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ABSTRACT
Minimizing coordination, or blocking communication between con-
currently executing operations, is key to maximizing scalability,
availability, and high performance in database systems. However,
uninhibited coordination-free execution can compromise applica-
tion correctness, or consistency. When is coordination necessary for
correctness? The classic use of serializable transactions is sufficient
to maintain correctness but is not necessary for all applications,
sacrificing potential scalability. In this paper, we develop a formal
framework, invariant confluence, that determines whether an appli-
cation requires coordination for correct execution. By operating
on application-level invariants over database states (e.g., integrity
constraints), invariant confluence analysis provides a necessary and
sufficient condition for safe, coordination-free execution. When
programmers specify their application invariants, this analysis al-
lows databases to coordinate only when anomalies that might violate
invariants are possible. We analyze the invariant confluence of com-
mon invariants and operations from real-world database systems
(i.e., integrity constraints) and applications and show that many are
invariant confluent and therefore achievable without coordination.
We apply these results to a proof-of-concept coordination-avoiding
database prototype and demonstrate sizable performance gains com-
pared to serializable execution, notably a 25-fold improvement over
prior TPC-C New-Order performance on a 200 server cluster.

1. INTRODUCTION
Minimizing coordination is key in high-performance, scalable

database design. Coordination—informally, the requirement that
concurrently executing operations synchronously communicate or
otherwise stall in order to complete—is expensive: it limits con-
currency between operations and undermines the effectiveness of
scale-out across servers. In the presence of partial system fail-
ures, coordinating operations may be forced to stall indefinitely,
and, in the failure-free case, communication delays can increase
latency [9, 28]. In contrast, coordination-free operations allow ag-
gressive scale-out, availability [28], and low latency execution [1].
If operations are coordination-free, then adding more capacity (e.g.,
servers, processors) will result in additional throughput; operations
can execute on the new resources without affecting the old set of
resources. Partial failures will not affect non-failed operations, and
latency between any database replicas can be hidden from end-users.

Unfortunately, coordination-free execution is not always safe. Un-
inhibited coordination-free execution can compromise application-
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level correctness, or consistency.1 In canonical banking applica-
tion examples, concurrent, coordination-free withdrawal operations
can result in undesirable and “inconsistent” outcomes like negative
account balances—application-level anomalies that the database
should prevent. To ensure correct behavior, a database system must
coordinate the execution of these operations that, if otherwise exe-
cuted concurrently, could result in inconsistent application state.

This tension between coordination and correctness is evidenced
by the range of database concurrency control policies. In tradi-
tional database systems, serializable isolation provides concurrent
operations (transactions) with the illusion of executing in some se-
rial order [15]. As long as individual transactions maintain correct
application state, serializability guarantees correctness [30]. How-
ever, each pair of concurrent operations (at least one of which is
a write) can potentially compromise serializability and therefore
will require coordination to execute [9, 21]. By isolating users at
the level of reads and writes, serializability can be overly conser-
vative and may in turn coordinate more than is strictly necessary
for consistency [29, 39, 53, 58]. For example, hundreds of users
can safely and simultaneously retweet Barack Obama on Twitter
without observing a serial ordering of updates to the retweet counter.
In contrast, a range of widely-deployed weaker models require less
coordination to execute but surface read and write behavior that may
in turn compromise consistency [2, 9, 22, 48]. With these alternative
models, it is up to users to decide when weakened guarantees are
acceptable for their applications [6], leading to confusion regarding
(and substantial interest in) the relationship between consistency,
scalability, and availability [1, 9, 12, 18, 21, 22, 28, 40].

In this paper, we address the central question inherent in this trade-
off: when is coordination strictly necessary to maintain application-
level consistency? To do so, we enlist the aid of application pro-
grammers to specify their correctness criteria in the form of invari-
ants. For example, our banking application writer would specify
that account balances should be positive (e.g., by schema annota-
tions), similar to constraints in modern databases today. Using these
invariants, we formalize a necessary and sufficient condition for
invariant-preserving and coordination-free execution of an appli-
cation’s operations—the first such condition we have encountered.
This property—invariant confluence (I-confluence)—captures the
potential scalability and availability of an application, independent
of any particular database implementation: if an application’s opera-
tions are I-confluent, a database can correctly execute them without
coordination. If operations are not I-confluent, coordination is
required to guarantee correctness. This provides a basis for coordi-
nation avoidance: the use of coordination only when necessary.

While coordination-free execution is powerful, are any useful
operations safely executable without coordination? I-confluence
analysis determines when concurrent execution of specific opera-
tions can be “merged” into valid database state; we accordingly

1Our use of the term “consistency” in this paper refers to application-level
correctness, as is traditional in the database literature [15, 21, 25, 30, 56]. As
we discuss in Section 5, replicated data consistency (and isolation [2, 9])
models like linearizability [28] can be cast as application criteria if desired.



analyze invariants and operations from several real-world databases
and applications. Many production databases today already support
invariants in the form of primary key, uniqueness, foreign key, and
row-level check constraints [9, 42]. We analyze these and show
many are I-confluent, including forms of foreign key constraints,
unique value generation, and check constraints, while others, like
primary key constraints are, in general, not. We also consider entire
applications and apply our analysis to the workloads of the OLTP-
Benchmark suite [23]: surprisingly, many are easy to express and
are also I-confluent. As an extended case study, we examine the
TPC-C benchmark [55], the preferred standard for evaluating new
concurrency control algorithms [23, 35, 46, 52, 54]. We show that
ten of twelve of TPC-C’s invariants are I-confluent under the work-
load transactions and, more importantly, compliant TPC-C can be
implemented without any synchronous coordination across servers.
We subsequently scale a coordination-avoiding database prototype
linearly, to over 12.7M TPC-C New-Order transactions per second
on 200 servers, a 25-fold improvement over prior results.

Overall, I-confluence offers a concrete grasp on the challenge of
minimizing coordination while ensuring application-level correct-
ness. In seeking a necessary and sufficient (i.e., “tight”) condition
for safe, coordination-free execution, we require the programmer to
specify her correctness criteria. If either these criteria or application
operations are unavailable for inspection, users must fall back to
using serializable transactions or, alternatively, perform the same ad-
hoc analyses they use today [12]. Moreover, it is already well known
that coordination is required to prevent several read/write isolation
anomalies like non-linearizable operations [9, 28]. However, when
users can correctly specify their application correctness criteria and
operations, they can maximize scalability without requiring exper-
tise in the milieu of weak read/write isolation models [2,9]. We have
also found that I-confluence to be a useful design tool: studying
specific combinations of invariants and operations can indicate the
existence of more scalable algorithms [18].

In summary, this paper offers the following high-level takeaways:

1. Serializable transactions preserve application correctness at the
cost of always coordinating between conflicting reads and writes.

2. Given knowledge of application transactions and correctness crite-
ria (e.g., invariants), it is often possible to avoid this coordination
(by executing some transactions without coordination, thus pro-
viding availability, low latency, and excellent scalability) while
still preserving those correctness criteria.

3. Invariant confluence offers a necessary and sufficient condition
for this correctness-preserving, coordination-free execution.

4. Many common integrity constraints found in SQL and stan-
dardized benchmarks are invariant confluent, allowing order-of-
magnitude performance gains over coordinated execution.

While coordination cannot always be avoided, this work evidences
the power of application invariants in scalable and correct execu-
tion of modern applications on modern hardware. Application cor-
rectness does not always require coordination, and I-confluence
analysis can explain both when and why this is the case.

Overview. The remainder of this paper proceeds as follows: Sec-
tion 2 describes and quantifies the costs of coordination. Section 3
introduces our system model and Section 4 contains our primary
theoretical result. Readers may skip to Section 5 for practical ap-
plications of I-confluence to real-world invariant-operation com-
binations. Section 6 subsequently applies these combinations to
real applications and presents an experimental case study of TPC-C.
Section 7 describes related work, and Section 8 concludes.

