. To compute
these in polynomial time, we can use sampling. For obtain-
ing an accuracy better than 1/n2, we need O(n5) samples
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Multilinear Closed form O(n3) O(n2) O(n2) O(n2) O(n2) O(n3)
Multilinear Sampling O(n7 logn) O(n6) O(n7) O(n7) O(n6) O(n8)
Gradient Closed form O(n3) O(n2) O(n2) O(n2) O(n2) O(n3)

Gradient Sampling O(n7 logn) O(n7) O(n8) O(n8) O(n7) O(n9)

Table 3: Complexity of evaluating the multilinear extensions and their gradients for both the optimized closed forms given
in this paper and for sampling at high accuracy.

for the multilinear extension or for each coordinate of its gra-
dient [50, 49]. This implies a complexity of O(n6) function
evaluations for the gradient and O(n5) function evaluations
for the extension itself, thus implying the algorithm’s com-
plexity as O(n8T∇f ), where T∇f is the time of evaluating
the gain of f . For facility location, this means a running
time of O(n9 log n), and for set cover functions O(n9).

The specialized expressions in Section 4 however lead
to algorithms that run several orders of magnitude faster.
With O(n2) iterations, the time becomes O(n2T∇f̃ ),
where ∇f̃ is the time to compute the gradient of f̃ .
Table 3 compares the function evaluation times for some
practically very useful submodular functions. Moreover,
we can use mixtures of these submodular functions, each
with efficiently computable multilinear extensions, and
compute the resulting multilinear extension also efficiently.
While this is still slower than the accelerated greedy
algorithm [38], it gains power for more complex constraints,
such as matroid independence constraints, where the
discrete greedy algorithm only achieves an approximation
factor of 1/2, whereas the continuous greedy obtains at
least a 1 − 1/e factor. Similarly, the continuous greedy
algorithm achieves a 1 − 1/e approximation guarantee
for multiple knapsack constraints [33], while the discrete
greedy techniques do not have such guarantees. Hence,
the formulations above make it possible to use the optimal
theoretical results with a more manageable running time.

4.2 NON-MONOTONE MAXIMIZATION

In the non-monotone setting, we must find a local optimum
of the multilinear extension. We could use, for example,
a Frank-Wolfe style algorithm [13] and run it until it con-
verges to a local optimum. It is easy to see that at conver-
gence, x satisfies 〈∇f̃(x), y − x〉 ≤ 0,∀y ∈ PC and is
a local optimum. Practically, this would mean checking
if argmaxy∈PC 〈y,∇f̃(x)〉 = x. For simple or no con-
straints, we could also use a method like L-BFGS. Running
this procedure twice, we are guaranteed to obtain a 0.25
approximate solution [6]. This procedure works for any
down-monotone constraint C. Moreover, this procedure
with a slightly different extension has been successfully ap-
plied in practice to MAP inference with determinantal point
processes [16].

A generic rounding strategy for submodular maximization

problems was given by [6], and works for a large class of
constraints (including matroid, knapsack constraints, and
a combination thereof). Without constraints, this amounts
to sampling a set by a distribution based on the continuous
solution x— it will satisfy EX∼xf(X) = f̃(x). In practice,
however, this may not work well. Since the multilinear
extension is linear in any coordinate (holding the other ones
fixed), a simpler co-ordinate ascent scheme of choosing the
better amongst 0 or 1 for any fractional co-ordinate will
guarantee a deterministic procedure of obtaining an integral
solution no worse than the continuous one.

The above algorithms and rounding techniques offer a gen-
eral and optimal framework, even for many complex con-
straints. Moreover, many of the best algorithms for non-
monotone submodular maximization are based on the mul-
tilinear extension. For example, the best known algorithm
for cardinality constrained non-monotone submodular max-
imization [4] uses a continuous double greedy algorithm
on the multilinear extension. However, the practical utility
of those algorithms is heavily impaired by computational
complexity. In fact, non-monotone functions even require
O(n7) samples [6]. For DPPs, [16] used an extension that
is practical and close to the multilinear extension. Since
they do not use the multilinear extension, the above round-
ing schemes do not imply the same approximation bounds
as for the multilinear extension, leaving the worst-case ap-
proximation quality unknown. The expressions we show
above use the multilinear extension and maintain its benefits,
demonstrating that for many functions of practical interest,
sampling, and hence extremely high complexity, is not nec-
essary. This observation is a step from theory into practice,
and allows for the improved approximations to be used in
practice.

4.3 INTEGRALITY GAPS

Surprisingly, the multilinear extension has an integrality gap
of 1 for a number of constraints including the matroid and
cardinality constraints, since it is easy to round it exactly
(using say, the pipage rounding or contention resolution
schemes [5, 6]).



5 DIFFERENCE OF SUBMODULAR (DS)
FUNCTIONS

Finally, we investigate minimizing the differences between
submodular functions. Given submodular functions f
and g, we consider the following minimization problem:
minX∈C

(
f(X) − g(X)

)
. In fact, any set function can be

represented as a difference between two non-negative mono-
tone submodular functions [40, 21]. In the unconstrained
setting, C = 2V . A natural continuous relaxation (not nec-
essarily convex) is h̃(x) = f̆(x) − ğ(x). The continuous
problem is a DC programming problem, and can be ad-
dressed (often very efficiently) using the convex-concave
procedure [51]. Moreover, thanks to the special structure of
the Lovász extension, there exists a simple rounding scheme
for the unconstrained version.

Lemma 3. Given submodular functions f and g, and a
continuous vector x, there exists a θ ∈ (0, 1) such that
f(Xθ) − g(Xθ) ≥ f̆(x) − ğ(x), where Xθ = {x ≥ θ}.
Moreover, the integrality gap of h̃(x) (in the unconstrained
setting) is equal to 1.

6 DISCUSSION

In this work, we have offered a unifying view on continu-
ous relaxation methods for submodular optimization. For
minimization problems with various constraints, we pro-
vide a generic rounding strategy with new approximation
bounds and matching integrality gaps. For maximization,
we summarize efficiently computable expressions for many
practically interesting submodular functions. This is a useful
step towards transferring optimal theoretical results to real-
world applications. An interesting question remains whether
there exist improved sampling schemes for cases where the
multilinear extension is complex. Recently, [22] investi-
gated forms of submodular minimization and maximization
with submodular constraints. The proposed algorithms there
were all discrete. It is an interesting question whether the
relaxations discussed here extend to their setting as well.
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[50] J. Vondrák. Optimal approximation for the submodular wel-
fare problem in the value oracle model. In STOC, pages
67–74. ACM, 2008.

[51] A. Yuille and A. Rangarajan. The concave-convex procedure.
Neural Computation, 15(4):915–936, 2003.


	INTRODUCTION
	CONTINUOUS RELAXATIONS
	SUBMODULAR MINIMIZATION
	UNCONSTRAINED MINIMIZATION
	CONSTRAINED MINIMIZATION
	MATROID CONSTRAINTS
	SET COVERS
	CUTS, PATHS AND MATCHINGS


	SUBMODULAR MAXIMIZATION
	MONOTONE MAXIMIZATION
	NON-MONOTONE MAXIMIZATION
	INTEGRALITY GAPS

	DIFFERENCE OF SUBMODULAR (DS) FUNCTIONS
	DISCUSSION

