
A Partitioning Framework for Aggressive Data Skipping

Liwen Sun, Sanjay Krishnan, Reynold S. Xin and Michael J. Franklin

AMPLab, UC Berkeley

{liwen, sanjay, rxin, franklin}@cs.berkeley.edu

ABSTRACT
We propose to demonstrate a fine-grained partitioning frame-
work that reorganizes the data tuples into small blocks at
data loading time. The goal is to enable queries to maxi-
mally skip scanning data blocks. The partition framework
consists of four steps: (1) workload analysis, which extracts
features from a query workload, (2) augmentation, which
augments each data tuple with a feature vector, (3) reduce,
which succinctly represents a set of data tuples using a set of
feature vectors, and (4) partitioning, which performs a clus-
tering algorithm to partition the feature vectors and uses
the clustering result to guide the actual data partitioning.
Our experiments show that our techniques result in a 3-
7x query response time improvement over traditional range
partitioning due to more e↵ective data skipping.

1. INTRODUCTION
A rapidly increasing number of applications require inter-

active data analysis on enormous datasets. This necessitates
the capability of low-latency query processing for large-scale
query engines. Among others, an e↵ective way to improve
query latency is to reduce the unnecessary data access. For
example, column store techniques have been widely adopted
to avoid touching irrelevant columns. To reduce the scan of
unwanted tuples, there is an increasing interest in data skip-
ping in recent systems [4, 5, 2]. By partitioning the data into
small blocks, these systems associate each block with some
metadata, such as the min and max values of each column.
A query can first evaluate its filter against these block-level
metadata and decide which blocks can be safely skipped.

Data skipping can be viewed as a generalization of par-
tition pruning. On a horizontally partitioned table, parti-
tion pruning allows a query to prune partitions based on
their associated partition key ranges. Data skipping ex-
tends the idea of partition pruning in several ways. First,
storing the min and max values of each column enables skip-
ping based on non-partition-key columns, especially on the
columns that are naturally clustered with the partition keys.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

Second, for better skipping chances, data skipping is often
considered on very small blocks, e.g., partitions consisting of
1,000’s to 10,000’s of tuples [4, 2] or simply HDFS blocks [5].

The e↵ectiveness of data skipping depends on the inter-
play between query filters and the partitioning scheme. In
a data warehouse environment, for example, a time-range
partitioning scheme o↵ers great opportunities for partition
pruning, as most queries are observed to have time-range fil-
ters. While range partitioning is simple and useful for data
warehouse operations, it may not be ideal for generating
a large number of small blocks for e↵ective data skipping.
Specifically, range partitioning lacks of a principled way of:
(1) setting the fine-grained value ranges on each column that
matches the data skew and workload skew, (2) allocating the
number of partitions for di↵erent partitioning columns and
(3) capturing inter-column data correlation and filter corre-
lation.

We propose to demonstrate a fine-grained partitioning
framework that, at data loading time, partitions data tu-
ples into small, balanced blocks with a goal of maximizing
data skipping. We call this framework WARP, based on its
a four-step workflow: Workload analysis, Augmentation,
Reduce, and Partitioning. We first analyze a query log
o✏ine and extract a set of representative query filters as
features. Intuitively, we want a small set of features that
can subsume as many queries in the workload as possible.
Given these features, a set of tuples can be succinctly repre-
sented as a (much smaller) set of feature vectors. We then
partition these feature vectors by solving an optimization
problem. Finally, the partitioning scheme of these feature
vectors will be used to guide the partition of actual data
tuples. After partitioning the tuples into data blocks, we
store the features and some concise metadata for each block
in the system catalog. When a query comes, we first check if
this query can be subsumed by any of the features and then
decide which blocks can be skipped.

