
Faster Jobs in Distributed Data Processing using Multi-Task Learning

Neeraja J. Yadwadkar, Bharath Hariharan, Joseph Gonzalez and Randy Katz
University of California, Berkeley

{neerajay,bharath2,jegonzal,randy}@cs.berkeley.edu

Abstract
Slow running or straggler tasks in distributed processing
frameworks [1, 2] can be 6 to 8 times slower than the median
task in a job on a production cluster [3], despite existing mit-
igation techniques. This leads to extended job completion
times, inefficient use of resources, and increased costs. Re-
cently, proactive straggler avoidance techniques [4] have ex-
plored the use of predictive models to improve task schedul-
ing. However, to capture node and workload variability, sep-
arate models are built for every node and workload, requiring
the time consuming collection of training data and limiting
the applicability to new nodes and workloads. In this work,
we observe that predictors for similar nodes or workloads are
likely to be similar and can share information, suggesting a
multi-task learning (MTL) based approach. We generalize
the MTL formulation of [5] to capture commonalities in ar-
bitrary groups. Using our formulation to predict stragglers
allows us to reduce job completion times by up to 59% over
Wrangler [4]. This large reduction arises from a 7 point in-
crease in prediction accuracy. Further, we can get equal or
better accuracy than [4] using a sixth of the training data,
thus bringing the training time down from 4 hours to about
40 minutes. In addition, our formulation reduces the num-
ber of parameters by grouping our parameters into node-
and workload-dependent factors. This helps us generalize to
tasks with insufficient data and achieve significant gains over
a naive MTL formulation [5].

1 Introduction

Distributed processing frameworks [1, 2] split a data
intensive computation job into multiple smaller tasks,
which are then executed in parallel on commodity clus-
ters to achieve faster job completion. A natural conse-
quence of such a parallel execution model is that slow-
running tasks, commonly called stragglers [1, 3, 6, 7, 8],
potentially delay overall job completion. Stragglers
form a major hurdle in achieving near optimal job com-
pletion times — a recent study [3] shows that straggler
tasks are on average 6 to 8 times slower than the median
task of the corresponding job.

Proactive straggler mitigation techniques [4, 9, 10]
attempt to schedule tasks in a way that limits the effect
of stragglers by modeling straggler behavior. Recently,
Wrangler [4] showed that incorporating predictive mod-
els of straggler behavior in the scheduler can lead to
large improvements in job completion times.

However, to address heterogeneity in the nodes and
changing workload patterns, proactive model based ap-

proaches have previously modeled each workload1 and
node independently. Independent models pose two criti-
cal challenges: (1) each new node and workload requires
new training data which can take hours to collect, delay-
ing the application of model based scheduling, and (2)
clusters with many nodes may have only limited data for
a given workload on each node leading to lower quality
models.

These shortcomings can be addressed if each clas-
sifier is able to leverage information gleaned at other
nodes and from other workloads. For instance, when
there is not enough data at a node for a workload, we
can gain from the data collected at that node while it
was executing other workloads, or from other nodes run-
ning the same workload. Such information sharing falls
in the ambit of multi-task learning (MTL), where the
learner is embedded in an environment of related tasks,
and the learner’s aim is to leverage correlations between
the tasks to improve performance of all tasks. The aim
of this paper is to adapt MTL for learning a generalized
predictor with better prediction accuracy and ultimately
improve job completion times.

In this work, we exploit explicit knowledge about
the dependencies between tasks to improve the perfor-
mance of MTL. In particular, we can group classifiers
by workload and by node. To incorporate this group
structure, we generalize the formulation proposed by
Evgeniou, et al. [5], to include clusters of tasks. Using
our formulation to predict stragglers allows us to reduce
job completion times by up to 59% over Wrangler [4].
This large reduction arises from a 7% increase in pre-
diction accuracy. Further, we can get equal or better
accuracy than [4] using a sixth of the training data,
thus bringing the training time down from 4 hours to
about 40 minutes. In addition, our formulation reduces
the number of parameters by grouping parameters into
node-dependent and workload-dependent factors. We
show that, in the event of a particular task having insuf-

1Clusters are used for different purposes, and statistics such as
the kinds of jobs submitted, their resource requirements and the

frequency at which they are submitted vary depending upon the
usage. We call one such distribution of jobs a workload.



ficient data, parameter grouping can lead to significant
gains over a näıve MTL formulation [5].