2. CONFLICTS AND COORDINATION
As repositories for application state, databases are traditionally

tasked with maintaining correct data on behalf of users. During
concurrent access to data, a database ensuring correctness must
therefore decide which user operations can execute simultaneously
and which, if any, must coordinate, or block. In this section, we ex-
plore the relationship between the correctness criteria that a database
attempts to maintain and the coordination costs of doing so.

By example. As a running example, we consider a database-backed
payroll application that maintains information about employees and
departments within a small business. In the application, a.) each
employee is assigned a unique ID number and b.) each employee
belongs to exactly one department. A database ensuring correctness
must maintain these application-level properties, or invariants on
behalf of the application (i.e., without application-level intervention).
In our payroll application, this is non-trivial: for example, if the
application attempts to simultaneously create two employees, then
the database must ensure the employees are assigned distinct IDs.

Serializability and conflicts. The classic answer to maintain-
ing application-level invariants is to use serializable isolation: ex-
ecute each user’s ordered sequence of operations, or transactions,
such that the end result is equivalent to some sequential execu-
tion [15, 30, 53]. If each transaction preserves correctness in isola-
tion, composition via serializable execution ensures correctness. In
our payroll example, the database would execute the two employee
creation transactions such that one transaction appears to execute
after the other, avoiding duplicate ID assignment.

While serializability is a powerful abstraction, it comes with a
cost: for arbitrary transactions (and for all implementations of se-
rializability’s more conservative variant—conflict serializability),
any two operations to the same item—at least one of which is a
write—will result in a read/write conflict. Under serializability,
these conflicts require coordination or, informally, blocking com-
munication between concurrent transactions: to provide a serial
ordering, conflicts must be totally ordered across transactions [15].
For example, given database state {x =⊥,y =⊥}, if transaction T1
writes x = 1 and reads from y and T2 writes y = 1 and reads from x,
a database cannot both execute T1 and T2 entirely concurrently and
maintain serializability [9, 21].

The costs of coordination. The coordination overheads above
incur three primary penalties: increased latency (due to stalled exe-
cution), decreased throughput, and, in the event of partial failures,
unavailability. If a transaction takes d seconds to execute, the maxi-
mum throughput of conflicting transactions operating on the same
items under a general-purpose (i.e., interactive, non-batched) trans-
action model is limited by 1

d , while coordinating operations will also
have to wait. On a single system, delays can be small, permitting
tens to hundreds of thousands of conflicting transactions per item
per second. In a partitioned database system, where different items
are located on different servers, or in a replicated database system,
where the same item is located (and is available for operations) on
multiple servers, the cost increases: delay is lower-bounded by net-
work latency. On a local area network, delay may vary from several
microseconds (e.g., via Infiniband or RDMA) to several millisec-
onds on today’s cloud infrastructure, permitting anywhere from a
few hundred transactions to a few hundred thousand transactions
per second. On a wide-area network, delay is lower-bounded by
the speed of light (worst-case on Earth, around 75ms, or about 13
operations per second [9]). Under network partitions [13], as delay
tends towards infinity, these penalties lead to unavailability [9, 28].
In contrast, operations executing without coordination can proceed
concurrently and will not incur these penalties.
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Figure 1: Microbenchmark performance of coordinated and
coordination-free execution of transactions of varying size writ-
ing to eight items located on eight separate multi-core servers.

Quantifying coordination overheads. To further understand the
costs of coordination, we performed two sets of measurements—one
using a database prototype and one using traces from prior studies.

We first compared the throughput of a set of coordinated and
coordination-free transaction execution. We partitioned a set of
eight data items across eight servers and ran one set of transactions
with an optimized variant of two-phase locking (providing serializ-
ability) [15] and ran another set of transactions without coordination
(Figure 1; see [10, Appendix A] for more details). With single-item,
non-distributed transactions, the coordination-free implementation
achieves, in aggregate, over 12M transactions per second and bot-
tlenecks on physical resources—namely, CPU cycles. In contrast,
the lock-based implementation achieves approximately 1.1M trans-
actions per second: it is unable to fully utilize all multi-core pro-
cessor contexts due to lock contention. For distributed transactions,
coordination-free throughput decreases linearly (as an N-item trans-
action performs N writes), while the throughput of coordinating
transactions drops by over three orders of magnitude.

While the above microbenchmark demonstrates the costs of a
particular implementation of coordination, we also studied the ef-
fect of more fundamental, implementation-independent overheads
(i.e., also applicable to optimistic and scheduling-based concur-
rency control mechanisms). We determined the maximum attainable
throughput for coordinated execution within a single datacenter
(based on data from [60]) and across multiple datacenters (based on
data from [9]) due to blocking coordination during atomic commit-
ment [15]. For an N-server transaction, classic two-phase commit
(C-2PC) requires N (parallel) coordinator to server RTTs, while de-
centralized two-phase commit (D-2PC) requires N (parallel) server
to server broadcasts, or N2 messages. Figure 2 shows that, in the
local area, with only two servers (e.g., two replicas or two coordi-
nating operations on items residing on different servers), throughput
is bounded by 1125 transactions/s (via D-2PC; 668/s via C-2PC).
Across eight servers, D-2PC throughput drops to 173 transactions/s
(resp. 321 for C-2PC) due to long-tailed latency distributions. In the
wide area, the effects are more stark: if coordinating from Virginia
to Oregon, D-2PC message delays are 83 ms per commit, allowing
12 operations per second. If coordinating between all eight EC2
availability zones, throughput drops to slightly over 2 transactions/s
in both algorithms. ([10, Appendix A] provides more details.)

These results should be unsurprising: coordinating—especially
over the network—can incur serious performance penalties. In
contrast, coordination-free operations can execute without incurring
these costs. The costs of actual workloads can vary: if coordinating
operations are rare, concurrency control will not be a bottleneck.
For example, a serializable database executing transactions with
disjoint read and write sets can perform as well as a non-serializable
database without compromising correctness [34]. However, as these
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Figure 2: Atomic commitment latency as an upper bound on
throughput over LAN and WAN networks.

results demonstrate, minimizing the amount of coordination and
its degree of distribution can therefore have a tangible impact on
performance, latency, and availability [1,9,28]. While we study real
applications in Section 6, these measurements highlight the worst
of coordination costs on modern hardware.

Our goal: Minimize coordination. In this paper, we seek to min-
imize the amount of coordination required to correctly execute an
application’s transactions. As discussed in Section 1, serializability
is sufficient to maintain correctness but is not always necessary; that
is, many—but not all—transactions can be executed concurrently
without necessarily compromising application correctness. In the
remainder of this paper, we identify when safe, coordination-free
execution is possible. If serializability requires coordinating be-
tween each possible pair of conflicting reads and writes, we will
only coordinate between pairs of operations that might compromise
application-level correctness. To do so, we must both raise the
specification of correctness beyond the level of reads and writes
and directly account for the process of reconciling the effects of
concurrent transaction execution at the application level.

3. SYSTEM MODEL
To precisely characterize coordination avoidance, we first present

a system model. We begin with an informal overview. In our
model, transactions operate over independent (logical) “snapshots”
of database state. Transaction writes are applied at one or more
snapshots initially when the transaction commits and then are inte-
grated into other snapshots asynchronously via a “merge” operator
that incorporates those changes into the snapshot’s state. Given a
set of invariants describing valid database states, as Table 1 out-
lines, we seek to understand when it is possible to ensure invariants
are always satisfied (global validity) while guaranteeing a response
(transactional availability) and the existence of a common state (con-
vergence), all without communication during transaction execution



Property Effect
Global validity Invariants hold over committed states
Transactional availability Non-trivial response guaranteed
Convergence Updates are reflected in shared state
Coordination-freedom No synchronous coordination

Table 1: Key properties of the system model and their effects.

(coordination-freedom). This formal model need not directly corre-
spond to a given implementation (e.g., see the database architecture
in Section 6)—rather, it serves as a useful abstraction in our for-
malization. The remainder of this section precisely defines these
concepts; readers more interested in their application should skip to
Section 4.