Instead of specifying the partitioning columns and value
ranges as in range partitioning, WARP factors in the com-
mon interests of the workload as features and, based on these
common interests, finds a partitioning scheme by solving an
optimization problem. The fine-grained tuple-level parti-
tioning decision output by WARP o↵ers greater flexibility
and better chances for data skipping. Since WARP pro-
duces very small blocks, it can be used to further segment
traditional range partitions. In fact, as data is often batch
inserted in a data warehouse environment, it is a good prac-
tice to apply WARP within each individual time-range (e.g.,
date) partition, instead of moving tuples across di↵erent

1617

output

input

(1)
Workload analysisworkload

(vector, count)
pairs

(4)
Partitioning

features

tuples (2)
Augmentation

(3)
Reduce

(vector, tuple)
pairs

partitioned
tuples

Figure 1: The WARP Workflow

time-range partitions.
The remainder of this demonstration proposal is organized

as follows. Section 2 outlines the workflow and challenges
of WARP and Section 3 discusses how queries can utilize
the metadata generated by WARP to skip data. In Sec-
tion 4, we present our WARP prototype on Shark [5], an
open-source data warehouse system running on Spark [6].
Section 5 reports performance results. Finally, we propose
the demonstration details in Section 6.

A full technical paper describing our partitioning frame-
work can be found in [3].

2. THE WARP WORKFLOW
The input is a collection of tuples, which can be a table

or a table partition such as a date partition, and a workload
represented as a collection of queries. The query workload
can be obtained from the query logs. We now walk through
the four steps of the workflow, as depicted in Figure 1.

2.1 Workload Analysis
Workload analysis is an o✏ine process that extracts a set

of features from the query workload. Its core is a frequent
itemset mining problem. We model as an item each predi-
cate or each disjunction of predicates and model each query
as a set of (conjunctive) items. We run a frequent itemset
mining algorithm to find frequent predicate sets. Note that
our goal here is to identify a set of features that subsume as
many queries as possible. Therefore, in the mining process,
we count the number of queries a predicate set subsumes,
instead of the number of queries in which a predicate set
occurs as in a traditional sense. Some predicate sets may be
redundant due to the subsumption relations. For instance,
revenue < 0 may be redundant if revenue < 10 is also in the
result. Thus, we finally select a set of features by removing
redundant frequent predicate sets. As shown in Example 1,
the output of workload analysis is a set of features, each
of which is associated with an integer indicating how many
queries it subsumes.

Example 1. Features output by workload analyzer:
F1: event = ’buy’, 60
F2: product = ’jeans’, 20
F3: publisher = ’google’ ^ revenue < 0, 10

(0,1,0),
(0,0,1),
(0,0,0),
(1,1,0),
(0,1,1),

(1,0,0), t6
t5
t4
t3
t2
t1 (0,1,0)

(1,1,0)&

(0,0,1)&
(0,1,1)

(0,0,0)
(1,0,0)

P1&
(1,1,0)

P2&
(0,1,1)

P3&
(1,0,0)

(a) (vector, tuple)-pairs (b) partitions

Figure 2: A Partitioning Example

2.2 Augmentation
Note that the features from Step 1 are essentially filters.

Let us say there are m features. We evaluate each tuple
against these m features and generate a m-bit vector, where
the i-bit indicates whether the tuple satisfies the i-th fea-
ture. When a set of tuples are batch-loaded, e.g., as a date
partition, we scan these tuples once and batch evaluate these
filters on each tuple. This step transforms each tuple to a
(vector, tuple)-pair, as shown in Figure 2(a).

2.3 Reduce
The partitioning algorithm will be solely based on the

feature vectors, not the actual tuples. As many di↵erent
tuples can have the same bit vector, we group-by the (vector,
tuple)-pairs from Step 2 into (vector, count)-pairs. Note
that the number of distinct vectors can be much smaller
than the number of data tuples. Thus, this is a critical step
that reduces the input size of the partitioning algorithm.