Finally, while we have shown experiments on strag-
gler avoidance, our learning formulation is general and
can be applied to other systems that train node or
workload dependent classifiers [10, 11]. For instance,
ThroughputScheduler [10] uses such classifiers to allot
resources to tasks, and can benefit from such multitask
reasoning. We leave these extensions to future work.
To summarize, our key contributions are:

1. We propose a generalized formulation for MTL that
considers clusters of tasks and allows us to reduce
parameters, improving generalization.

2. Instead of machine learning datasets, we show the
benefits of MTL in general and our formulation in
particular on a real world application, where we

(a) avoid stragglers better, improving job comple-
tion times significantly and reducing net re-
source consumption, and

(b) can work even with a sixth of the training data
and thus a much shorter training period.

2 Background and Motivation

Today, data is getting generated at an unprecedented
scale due to popular Internet-based computer applica-
tions that serve millions of users, such as e-commerce
websites and social networks. The rate at which this
data is growing has rendered parallel processing on com-
modity compute clusters an inevitable and an attrac-
tive option. Google originally proposed its MapRe-
duce framework [1] allowing them to process enor-
mous amounts of data generated by various applica-
tions. MapReduce is highly scalable to large clusters
of inexpensive commodity computers. Hadoop, a popu-
lar open source implementation of MapReduce [12], has
been widely adopted by industries of various sizes.

For accelerating a job’s completion time, MapRe-
duce divides a data intensive computation job into mul-
tiple smaller tasks. These tasks are executed in parallel
on multiple machines (nodes) in a compute cluster. A
job finishes when all its tasks have finished execution. A
key benefit of such distributed parallel processing frame-
works is that they automatically handle failures, with-
out needing extra efforts from the programmer. Two
basic modes of failures are the failure of a node and the
failure of a task. If a node crashes, MapReduce re-runs
all the tasks it was executing on a different node. If a
task fails, MapReduce automatically re-launches it.

However, a tricky situation arises when a node is
available but is performing poorly. This causes tasks
scheduled on that node to execute slower than other

Figure 1: The architecture of Wrangler [4].

tasks of the same job scheduled on other nodes in the
cluster. Since a job finishes execution only when all
its tasks have finished execution, such slow-running
tasks, called stragglers, extend the job’s completion
time. This, in turn, leads to increased user costs.

Existing approaches for dealing with stragglers
broadly fall into reactive and proactive categories. The
MapReduce paper [1] identified the problem of strag-
glers and suggested speculative execution as a mitiga-
tion mechanism. This is a reactive scheme that is
dominantly used on production clusters including those
at Facebook and Microsoft Bing [8]. It operates in
two steps: (1) wait-and-speculate if a task is executing
slower than other tasks of the same job, and (2) repli-
cate or spawn multiple redundant copies of such tasks
hoping a copy will reach completion before the origi-
nal. Due to the wait-and-speculate step, this scheme is
inefficient in time. Also, due to the second step that
replicates tasks, such mechanisms lead to increased re-
source consumption without necessarily gaining perfor-
mance benefits. LATE [7] improves over speculative
execution using a notion of progress scores, but still re-
sults in a resource wastage. Cloning mechanisms [3],
being replication-based, also incur extra resources.

Proactive approaches aim at predicting straggler
tasks before they are launched [4, 9, 10]. Thus, they
are time efficient. They are also efficient in reducing the
resources consumed by smarter scheduling and avoiding
replication of tasks. Hence, we use a recently proposed
proactive approach, Wrangler [4], as our baseline. We
first review Wrangler’s pipeline below, and then discuss
the avenues for improvement.

2.1 Our Baseline – Wrangler: Wrangler has two
components (Figure 1): (1) A model builder that trains
a classifier to predict if a task launched at a node will
become a straggler, given the current resource usage
counters on the node. Training data for each node and
workload is collected by recording the resource usage
counters at the time a task is launched along with
the relative duration of the tasks (i.e., did it straggle).
Each such task forms a data point; the resource usage



counters form its feature vector, and the label is whether
or not the task became a straggler. (2) A model-
informed (predictive) scheduler. Before launching a task
on a node, the scheduler collects the node’s resource
usage counters and runs the classifier. If the model
predicts that the task will be a straggler, the scheduler
does not assign the task to that node. It is later assigned
to a node that is not predicted to create a straggler.
See [4] for details on architecture and implementation.

Due to the heterogeneity of nodes in a cluster,
the model builder trains a separate classifier for each
node. Note that to build a training set per node,
every node should have executed sufficient number of
tasks. Wrangler takes a few hours (approximately 2-
4 hours, depending on the workload) for this process.
Additionally, because each workload might be different,
these models are retrained for every new workload.
Thus, for every new workload that is executed on the
cluster, there is a 2-4 hour model building period spent
on collecting data. In typical large production clusters
with tens of thousands of nodes, it might be a long time
before a node collects enough data to train a classifier.