Databases. We represent a state of the shared database as a set D
of unique versions of data items located on a set of database servers.
Each version is located on at least one server and possibly multiple
servers, but the distinction is not important for our model. We use D
to denote the set of possible database states—that is, the set of sets
of versions. The database is initially populated by an initial state D0
(typically but not necessarily empty).

Transactions, Replicas, and Merging. Application clients submit
requests to the database in the form of transactions, or ordered
groups of operations on data items that should be executed together.
Each transaction operates on a local replica, or set of versions
of the items mentioned in the transaction. At the beginning of
the transaction, the replica contains a subset of the database state
and is formed from all of the versions of the relevant items that
can be found at one or more physical servers that are contacted
during transaction execution. As the transaction executes, it may
add versions (of items in its writeset) to its replica. Thus, we define
a transaction T as a transformation on a replica: T : D→ D. We
treat transactions as opaque transformations that can contain writes
(which add new versions to the replica’s set of versions) or reads
(which return a specific set of versions from the replica). (Later, we
will discuss transactions operating on data types such as counters.)

Upon completion, each transaction can commit, signaling success,
or abort, signaling failure. Upon commit, the replica state is subse-
quently merged (t:D×D→D) into the set of versions at one or
more servers, where later transactions are able to observe its effects.
Over time, the effects are propagated through the system to other
servers, again through the use of the merge operator. Though not
strictly necessary, we assume this merge operator is commutative,
associative, and idempotent [5, 50]. In our initial model, we define
merge as set union of the versions contained at different servers.
(Section 5 discusses additional implementations.) For example, if
server Rx = {v} and Ry = {w}, then RxtRy = {v,w}.

In effect, each transaction can modify its replica state without
modifying any other concurrently executing transactions’ replica
state. Replicas therefore provide transactions with partial “snap-
shot” views of global state (that we will use to simulate concurrent
executions, similar to revision diagrams [17]). Importantly, two
transactions’ replicas do not necessarily correspond to two phys-
ically separate servers; rather, a replica is simply a partial “view”
over the global state of the database system. For now, we assume
transactions are known in advance (see also [10, Section 8]).

Invariants. To determine whether a database state is valid ac-
cording to application correctness criteria, we use invariants, or
predicates over replica state: I : D → {true, f alse} [25]. In our
payroll example, we could specify an invariant that only one user
in a database has a given ID. This invariant—as well as almost
all invariants we consider—is naturally expressed as a part of the
database schema (e.g., via DDL); however, our approach allows us

Server 1
D0={}

Server 2
D0={}

Server 1
D1={x1}

commit T1 commit T2

Server 2
D2={x2}

Server 2
D3={x1,x2}

Server 1
D3={x1,x2}

TIM
E

(ASYNCHRONOUS) MERGE OF DIVERGENT SERVER STATES

COORDINATION-FREE EXECUTION

replica={x1} replica={x2}

Figure 3: An example coordination-free execution of two trans-
actions, T1 and T2, on two servers. Each transaction writes to
its local replica, then, after commit, the servers asynchronously
exchange state and converge to a common state (D3).

to reason about invariants even if they are known to the developer
but not declared to the system. Invariants directly capture the notion
of ACID Consistency [15, 30], and we say that a database state is
valid under an invariant I (or I-valid) if it satisfies the predicate:

Definition 1. A replica state R ∈D is I-valid iff I(R) = true.

We require that D0 be valid under invariants. Section 4.3 provides
additional discussion regarding our use of invariants.

Availability. To ensure each transaction receives a non-trivial
response, we adopt the following definition of availability [9]:

Definition 2. A system provides transactionally available execu-
tion iff, whenever a client executing a transaction T can access
servers containing one or more versions of each item in T , then
T eventually commits or aborts itself either due to an abort opera-
tion in T or if committing the transaction would violate a declared
invariant over T ’s replica state.

Under the above definition, a transaction can only abort if it
explicitly chooses to abort itself or if committing would violate
invariants over the transaction’s replica state.2

Convergence. Transactional availability allows replicas to main-
tain valid state independently, but it is vacuously possible to maintain
“consistent” database states by letting replicas diverge (contain dif-
ferent state) forever. This guarantees safety (nothing bad happens)
but not liveness (something good happens) [49]. To require state
sharing, we adopt the following definition:

Definition 3. A system is convergent iff, in the absence of new
update transactions and in the absence of indefinite communication
delays, all pairs of servers eventually contain the same set of versions
for any item that they both store.

To capture the process of reconciling divergent states, we use the
previously introduced merge operator: given two divergent server
states, we apply the merge operator to produce convergent state. We
assume the effects of merge are atomically visible: either all effects
of a merge are visible or none are. This assumption is not always
necessary but, as it is maintainable without coordination [9, 11],
does not affect our results.

Maintaining validity. To make sure that both divergent and con-
vergent database states are valid and, therefore, that transactions
never observe invalid states, we introduce the following property:

2This basic definition precludes fault tolerance (i.e., durability) guarantees
beyond a single server failure [9]. We can relax this requirement and allow
communication with a fixed number of servers (e.g., F+1 servers for F-fault
tolerance; F is often small [22]) without affecting our results. This does not
affect scalability because, as more replicas are added, the communication
overhead required for durability remains constant.



Definition 4. A system is globally I-valid iff all replicas always
contain I-valid state.

Coordination. Our system model is missing one final constraint on
coordination between concurrent transactions or replicas. Treating
communication as any exchange of versions and/or exchange of
information during the course of transaction execution, we adopt
the following definition of coordination-freedom:

Definition 5. A system provides coordination-free execution iff any
finite number of transactions can sequentially execute on a replica
without communicating with any other replica.

By example. Figure 3 illustrates a coordination-free execution of
two transactions T1 and T2 on two separate, fully-replicated physical
servers. Each transaction commits on its local replica, and the result
of each transaction is reflected in the transaction’s local server state.
After the transactions have completed, the servers exchange state
and, after applying the merge operator, contain the same state. Any
transactions executing later on either server will be able to work on
a snapshot of the converged set of versions that includes the effects
of both transactions.

4. CONSISTENCY SANS COORDINATION
With a system model and goals in hand, we now address the

question: when do applications require coordination for correctness?
The answer depends not just on the transactions that a database may
be expected to perform and not just on the integrity constraints that
the database is required to maintain. Rather, the answer depends
on the combination of the two under study. Our contribution in this
section is to formulate a criterion that will answer this question for
specific combinations in an implementation-agnostic manner.

In this section, we focus almost exclusively on providing a formal
answer to this question. The remaining sections of this paper are
devoted to practical interpretation and application of these results.

4.1 I-confluence: Criteria Defined
To begin, we introduce a concept (adapted from the constraint

programming literature [24]) that will underlie our main result:
invariant confluence (hereafter, I-confluence). Applied in a trans-
actional context, the I-confluence property informally ensures that
divergent, valid database states can be merged into a valid database
state. That is, if the effects of two I-valid sequences of transactions
(S1, S2) operating independently on replicas of I-valid database
state Ds produce valid outputs (I(S1(Ds)) and I(S2(Ds)) each hold),
their effects can safely be merged into a third, valid database state
(I(S1(Ds)tS2(Ds)) holds). In the next sub-section, we show that
I-confluence analysis directly determines the potential for safe,
coordination-free execution.

We first formalize the process of executing a sequence of transac-
tions on a single, valid replica and maintaining invariants between
each transaction (which we will use to model divergent executions).
If T is a set of transactions, and Si = ti1, . . . , tin is a sequence of
transactions from the set T, then we write Si(D) = tin(. . . ti1(D)):

Definition 6 (Valid Sequence). Given invariant I, a sequence Si of
transactions in set T , and database state D, we say Si is an I-valid
sequence from D if ∀k ∈ [1,n], tik(. . . ti1(D)) are I-valid.