2.4 Partitioning
The partitioning step runs a clustering algorithm to par-

tition the (vector, count)-pairs. Figure 2(b) illustrates an
example partitioning scheme over the vectors. Note that
the partitioning of the vectors governs the partitioning of
the tuples. For example, all the tuples with vector (0, 1, 0)
as key will be routed to partition P1. For each partition of
vectors, we derive a union vector, which is the union of all
vectors in it. For example, the union vector of partition P1

is (1, 1, 0). Since the third bit of this vector is 0, we know
that no vector in P1 has the third bit on, and hence, no
tuple in P1 satisfies feature F3. In this case, all the queries
subsumed by F3 can safely skip scanning P1.

Intuitively, our objective is to find a partitioning that
maximizes the (weighted) sum of zeros in the union vec-
tors. This objective is quite di↵erent from traditional clus-
tering objectives such as k-means and distance-based met-
rics. We proved that finding an optimal partitioning under
this objective is NP-hard [3]. We adopt the classic bottom-
up clustering framework as a heuristic: every vector starts
as a partition by itself, and at each iteration, we merge the
two vectors that hurtsa the objective the least. To make
the partitions almost balanced, we remove a partition from
further merging once its size reaches a parameter minSize.
By consulting the partitioning result of vectors, each of the
(vector, tuple)-pairs (from the Augmentation step) is routed
to its destination partition.

The WARP workflow can be executed at data loading
time and may be re-executed later to account for workload
changes. In the event that the data arrival rate is high or
that the new data needs to be queried immediately, WARP
can be postponed.

1618

System CatalogSELECT&publisher,&sum(revenue)
FROM&events&
WHERE&product&=&'jeans'&and&event&=&'buy'
GROUP&BY&publisher

F1:&event&=&'buy'
F2:&product&=&'jeans'
F3:&publisher&=&'google',&revenue&<&0

&&&&&&&&&&&&P1:&(1,&1,&0)&
&&&&&&&&&&&&P2:&(0,&1,&1)&
&&&&&&&&&&&&P3:&(1,&0,&0)

query&vector:&(0,0,1)

blocks&to&scan:&P1

features

union vectors

Figure 3: Skip Checking in Query Processing

Having presented the WARP workflow, we next discuss
how the queries can perform aggressive data skipping on
our partitioned data.

3. SKIP-AWARE QUERY PROCESSING
At the end of the WARP workflow, we add the features

used in WARP to the system catalog. In addition, we store
one union vector (e.g., Figure 2(b)) for each block in the sys-
tem catalog. After this step, we can safely drop the feature
vectors associated with every tuple.

The i-th bit of a union vector is 0 only if no tuple in this
block satisfies feature i. In this case, the queries that are
subsumed by feature i can safely skip this partition. To
make use of this information during query processing, we
need a two-step skip checking mechanism, as illustrated in
Figure 3:

(1) Feature matching. Given the features we store in
the system catalog. When a query comes, we first check
which features subsume this query. We then encode this
information in a query vector. The i-th bit of the query
vector is 0 if this query can be subsumed by the i-th feature.
For example, in Figure 3, we find that feature F1 and F2

can subsume the query, but not F3, and thus we construct
a query vector (0, 0, 1).

(2) Union vector checking. Given that we store a
union vector for each block, we now check the query vector
against these union vectors and decide which blocks can be
skipped. Specifically, we perform a bitwise OR operation
between the query vector and each union vector. For any
block, if the result of the OR operation has at least one 0
bit in it, then this block can be safely skipped. In Figure 3,
the ORed vectors for P1, P2 and P3 are (1, 1, 1), (0, 1, 1) and
(1, 0, 1) respectively. Thus, we know that we only need to
scan P1. Finally, this information is passed to the table scan
operator.

The above procedure happens before the actual query ex-
ecution. As we can see, we only need to maintain a set of
features used and one bit vector for each block. This meta-
data is very small and can be stored in main memory. The
skip checking only involves a feature matching step and, for
each block, a bit-OR operation. This incurs little overhead
to query latency. Note that this skipping mechanism can
be used in conjunction with existing skipping mechanisms
based on per-column value ranges.