Moreover, we may not always get enough data
for each node executing a workload. For example, in
our case, each task of a workload executed on a node
amounts to a training data point. Placement of input
data on nodes in a cluster is managed by the underlying
distributed file system [13]. To achieve locality for
faster reading of input data, sophisticated locality-aware
schedulers [7, 14] try to assign tasks to nodes already
having the appropriate data. Based on popularity of
the data, the number of tasks assigned to a node could
vary. Hence, we may not get uniform number of training
data points, i.e., tasks executed, across all the nodes in
a cluster. There could be other reasons behind skewed
assignment of tasks to nodes [15]: even when every map
task has the same amount of data, a task may take
longer depending on the code path it takes due to the
data it processes. Hence, the node slots will be busy
due to such long running tasks. This could lead to
insufficient number of tasks assigned to some nodes.

These observations suggest that our modeling
framework should be robust to skewed and limited data.

2.2 Need for multitask learning: Our proposal
is to leverage the correlations between the classifiers
to reduce data collection time. Concretely, a task
executing on a node will be a straggler because of a
combination of factors. Some of these factors involve
the properties of the node where the task is executing
(for instance, the node may be memory-constrained)
and some others involve particular requirements that
the tasks might have in terms of resources (for instance,

the task may require a lot of memory). These are
workload-related factors. When collecting data for a
new workload executing on a given node, one must be
able to use information about the workload collected
while it executed on other nodes, and information about
the node collected while it executed other workloads.

This kind of sharing of information is precisely the
motivation for the machine learning paradigm known
as multitask learning (MTL). In MTL, we are given a
set of learning tasks and we want to learn a classifier
for each one. Each task has its own training data set,
although typically all training points of all tasks live
in the same feature space. The tasks are related to
each other, and the goal of MTL is to leverage this
relationship to improve performance or generalization
of all the tasks.

In our formulation, each node-workload pair will
form a task. However, unlike typical MTL formulations,
our tasks are not simply correlated with each other;
they share a specific structure, clustering along node-
or workload-dependent axes. With this in mind, we
describe our MTL formulation below.

3 Proposed Formulation

Suppose there are T tasks, with the training set for the
t-th task denoted by Dt = {(xit, yit) : i = 1, . . . ,mt}.
Here xit ∈ Rd are feature vectors and yit ∈ {−1,+1}
are labels. We start from the formulation of Evgeniou,
et al. [5], who write the classifier wt for task t as:

(3.1) wt = w0 + vt

Here, w0 is a weight vector shared between all tasks and
captures information shared between tasks, and vt is a
vector that specifies how wt deviates from w0.

The training objective is a variant of the standard
SVM objective:

min
w0,vt,b,ξ≥0

λ0‖w0‖2 +
λ1
T

T∑
t=1

‖vt‖2 +

T∑
t=1

mt∑
i=1

ξit(3.2)

s.t yit((w0 + vt)
Txit + b) ≥ 1− ξit ∀i, t

This formulation shares information equally among
all the tasks. However, as argued before, our tasks
cluster into groups along various axes. To capture such
structure, we assume that the tasks are partitioned into
G non-overlapping groups. Denote the group of the t-th
task by g(t). Then we can write the classifier wt as:

(3.3) wt = w0 + vt + wg(t)

In general, there may be multiple ways of splitting
tasks into groups. In our application, one may split
tasks into groups based on workload or on nodes. To



formalize this, assume there are P ways of defining
groups. The p-th partitioning has Gp groups, and the
task t belongs to the gp(t) group under this partitioning.
Now, we also have a separate set of weight vectors for
each partitioning p, and the weight vector of the g-th
group of the p-th partitioning is denoted by wp,g. Then,
we can write the classifier wt as:

(3.4) wt = w0 + vt +

P∑
p=1

wp,gp(t)

Finally, note that w0 and vt can also be seen as
weight vectors corresponding to trivial partitions: w0

corresponds to the partition where all tasks belong to a
single group, and vt corresponds to the partition where
each task is its own group. Thus, we can include w0

and vt in our partitions and write Equation 3.4 as:

(3.5) wt =

P∑
p=1

wp,gp(t)