We can now formalize the I-confluence property:

Definition 7 (I-confluence). A set of transactions T is I-confluent
with respect to invariant I if, for all I-valid database states Ds =
S0(D0) where S0 is an I-valid sequence of transactions in T from

Ds
I(Ds)=True

Di1
I(Di1)=True

Din
I(Din)=True

Dj1
I(Dj1)=True

Djm
I(Djm)=True

ti1 tj1

ti2

tin

tj2

tjm

Din ⊔ Djm
I(Din ⊔ Djm)=TrueIMPLICATION (merge must be valid)

(valid divergence
from initial state)

PRECONDITION

Figure 4: The I-confluence property illustrated via a diamond
diagram. If a set of transactions T is I-confluent, then all data-
base states (Din, D jm) produced by I-valid sequences in T start-
ing from a common, I-valid database state (Ds) must be merge-
able (t) into an I-valid database state.

D0, for all pairs of I-valid sequences S1,S2 of transactions in T from
Ds, S1(Ds)tS2(Ds) is I-valid.

Figure 4 depicts an I-confluent execution using two I-valid se-
quences each starting from a shared, I-valid database state Ds. Two
I-valid sequences tin . . . ti1 and t jm . . . t j1 each modify a shared da-
tabase state Ds. Under I-confluence, the terminal states resulting
from these sequences (Din and D jm) must be valid under merge.3

I-confluence holds for specific combinations of invariants and
transactions. In our payroll database example from Section 2, re-
moving a user from the database is I-confluent with respect to the
invariant that user IDs are unique. However, two transactions that
remove two different users from the database are not I-confluent
with respect to the invariant that there exists at least one user in the
database at all times. Section 5 discusses additional combinations
of invariants (with greater precision).

4.2 I-confluence and Coordination
We can now apply I-confluence to our goals from Section 3:

Theorem 1. A globally I-valid system can execute a set of transac-
tions T with coordination-freedom, transactional availability, con-
vergence if and only if T is I-confluent with respect to I.

We provide a full proof of Theorem 1 in [10, Appendix B] (which
is straightforward) but provide a sketch here. The backwards direc-
tion is by construction: if I-confluence holds, each replica can check
each transaction’s modifications locally and replicas can merge in-
dependent modifications to guarantee convergence to a valid state.
The forwards direction uses a partitioning argument [28] to derive a
contradiction: we construct a scenario under which a system cannot
determine whether a non-I-confluent transaction should commit
without violating one of our desired properties (either compromising
validity or availability, diverging forever, or coordinating).

Theorem 1 establishes I-confluence as a necessary and sufficient
condition for invariant-preserving, coordination-free execution. If
I-confluence holds, there exists a correct, coordination-free execu-
tion strategy for the transactions; if not, no possible implementation
can guarantee these properties for the provided invariants and trans-
actions. That is, if I-confluence does not hold, there exists at least
one execution of transactions on separate replicas that will violate
the given invariants when servers converge. To prevent invalid states
from occurring, at least one of the transaction sequences will have

3We require these I-valid sequences to have a common ancestor to rule out
the possibility of merging states that could not have arisen from transaction
execution (e.g., even if no transaction assigns IDs, merging two states that
each have unique but overlapping sets of IDs could be invalid).



to forego availability or coordination-freedom, or the system will
have to forego convergence. I-confluence analysis is independent of
any given implementation, and effectively “lifts” prior discussions
of scalability, availability, and low latency [1, 9, 28] to the level of
application (i.e., not “I/O” [6]) correctness. This provides a useful
handle on the implications of coordination-free execution without
requiring reasoning about low-level properties such as physical data
location and the number of servers.

4.3 Discussion and Limitations
I-confluence captures a simple (informal) rule: coordination can

only be avoided if all local commit decisions are globally valid (i.e.
merging all accessible local states satisfies invariants). If two inde-
pendent decisions to commit can result in invalid converged state,
then replicas must coordinate in order to ensure that only one of the
decisions is to commit. Given the existence of an unsafe execution
and the inability to distinguish between safe and invalid executions
using only local information, a globally valid system must coordi-
nate in order to prevent the invalid execution from arising.

Use of invariants. Our use of invariants in I-confluence is key to
achieving a necessary and not simply sufficient condition. By di-
rectly capturing application-level correctness criteria via invariants,
I-confluence analysis only identifies “true” conflicts. This allows
I-confluence analysis to perform a more accurate assessment of
whether coordination is needed compared to related conditions such
as commutativity (Section 7).

However, the reliance on invariants also has drawbacks. I-
confluence analysis only guards against violations of any provided
invariants. If invariants are incorrectly or incompletely specified, an
I-confluent database system may violate application-level correct-
ness. If users cannot guarantee the correctness and completeness
of their invariants and operations, they should opt for a more con-
servative analysis or mechanism such as employing serializable
transactions. Accordingly, our development of I-confluence anal-
ysis provides developers with a powerful option—but only if used
correctly. If used incorrectly, I-confluence allows incorrect results,
or, if not used at all, developers must resort to existing alternatives.

This final point raises several questions: can we specify invariants
in real-world use cases? Classic database concurrency control mod-
els assume that “the [set of application invariants] is generally not
known to the system but is embodied in the structure of the transac-
tion” [25, 56]. Nevertheless, since 1976, databases have introduced
support for a finite set of invariants [14, 26, 29, 32, 37] in the form of
primary key, foreign key, uniqueness, and row-level “check” con-
straints [42]. We can (and, in this paper, do) analyze these invariants,
which can—like many program analyses [18]—lead to new insights
about execution strategies. We have found the process of invariant
specification to be non-trivial but feasible in practice; Section 6
describes some of our experiences.

(Non-)determinism. I-confluence analysis effectively captures
points of unsafe non-determinism [6] in transaction execution. As
we have seen in many of our examples thus far, total non-determinism
under concurrent execution can compromise application-level con-
sistency [5, 36]. But not all non-determinism is bad: many desirable
properties (e.g., classical distributed consensus among processes)
involve forms of acceptable non-determinism (e.g., any proposed
outcome is acceptable as long as all processes agree) [31]. In many
cases, maximizing safe concurrency requires non-determinism.

I-confluence analysis allows this non-deterministic divergence of
database states but makes two useful guarantees about those states.
First, the requirement for global validity ensures safety (in the form
of invariants). Second, the requirement for convergence ensures

Invariant Operation I-C? Proof #
Attribute Equality Any Yes 1
Attribute Inequality Any Yes 2
Uniqueness Choose specific value No 3
Uniqueness Choose some value Yes 4
AUTO_INCREMENT Insert No 5
Foreign Key Insert Yes 6
Foreign Key Delete No 7
Foreign Key Cascading Delete Yes 8
Secondary Indexing Update Yes 9
Materialized Views Update Yes 10
> Increment [Counter] Yes 11
< Increment [Counter] No 12
> Decrement [Counter] No 13
< Decrement [Counter] Yes 14
[NOT] CONTAINS Any [Set, List, Map] Yes 15, 16
SIZE= Mutation [Set, List, Map] No 17

Table 2: Example SQL (top) and ADT invariant I-confluence
along with references to formal proofs in [10, Appendix C].

liveness (in the form of convergence). Accordingly, via its use of
invariants, I-confluence allows users to scope non-determinism
while permitting only those states that are acceptable.

5. APPLYING INVARIANT CONFLUENCE
As a test for coordination requirements, I-confluence exposes

a trade-off between the operations a user wishes to perform and
the properties she wishes to guarantee. At one extreme, if a user’s
transactions do not modify database state, she can guarantee any
satisfiable invariant. At the other extreme, with no invariants, a user
can safely perform any operations she likes. While neither of these
extremes is particularly realistic, the space in-between contains a
spectrum of interesting and useful combinations.

Until now, we have been largely concerned with formalizing
I-confluence for abstract operations; in this section, we begin to
leverage this property. We examine a series of practical invariants
by considering several features of SQL, ending with abstract data
types and revisiting our payroll example along the way. We will
apply these results to full applications in Section 6.