4. SYSTEM PROTOTYPE
We prototype our blocking techniques on Shark [5], a

fully Apache Hive-compatible data warehousing system us-
ing Apache Spark [6] as runtime.

Shark Background. Shark uses Hive’s query parser to
parse and compiles HiveQL (SQL-like) queries to a query

plan, and then translates it to Spark tasks. A Shark table
is stored as a Spark data abstraction called Resilient Dis-
tributed Dataset (RDD), which is physically stored as a list
of data blocks, each of which can be either memory- or disk-
resident. Each Spark block is a task processing unit and
has a default size of 128MB. Shark can skip some of these
blocks during a table scan. At data import time, Shark col-
lects the data statistics for each block, such as the min and
max values of each column. These block-level statistics are
maintained in the system catalog. The table scan operator
first fetches the query filter operators and applies them on
these statistics to prune blocks. Only the blocks that are
not pruned in this step are actually scanned.

We now briefly discuss how our techniques were imple-
mented on Shark. First, we collect a query trace from the
query logging system of Shark or from an external source.
We use Shark’s query parser (through Hive) to convert each
query string into a set of conjunctive filter operators. We
implemented a isSubsume(f1, f2) function using a set of
rules to check if filter f1 subsumes filter f2. A workload
analysis module was added in Shark to compute frequent
itemsets and remove redundant results based on subsump-
tion, as discussed in Section 2.

Given the features, represented as filter operators, we sim-
ply wrote a Spark map function to transform each data tuple
into a (vector, tuple) key-value pairs. Then we use a Spark
reduce function to group-by these key value pairs. We im-
plemented a bottom-up clustering algorithm as an indepen-
dent module in Shark. Note that external libraries could be
used here for an optimized implementation. We then built
a customized partitioner class which implements the Par-
titioner interface in Spark. This partitioner stores a (vec-
tor, partition-id) map in memory and routes each (vector,
tuple)-pair to its corresponding destination block. We then
re-partition original table (an RDD) using this partitioner.

In the end, we added the metadata described in Section 3
to the Shark system catalog. A table scan in Shark with
WARP can utilize the conjunction of two block skipping
mechanisms: our feature-based skipping (Section 3) and the
existing skipping based on value ranges.

5. PERFORMANCE
We conducted extensive evaluation using TPC-H and a

real-world analytical workload. The experiments were run
on an Amazon Spark EC2 cluster of 25 m2.4xlarge instances,
each with 8 2.66 GHz CPU cores, 68.4 GB of RAM and 800
GB of disk. Here we present some performance highlight
from TPC-H. For full experimental results, refer to [3].

Dataset. We denormalize the TPC-H tables against the
lineitem table. With a scale factor of 100, the resulting table
has roughly 600 million rows and is 700 GB in size. We select
eight TPC-H query templates (q3, q5, q6, q8, q10, q12, q14,
q19) that involve the lineitem table and have selective filters.
The FROM clauses in these templates were all changed to be
the denormalized table. Using the TPC-H query generator,
we generate 800 queries as the training workload, 100 from
each template. We then independently generate 80 queries
for testing, 10 from each template.

We compare WARP against Shark’s existing data skip-
ping on top of range partitioning for running the 80 test
queries. We manually devise a composite range partitioning
scheme on {o orderdate, r name, c mktsegmt, quantity} by
identifying the frequently queried columns from the training

1619

0.03%!

0.20%!

1.80%!

Selectivity
(optimal)!

WARP!

Shark !
(range partition)!

% tuples!

Figure 4: Number of Tuples Scanned

2.9!

9.6!

33!

WARP!

Shark !
(range partition)!

Shark !
(no skip)!

time (sec)!

Figure 5: End-to-End Query Response Time

queries. For WARP, we first partition the data by month
on o orderdate and apply WARP on each month partition.
We set the number of features as 15 and the partition size
to be 50k tuples. We used both our feature-based skipping
and Shark’s existing skipping for WARP.