In this section, we focus on providing intuition and informal ex-
planations of our I-confluence analysis. Interested readers can find
a more formal analysis in [10, Appendix C], including discussion
of invariants not presented here. For convenience, we reference
specific proofs from [10, Appendix C] inline.

5.1 I-confluence for Relations
We begin by considering several constraints found in SQL.

Equality. As a warm-up, what if an application wants to prevent
a particular value from appearing in a database? For example, our
payroll application from Section 2 might require that every user
have a last name, marking the LNAME column with a NOT NULL con-
straint. While not particularly exciting, we can apply I-confluence
analysis to insertions and updates of databases with (in-)equality
constraints (Claims 1, 2 in [10, Appendix C]). Per-record inequality
invariants are I-confluent, which we can show by contradiction: as-
sume two database states S1 and S2 are each I-valid under per-record
in-equality invariant Ie but that Ie(S1tS2) is false. Then there must
be a r ∈ S1 tS2 that violates Ie (i.e., r has the forbidden value). r
must appear in S1, S2, or both. But, that would imply that one of S1
or S2 is not I-valid under Ie, a contradiction.

Uniqueness. We can also consider common uniqueness invariants
(e.g., PRIMARY KEY and UNIQUE constraints). For example, in our



payroll example, we wanted user IDs to be unique. In fact, our
earlier discussion in Section 2 already provided a counterexample
showing that arbitrary insertion of users is not I-confluent under
these invariants: {Stan:5} and {Mary:5} are both valid databases
that can be created by I-valid sequences of insertions (starting at
S0 = {}), but their merge—{Stan:5, Mary:5}—is not I-valid. There-
fore, uniqueness is not I-confluent for inserts of unique values
(Claim 3). Note that although insertions are not I-confluent under
uniqueness invariants, other operations are. For example, reads and
deletions are both I-confluent under uniqueness invariants: reading
and removing items cannot introduce duplicates.

Can the database safely choose unique values on behalf of users
(e.g., assign a new user an ID)? In this case, we can achieve unique-
ness without coordination—as long as we have a notion of replica
membership (e.g., server or replica IDs). The difference is sub-
tle (“grant this record this specific, unique ID” versus “grant this
record some unique ID”), but, in a system model with membership
(as is practical in many contexts), is powerful. If replicas assign
unique IDs within their respective portion of the ID namespace, then
merging locally valid states will also be globally valid (Claim 4).

Foreign Keys. We can consider more complex invariants, such
as foreign key constraints. In our payroll example, each employee
belongs to a department, so the application could specify a constraint
via a schema declaration to capture this relationship (e.g., EMP.D_ID
FOREIGN KEY REFERENCES DEPT.ID).

Are foreign key constraints maintainable without coordination?
Again, the answer depends on the actions of transactions modifying
the data governed by the invariant. Insertions under foreign key
constraints are I-confluent (Claim 6), which we again demonstrate
by contradiction. We look for the existence of two I-valid states
that, when merged, result in invalid state. In the case of foreign key
constraints, an invalid state will contain a record with a “dangling
pointer”—a record missing a corresponding record on the opposite
side of the association. If we assume there exists some invalid state
S1tS2 containing a record r with an invalid foreign key to record f ,
but S1 and S2 are both valid, then r must appear in S1, S2, or both.
But, since S1 and S2 are both valid, r must have a corresponding
foreign key record ( f ) that “disappeared” during merge. Merge (in
the current model) does not remove versions, so this is impossible.

From the perspective of I-confluence analysis, foreign key con-
straints concern the visibility of related updates: if individual data-
base states maintain referential integrity, a non-destructive merge
function such as set union cannot cause tuples to “disappear” and
compromise the constraint. This also explains why models such as
read committed [2] and read atomic [2] isolation as well as causal
consistency [9] are also achievable without coordination: restrict-
ing the visibility of updates does not require coordination between
concurrent operations.

Deletions and modifications under foreign key constraints are
more challenging. Arbitrary deletion of records is unsafe: a user
might be added to a department that was concurrently deleted (Claim
7). However, performing cascading deletions (e.g., SQL DELETE
CASCADE), where the deletion of a record also deletes all matching
records on the opposite end of the association, is I-confluent under
foreign key constraints (Claim 8). We can generalize this discussion
to updates (and cascading updates).

Materialized Views. Applications often pre-compute results
to speed query performance via a materialized view [53] (e.g.,
UNREAD_CNT as SELECT COUNT(*) FROM emails WHERE read_date
= NULL). We can consider a class of invariants that specify that ma-
terialized views reflect primary data; when a transaction (or merge
invocation) modifies data, any relevant materialized views should

be updated as well. This requires installing updates at the same
time as the changes to the primary data are installed (a problem
related to maintaining foreign key constraints). However, given that
a view only reflects primary data, there are no “conflicts.” Thus,
materialized view maintenance updates are I-confluent (Claim 10).

5.2 I-confluence for Data Types
So far, we have considered databases that store growing sets of

immutable versions. We have used this model to analyze several
useful constraints, but, in practice, databases do not (often) provide
these semantics, leading to a variety of interesting anomalies. For ex-
ample, if we implement a user’s account balance using a “last writer
wins” merge policy [50], then performing two concurrent with-
drawal transactions might result in a database state reflecting only
one transaction (a classic example of the Lost Update anomaly) [2,9].
To avoid variants of these anomalies, many optimistic, coordination-
free database designs have proposed the use of abstract data types
(ADTs), providing merge functions for a variety of uses such as
counters, sets, and maps [19, 44, 50, 58] that ensure that all updates
are reflected in final database state. For example, a database can rep-
resent a simple counter ADT by recording the number of times each
transaction performs an increment operation on the counter [50].

I-confluence analysis is also applicable to these ADTs and their
associated invariants. For example, a row-level “greater-than” (>)
threshold invariant is I-confluent for counter increment and assign
(←) but not decrement (Claims 11, 13), while a row-level “less-
than” (<) threshold invariant is I-confluent for counter decrement
and assign but not increment (Claims 12, 14). This means that, in
our payroll example, we can provide coordination-free support for
concurrent salary increments but not concurrent salary decrements.
ADTs (including lists, sets, and maps) can be combined with stan-
dard relational constraints like materialized view maintenance (e.g.,
the “total salary” row should contain the sum of employee salaries in
the employee table). This analysis presumes user program explicitly
use ADTs, and, as with our generic set-union merge, I-confluence
ADT analysis requires a specification of the ADT merge behavior
([10, Appendix C] provides several examples).

5.3 Discussion and Limitations
We have analyzed a number of combinations of invariants and

operations (shown in Table 2). These results are by no means com-
prehensive, but they are expressive for many applications (Section 6).
In this section, we discuss lessons from this classification process.

Analysis mechanisms. Here (and in [10, Appendix C]), we
manually analyzed particular invariant and operation combinations,
demonstrating each to be I-confluent or not. To study actual ap-
plications, we can apply these labels via simple static analysis.
Specifically, given invariants (e.g., captured via SQL DDL) and
transactions (e.g., expressed as stored procedures), we can examine
each invariant and each operation within each transaction and iden-
tify pairs that we have labeled as I-confluent or non-I-confluent.
Any pairs labeled as I-confluent can be marked as safe, while, for
soundness (but not completeness), any unrecognized operations or
invariants can be flagged as potentially non-I-confluent. Despite
its simplicity (both conceptually and in terms of implementation),
this technique—coupled with the results of Table 2—is sufficiently
powerful to automatically characterize the I-confluence of the ap-
plications we consider in Section 6 when expressed in SQL (with
support for multi-row aggregates like Invariant 8 in Table 3).

By growing our recognized list of I-confluent pairs on an as-
needed basis (via manual analysis of the pair), the above technique
has proven useful—due in large part to the common re-use of in-
variants like foreign key constraints. However, one could use more



complex forms of program analysis. For example, one might an-
alyze the I-confluence of arbitrary invariants, leaving the task of
proving or disproving I-confluence to an automated model checker
or SMT solver. While I-confluence—like monotonicity and commu-
tativity (Section 7)—is undecidable for arbitrary programs, others
have recently shown this alternative approach (e.g., in commutativ-
ity analysis [18, 40] and in invariant generation for view serializable
transactions [47]) to be fruitful for restricted languages. We view
language design and more automated analysis as an interesting area
for speculative future work.

Recency and session support. Our proposed invariants are declar-
ative, but a class of useful semantics—recency, or real-time guar-
antees on reads and writes—are operational (i.e., they pertain to
transaction execution rather than the state(s) of the database). For
example, users often wish to read data that is up-to-date as of a given
point in time (e.g., “read latest” [20] or linearizable [28] semantics).
While traditional isolation models do not directly address these
recency guarantees [2], they are often important to programmers.
Are these models I-confluent? We can attempt to simulate recency
guarantees in I-confluence analysis by logging the result of all
reads and any writes with a timestamp and requiring that all logged
timestamps respect their recency guarantees (thus treating recency
guarantees as invariants over recorded read/write execution traces).
However, this is a somewhat pointless exercise: it is well known
that recency guarantees are unachievable with transactional avail-
ability [9,21,28]. Thus, if application reads face these requirements,
coordination is required. Indeed, when application ”consistency”
means “recency,” systems cannot circumvent speed-of-light delays.

If users wish to “read their writes” or stronger “session” guaran-
tees [45] (maintaining recency on a per-user or per-session basis),
they must maintain affinity or “stickiness” [9] with a given (set of)
replicas. These guarantees are also expressible in our data-centric
I-confluence formalism and do not require coordination between
different users’ transactions.

Physical and logical replication. We have used the concept of
replicas to reason about concurrent transaction execution. However,
as previously noted, our use of replicas is simply a formal device
and is independent of the actual concurrency control mechanisms at
work. Specifically, reasoning about replicas allows us to separate the
analysis of transactions from their implementation: just because a
transaction is executed with (or without) coordination does not mean
that all query plans or implementations require (or do not require)
coordination [9]. However, in deciding on an implementation, there
is a range of design decisions yielding a variety of performance
trade-offs. Simply because an application is I-confluent does not
mean that all implementations will perform equally well. Rather,
I-confluence ensures that a coordination-free implementation exists.

Requirements and Restrictions. Our techniques are predicated
on the ability to correctly and completely specify invariants and
inspect user transactions; without such a correctness specification,
for arbitrary transaction schedules, serializability is—in a sense—
the “optimal” strategy [38]. By casting correctness in terms of
application state rather than as a property of read-write schedules,
we achieve a more precise statement of coordination overheads.
However, as we have noted, this does not obviate the need for
coordination in all cases.

6. EXPERIENCES WITH COORDINATION
When achievable, coordination-free execution enables scalabil-

ity limited to that of available hardware. This is powerful: an
I-confluent application can therefore scale out without sacrificing

# Informal Invariant Description Type Txns I-C
1 YTD wh sales = sum(YTD district sales) MV P Yes
2 Per-district order IDs are sequential SID+FK N, D No
3 New order IDs are sequentially assigned SID N, D No
4 Per-district, item order count = roll-up MV N Yes
5 Order carrier is set iff order is pending FK N, D Yes
6 Per-order item count = line item roll-up MV N Yes
7 Delivery date set iff carrier ID set FK D Yes
8 YTD wh = sum(historical wh) MV D Yes
9 YTD district = sum(historical district) MV P Yes
10 Customer balance matches expenditures MV P, D Yes
11 Orders reference New-Orders table FK N Yes
12 Per-customer balance = cust. expenditures MV P, D Yes

Table 3: TPC-C Declared “Consistency Conditions” (3.3.2.x)
and I-confluence analysis results (Invariant type: MV: mate-
rialized view, SID: sequential ID assignment, FK: foreign key;
Transactions: N: New-Order, P: Payment, D: Delivery).

correctness, latency, or availability. In Section 5, we saw how many
combinations of invariants and transactions were not I-confluent
and how others were not. In this section, we apply these combina-
tions to the workloads of the OLTP-Bench suite [23], with a focus
on the TPC-C benchmark.

6.1 TPC-C Invariants and Execution
The TPC-C benchmark is the gold standard for database concur-

rency control [23] both in research and in industry [55], and in recent
years has been used as a yardstick for distributed database concur-
rency control performance [52, 54, 57]. How much coordination
does TPC-C actually require a compliant execution?

The TPC-C workload is designed to be representative of a whole-
sale supplier’s transaction processing requirements. The workload
has a number of application-level correctness criteria that represent
basic business needs (e.g., order IDs must be unique) as formulated
by the TPC-C Council and which must be maintained in a compliant
run. We can interpret these well-defined “consistency criteria” as
invariants and subsequently use I-confluence analysis to determine
which transactions require coordination and which do not.

Table 3 summarizes the twelve invariants found in TPC-C as well
as their I-confluence analysis results as determined by Table 2. We
classify the invariants into three broad categories: materialized view
maintenance, foreign key constraint maintenance, and unique ID as-
signment. As we discussed in Section 5, the first two categories are
I-confluent (and therefore maintainable without coordination) be-
cause they only regulate the visibility of updates to multiple records.
Because these (10 of 12) invariants are I-confluent under the work-
load transactions, there exists some execution strategy that does
not use coordination. However, simply because these invariants are
I-confluent does not mean that all execution strategies will scale
well: for example, using locking would not be coordination-free.

As one coordination-free execution strategy (which we implement
in Section 6.2) that respects the foreign key and materialized view
invariants, we can use RAMP transactions, which provide atomi-
cally visible transactional updates across servers without relying
on coordination for correctness [11]. In brief, RAMP transactions
employ limited multi-versioning and metadata to ensure that read-
ers and writers can always proceed concurrently: any client whose
reads overlap with another client’s writes to the same item(s) can use
metadata stored in the items to fetch any “missing” writes from the
respective servers. A standard RAMP transaction over data items
suffices to enforce foreign key constraints, while a RAMP transac-
tion over commutative counters as described in [11] is sufficient to
enforce the TPC-C materialized view constraints.

Two of TPC-C’s invariants are not I-confluent with respect to the



workload transactions and therefore do require coordination. On a
per-district basis, order IDs should be assigned sequentially (both
uniquely and sequentially, in the New-Order transaction) and orders
should be processed sequentially (in the Delivery transaction). If the
database is partitioned by warehouse (as is standard [52,54,57]), the
former is a distributed transaction (by default, 10% of New-Order
transactions span multiple warehouses). The benchmark specifica-
tion allows the latter to be run asynchronously and in batch mode on
a per-warehouse (non-distributed) basis, so we, like others [54, 57],
focus on New-Order. Including additional transactions like the read-
only Order-Status in the workload mix would increase performance
due to the transactions’ lack of distributed coordination and (often
considerably) smaller read/write footprints.

Avoiding New-Order Coordination. New-Order is not I-confluent
with respect to the TPC-C invariants, so we can always fall back to
using serializable isolation. However, the per-district ID assignment
records (10 per warehouse) would become a point of contention, lim-
iting our throughput to effectively 100W

RT T for a W -warehouse TPC-C
benchmark with the expected 10% distributed transactions. Oth-
ers [57] (including us, in prior work [9]) have suggested disregarding
consistency criteria 3.3.2.3 and 3.3.2.4, instead opting for unique
but non-sequential ID assignment: this allows inconsistency and
violates the benchmark compliance criteria.