Figure 4 shows the number of tuples scanned by these two
approaches. Shark’s data skipping mechanism on range par-
titioning is decent, as it only scans 1.8% percent of the table
for an average query. WARP brings down this number to be
0.2%. As a reference, we also plot the average selectivity of
these queries, which is the minimum number of tuples that
have to be scanned for answering these queries.

We compare the end-to-end query performance in Fig-
ure 5. Note that the table is memory resident. Without
any skipping, Shark scans the whole table for every query,
which takes 30 seconds on average. By switching on the
skipping, the average query response time in Shark becomes
9.6 seconds. With WARP, it only needs 2.9 seconds, a 3⇥
improvement.

To summarize, by deploying WARP on Shark, we signifi-
cantly reduce the number of tuples scanned and this reduc-
tion e↵ectively translates to a significant end-to-end query
response time improvement.

6. DEMONSTRATION DETAILS
We will demonstrate our WARP prototype on Spark de-

ployed on a Amazon EC2 cluster [1]. We will use the denor-
malized TPC-H dataset.

6.1 Demonstration Scenario
Our demonstration will put the conference attendees in

the position of a database administrator (DBA) or a perfor-
mance engineer. She would like to consider working with
WARP to analyze her workload characteristics, load the
data, and observe the query performance improvement over
existing partitioning methods. We will walk through the
following three steps:

Workload Analysis. To make the best use of WARP, we
illustrate and visualize the key characteristics of the work-
load. The questions we aim to address in this part of demon-
stration are: (1) how predictable are future queries from a
past-workload analysis? (2) how many features do we need?
and (3) how representative are these features? At a web
console, the attendees can tune some parameters, such as
the number of features, and interactively observe the actual

features extracted by WARP and graphs that summarize
the statistics of workload.

Data Loading. After selecting the features, we use WARP
to load data live from HDFS to Shark. The only parameter
here is the size of each partition. The attendees get to tune
this parameter and observe its e↵ect on the breakdown cost
and running statistics as WARP progresses.

Skipping in Action. At this stage, we have several
copies of the table, including copies loaded with range par-
titioning and with WARP using di↵erent parameter choices.
The attendees can choose a query from the workload or issue
an ad-hoc query. For each query, we show how the posed
query interacts with the metadata. We also demonstrate
how the reduction of data scan translates to the improve-
ment of end-to-end query response time, for both on-disk
and in-memory data. In addition to the performance num-
bers, this part of demonstration helps attendees understand
why some queries benefit more from the WARP partitioning
than others. For comparison, we also print out block-level
min and max values and show how they help queries skip
blocks in existing systems.

6.2 Takeaway
This demonstration illustrates the reason behind WARP’s

significant performance benefits and its ease-of-use features,
e.g., only two parameters to tune. Using WARP’s buit-
in workload analysis helps users understand their workload
characteristics before setting up WARP. To deploy WARP
on a query engine requires little e↵ort, as it needs minimal
modification on the table scan operator and is independent
of the other parts of query execution. For instance, we mod-
ified Shark’s table scan operator for WARP using less than
100 lines of Scala code.

7. REFERENCES
[1] Running Spark on Amazon EC2.

https://spark.apache.org/docs/0.9.0/ec2-scripts.html.
[2] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and

M. Nunkesser. Processing a trillion cells per mouse
click. PVLDB, 5(11):1436–1446, 2012.

[3] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin.
Fine-grained partitioning for aggressive data skipping.
In SIGMOD Conference, pages 1115–1126, 2014.

[4] V. Raman et al. DB2 with BLU acceleration: So much
more than just a column store. PVLDB,
6(11):1080–1091, 2013.

[5] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: SQL and Rich
Analytics at Scale. In SIGMOD, pages 13–24, 2013.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In NSDI,
pages 2–2, 2012.

1620