During a compliant run, New-Order transactions must coordinate.
However, as discussed above, only the ID assignment operation is
non-I-confluent; the remainder of the operations in the transaction
can execute coordination-free. With some effort, we can avoid dis-
tributed coordination. A naïve implementation might grab a lock
on the appropriate district’s “next ID” record, perform (possibly
remote) remaining reads and writes, then release the lock at commit
time. Instead, as a more efficient solution, New-Order can defer
ID assignment until commit time by introducing a layer of indi-
rection. New-Order transactions can generate a temporary, unique,
but non-sequential ID (tmpID) and perform updates using this ID
using a RAMP transaction (which, in turn, handles the foreign key
constraints) [11]. Immediately prior to transaction commit, the New-
Order transaction can assign a “real” ID by atomically incrementing
the current district’s“next ID” record (yielding realID) and record-
ing the [tmpID, realID] mapping in a special ID lookup table.
Any read requests for the ID column of the Order, New-Order, or
Order-Line tables can be safely satisfied (transparently to the end
user) by joining with the ID lookup table on tmpID. In effect, the
New-Order ID assignment can use a nested atomic transaction [44]
upon commit, and all coordination between any two transactions is
confined to a single server.

6.2 Evaluating TPC-C New-Order
We subsequently implemented the above execution strategy in a

distributed database prototype to quantify the overheads associated
with coordination in TPC-C New-Order. In brief, the coordination-
avoiding query plan scales linearly to over 12.7M transactions per
second on 200 servers while substantially outperforming distributed
two-phase locking. Our goal here is to demonstrate—beyond the
microbenchmarks of Section 2—that safe but judicious use of coor-
dination can have meaningful positive effect on performance.

Implementation and Deployment. We employ a multi-versioned
storage manager, with RAMP-Fast transactions for snapshot reads
and atomically visible writes/“merge” (providing a variant of regu-
lar register semantics, with writes visible to later transactions after
commit) [11] and implement the nested atomic transaction for ID
assignment as a sub-procedure inside RAMP-Fast’s server-side com-
mit procedure (using spinlocks). We implement transactions as
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Figure 5: TPC-C New-Order throughput across eight servers.

stored procedures and fulfill the TPC-C “Isolation Requirements”
by using read and write buffering as proposed in [9]. As is com-
mon [35, 46, 52, 54], we disregard per-warehouse client limits and
“think time” to increase load per warehouse. In all, our base proto-
type architecture is similar to that of [11]: a JVM-based partitioned,
main-memory, mastered database.

For an apples-to-apples comparison with a coordination-intensive
technique within the same system, we also implemented textbook
two-phase locking (2PL) [15], which provides serializability but also
requires distributed coordination. We totally order lock requests
across servers to avoid deadlock, batching lock requests to each
server and piggybacking read and write requests on lock request
RPC. As a validation of our implementation, our 2PL prototype
achieves per-warehouse (and sometimes aggregate) throughput sim-
ilar to (and often in excess of) several recent serializable database
implementations (of both 2PL and other approaches) [35,46,52,54].

By default, we deploy our prototype on eight EC2 cr1.8xlarge
instances in the Amazon EC2 us-west-2 region (with non-co-
located clients) with one warehouse per server (recall there are
10 “hot” district ID records per warehouse) and report the average
of three 120 second runs.

Basic behavior. Figure 5 shows performance across a variety of
configurations, which we detail below. Overall, the coordination-
avoiding query plan far outperforms the serializable execution. The
coordination-avoiding query plan performs some coordination, but,
because coordination points are not distributed (unlike 2PL), physi-
cal resources (and not coordination) are the bottleneck.

Varying load. As we increase the number of clients, the coordination-
avoiding query plan throughput increases linearly, while 2PL through-
put increases to 40K transactions per second, then levels off. As
in our microbenchmarks in Section 2, the former is able to utilize
available hardware resources (bottlenecking on CPU cycles at 640K



transactions per second), while the latter bottlenecks on logical
contention.

Physical resource consumption. To understand the overheads
of each component in the coordination-avoiding query plan, we
used JVM profiling tools to sample thread execution while running
at peak throughput, attributing time spent in functions to relevant
modules within the database implementation (where possible):

Code Path Cycles
Storage Manager (Insert, Update, Read) 45.3%
Stored Procedure Execution 14.4%
RPC and Networking 13.2%
Serialization 12.6%
ID Assignment Synchronization (spinlock contention) 0.19%
Other 14.3%

The coordination-avoiding prototype spends a large portion of ex-
ecution in the storage manager, performing B-tree modifications and
lookups and result set creation, and in RPC/serialization. In contrast
to 2PL, the prototype spends less than 0.2% of time coordinating,
in the form of waiting for locks in the New-Order ID assignment;
the (single-site) assignment is fast (a linearizable integer increment
and store, followed by a write and fence instruction on the spinlock),
so this should not be surprising. We observed large throughput
penalties due to garbage collection (GC) overheads (up to 40%)—an
unfortunate cost of our highly compact (several thousand lines of
Scala), JVM-based implementation. However, even in this current
prototype, physical resources are the bottleneck—not coordination.

Varying contention. We subsequently varied the number of “hot,”
or contended items by increasing the number of warehouses on each
server. Unsurprisingly, 2PL benefits from a decreased contention,
rising to over 87K transactions per second with 64 warehouses.
In contrast, our coordination-avoiding implementation is largely
unaffected (and, at 64 warehouses, is even negatively impacted by
increased GC pressure). The coordination-avoiding query plan is
effectively agnostic to read/write contention.

Varying distribution. We also varied the percentage of distributed
transactions. The coordination-avoiding query plan incurred a 29%
overhead moving from no distributed transactions to all distributed
transactions due to increased serialization overheads and less ef-
ficient batching of RPCs. However, the 2PL implementation de-
creased in throughput by over 90% (in line with prior results [46,54],
albeit exaggerated here due to higher contention) as more requests
stalled due to coordination with remote servers.

Scaling out. Finally, we examined our prototype’s scalability, again
deploying one warehouse per server. As Figure 6 demonstrates, our
prototype scales linearly, to over 12.74 million transactions per sec-
ond on 200 servers (in light of our earlier results, and, for economic
reasons, we do not run 2PL at this scale). Per-server throughput is
largely constant after 100 servers, at which point our deployment
spanned all three us-west-2 datacenters and experienced slightly
degraded per-server performance. While we make use of application
semantics, we are unaware of any other compliant multi-server TPC-
C implementation that has achieved greater than 500K New-Order
transactions per second [35, 46, 52, 54].

Summary. We present these quantitative results as a proof of
concept that executing even challenging workloads like TPC-C that
contain complex integrity constraints are not necessarily at odds
with scalability if implemented in a coordination-avoiding manner.
Distributed coordination need not be a bottleneck for all applica-
tions, even if conflict serializable execution indicates otherwise.
Coordination avoidance ensures that physical resources—and not
logical contention—are the system bottleneck whenever possible.
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Figure 6: Coordination-avoiding New-Order scalability.

6.3 Analyzing Additional Applications
These results begin to quantify the effects of coordination-avoiding

concurrency control. If considering application-level invariants,
databases only have to pay the price of coordination when necessary.
We were surprised that the “current industry standard for evaluat-
ing the performance of OLTP systems” [23] was so amenable to
coordination-avoiding execution—at least for compliant execution
as defined by the official TPC-C specification.

For greater variety, we also studied the workloads of the recently
assembled OLTP-Bench suite [23], performing a similar analysis
to that of Section 6.1. We found (and confirmed with an author
of [23]) that for nine of fourteen remaining (non-TPC-C) OLTP-
Bench applications, the workload transactions did not involve in-
tegrity constraints (e.g., did not modify primary key columns), one
(CH-benCHmark) matched TPC-C, and two specifications implied
(but did not explicitly state) a requirement for unique ID assign-
ment (AuctionMark’s new-purchase order completion, SEATS’s
NewReservation seat booking; achievable like TPC-C order IDs).
The remaining two benchmarks, sibench and smallbank were
specifically designed (by an author of this paper) as research bench-
marks for serializable isolation. Finally, the three “consistency
conditions” required by the newer TPC-E benchmark are a proper
subset of the twelve conditions from TPC-C considered here (and
are all materialized counters). It is possible (even likely) that these
benchmarks are underspecified, but according to official specifica-
tions, TPC-C contains the most coordination-intensive invariants
among all but two of the OLTP-Bench workloads.

Anecdotally, our conversations and experiences with real-world
application programmers and database developers have not identi-
fied invariants that are radically different than those we have studied
here. A simple thought experiment identifying the invariants re-
quired for a social networking site yields a number of invariants
but none that are particularly exotic (e.g., username uniqueness,
foreign key constraints between updates, privacy settings [11, 20]).
Nonetheless, we view the further study of real-world invariants to be
a necessary area for future investigation. In the interim, these prelim-
inary results hint at what is possible with coordination-avoidance as
well as the costs of coordination if applications are not I-confluent.

7. RELATED WORK
Database system designers have long sought to manage the trade-

off between consistency and coordination. As we have discussed,
serializability and its many implementations (including lock-based,
optimistic, and pre-scheduling mechanisms) [15, 16, 25, 30, 52–54,



57] are sufficient for maintaining application correctness. However,
serializability is not always necessary: as discussed in Section 1,
serializable databases do not allow certain executions that are correct
according to application semantics. This has led to a large class of
application-level—or semantic—concurrency control mechanisms
that admit greater concurrency. There are several surveys on this
topic, such as [29, 53], and, in our solution, we integrate many
concepts from this literature.

Commutativity. One of the most popular alternatives to serializ-
ability is to exploit commutativity: if transaction return values (e.g.,
of reads) and/or final database states are equivalent despite reorder-
ing, they can be executed simultaneously [18,41,58]. Commutativity
is often sufficient for correctness but is not necessary. For example,
if an analyst at a wholesaler creates a report on daily cash flows, any
concurrent sale transactions will not commute with the report (the
results will change depending on whether the sale completes before
or after the analyst runs her queries). However, the report creation
is I-confluent with respect to, say, the invariant that every sale in
the report references a customer from the customers table. [18, 39]
provide additional examples of safe non-commutativity.

Monotonicity and Convergence. The CALM Theorem [7] shows
that monotone programs exhibit deterministic outcomes despite re-
ordering. CRDT objects [50] similarly ensure convergent outcomes
that reflect all updates made to each object. These convergence and
outcome determinism guarantees are useful liveness properties [49]
(e.g., a converged CRDT OR-Set reflects all concurrent additions
and removals) but do not prevent users from observing inconsistent
data [40]—safety (e.g., the CRDT OR-Set does not—by itself—
enforce invariants, such as ensuring that no employee belongs to
two departments)—and are therefore not sufficient to guarantee
correctness for all applications.

Use of Invariants. A large number of database designs—including,
in restricted forms, many commercial databases today—use various
forms of application-supplied invariants and constraints as a speci-
fication for application correctness (e.g., [14, 21, 26, 29, 32, 33, 37,
40–42, 47]). We draw inspiration and, in particular, our the use of
invariants from this prior work, but we are not aware of related work
that discusses when coordination is strictly required to enforce a
given set of invariants.

In this work, we provide a necessary and sufficient condition
for safe, coordination-free execution. In contrast with many of the
conditions above (esp. commutativity and monotonicity), we explic-
itly require more information from the application in the form of
invariants (Kung and Papadimitriou [38] suggest this is information
is required for general-purpose non-serializable yet safe execution.)
When invariants are unavailable, many of these more conservative
approaches may still be applicable. Our use of analysis-as-design-
tool is inspired by this literature—in particular, [18].

Coordination costs. In this work, we determine when transactions
can run entirely concurrently and without coordination. In contrast,
a large number of alternative models (e.g., [4, 8, 26, 33, 37, 42, 43])
assume serializable or linearizable (and therefore coordinated) up-
dates to shared state. These assumptions are standard (but not
universal [17]) in the concurrent programming literature [8,49]. (Ad-
ditionally, unlike much of this literature, we only consider a single
set of invariants per database rather than per-operation invariants.)
For example, transaction chopping [51] and later application-aware
extensions [3,14] decompose transactions into a set of smaller trans-
actions, providing increased concurrency, but in turn require that
individual transactions execute in a serializable (or strict serializ-
able) manner. This reliance on coordinated updates is at odds with

our goal of coordination-free execution. However, these alternative
techniques are useful in reducing the duration and distribution of
coordination once it is established that coordination is required.

Term rewriting. In term rewriting systems, I-confluence guaran-
tees that arbitrary rule application will not violate a given invari-
ant [24], generalizing Church-Rosser confluence [36]. We adapt this
concept and effectively treat transactions as rewrite rules, database
states as constraint states, and the database merge operator as a
special join operator (in the term-rewriting sense) defined for all
states. Rewriting system concepts—including confluence [4]—have
previously been integrated into active database systems [59] (e.g.,
in triggers, rule processing), but we are not familiar with a concept
analogous to I-confluence in the existing database literature.

Coordination-free algorithms and semantics. Our work is influ-
enced by the distributed systems literature, where coordination-free
execution across replicas of a given data item has been captured as
“availability” [12, 28]. A large class of systems provides availability
via “optimistic replication” (i.e., perform operations locally, then
replicate) [48], which is complementary to our goal of coordination-
free execution. We—like others [17]—adopt the use of the merge
operator to reconcile divergent database states [45] from this liter-
ature. Both traditional database systems [2] and more recent pro-
posals [40, 41] allow the simultaneous use of “weak” and “strong”
isolation; we seek to understand when strong mechanisms are needed
rather than an optimal implementation of either. Unlike “tentative
update” models [27], we do not require programmers to specify
compensatory actions (beyond merge, which we expect to typically
be generic and/or system-supplied) and do not reverse transaction
commit/abort decisions. Compensatory actions could be viewed as
a specialized merge procedure.

The CAP Theorem [1,28] popularized the tension between strong
semantics and coordination but pertains to a specific model (lineariz-
ability), while the relationship between serializability and coordina-
tion has also been well documented [21]. We recently classified a
range of isolation models by availability [9]. This paper addresses
when particular applications require coordination.

In our evaluation, we make use of our recent RAMP transaction al-
gorithms [11], which guarantee coordination-free, atomically visible
updates. RAMP transactions are an implementation of I-confluent
semantics (i.e., Read Atomic isolation, used in our implementation
for foreign key constraint maintenance). Our focus in this paper
is when RAMP transactions (and any other coordination-free/I-
confluent semantics) are appropriate for applications.

Summary. The I-confluence property is a necessary and sufficient
condition for safe, coordination-free execution. Sufficient condi-
tions such as commutativity and monotonicity are useful in reducing
coordination overheads but are not always necessary. Here, we
explore the fundamental limits of coordination-free execution. To
do so, we explicitly consider a model without synchronous commu-
nication. This is key to scalability: if, by default, operations must
contact a centralized validation service, perform atomic updates
to shared state, or otherwise communicate, then scalability will be
compromised. Finally, we only consider a single set of invariants
for the entire application, reducing programmer overhead without
affecting our I-confluence results.

8. CONCLUSION
ACID transactions and associated strong isolation levels domi-

nated the field of database concurrency control for decades, due in
large part to their ease of use and ability to automatically guarantee
application correctness criteria. However, this powerful abstraction



comes with a hefty cost: concurrent transactions must coordinate in
order to prevent read/write conflicts that could compromise equiv-
alence to a serial execution. At large scale and, increasingly, in
geo-replicated system deployments, the coordination costs neces-
sarily associated with these implementations produce significant
overheads in the form of penalties to throughput, latency, and avail-
ability. In light of these trends, we developed a formal framework,
called invariant confluence, in which application invariants are used
as a basis for determining if and when coordination is strictly neces-
sary to maintain correctness. With this framework, we demonstrated
that, in fact, many—but not all—common database invariants and in-
tegrity constraints are actually achievable without coordination. By
applying these results to a range of actual transactional workloads,
we demonstrated an opportunity to avoid coordination in many
cases that traditional serializable mechanisms would otherwise co-
ordinate. The order-of-magnitude performance improvements we
demonstrated via coordination-avoiding concurrency control strate-
gies provide compelling evidence that invariant-based coordination
avoidance is a promising approach to meaningfully scaling future
data management systems.
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