Intuitively, at test time, we get the classifier for the t-th
task by summing weight vectors corresponding to each
group to which t belongs.
As in Equation 3.2, the learning problem involves
minimizing the sum of L2 regularizers on each of the
weight vectors and the hinge loss:

min
w,b,ξ≥0

P∑
p=1

Gp∑
g=1

λp#(p, g)

T
‖wp,g‖2 +

T∑
t=1

mt∑
i=1

ξit(3.6)

s.t. yit((

P∑
p=1

wp,gp(t))
Txit + b) ≥ 1− ξit ∀i, t

Here w is the concatenation of all the wp,g. #(p, g) is
the number of tasks assigned to the g-th group of the p-

th partitioning. The scaling factor
λp#(p,g)

T interpolates
smoothly between λ0 when all tasks belong to a single
group, and λ1

T , when each task is its own group.

3.1 Reduction to a standard SVM: One advan-
tage of the formulation we use is that it can be reduced
to a standard SVM, allowing the usage of off-the-shelf
SVM solvers. Below, we show how this reduction can be
achieved. For every group g of every partition p, define:

w̃p,g =

√
λp#(p, g)

λT
wp,g(3.7)

Now concatenate these vectors into one large weight
vector w̃ :

w̃ = [w̃T
1,1, . . . , w̃

T
p,g, . . . , w̃

T
P,GP

]T(3.8)

Then, it can be seen that λ‖w̃‖2 =∑P
p=1

∑Gp

g=1
λp#(p,g)

T ‖wp,g‖2. Thus with this change of

Figure 2: Our formulation. Each blue box is a learning
task. Each column is a node, and each row is a workload.
Groups are shown with dotted rounded rectangles.

variables, the regularizer in our optimization problem
resembles a standard SVM. Next, we transform the
data points xit into φ(xit) such that we can replace the
scoring function with w̃Tφ(xit). This transformation is
as follows. Again, define:

φp,g(xit) = δgp(t),g

√
λT

λp#(p, g)
xit(3.9)

Here δgp(t),g is a kronecker delta, which is 1 if gp(t) = g
(i.e. , if the task t belongs to group g in the p-th parti-
tioning) and 0 otherwise. Our feature transformation is
then the concatenation of all these vectors:

φ(x) = [φ1,1(x)T , . . . , φp,g(x)T , . . . , φP,GP
(x)T ]T(3.10)

It is easy to see that w̃Tφ(xit) = (
∑P
p=1 wp,gp(t))

Txit.
Intuitively, w̃ concatenates all our parameters with their
appropriate scalings into one long weight vector, with
one block for every group of every partitioning. φ(xit)
transforms a data point into an equally long feature
vector, by placing scaled copies of xit in the appropriate
blocks and zeros everywhere else.

With these transformations, we can now write our
learning problem as :

min
w̃,b,ξ≥0

λ‖w̃‖2 +

T∑
t=1

mt∑
i=1

ξit(3.11)

s.t. yit(w̃
Tφ(xit) + b) ≥ 1− ξit ∀i, t

which corresponds to a standard SVM. In practice, we
use this transformation and change of variables both at
train time and at test time.

3.2 Application to straggler avoidance: We ap-
ply this formulation to straggler avoidance as follows.
Suppose there are N nodes and L workloads. Then
there are NL tasks, and Wrangler trains as many mod-
els, one for each task. For our proposal, we consider
four different notions of groups (Figure 2):

1. A single group consisting of all nodes and work-
loads. This gives us the single weight vector w0.



2. One group for each node, consisting of all L tasks
belonging to that node. This gives us one weight
vector for each node wn, n = 1, . . . , N , that cap-
tures the heterogeneity of nodes.

3. One group for each workload, consisting of all N
tasks belonging to that workload. This gives us one
weight vector for each workload wl, l = 1, . . . , L,
that captures peculiarities of particular workloads.

4. Each task as its own group. Since there are NL
tasks, we get NL weight vectors, which we denote
as vt (following the notation considered in [5]).

Thus, in our formulation, the weight vector wt for
a given workload lt and a given node nt is:

(3.12) wt = w0 + wnt
+ wlt + vt

The corresponding training problem is then:

min
w,b,ξ≥0

λ0‖w0‖2 +
ν

N

N∑
n=1

‖wn‖2 +
ω

L

L∑
l=1

‖wl‖2

+
τ

T

T∑
t=1

‖vt‖2 +

T∑
t=1

mt∑
i=1

ξit(3.13)

s.t. yit((w0 + wnt + wlt + vt)
Txit + b) ≥ 1− ξit ∀i, t

where λ0, ν, ω, τ are hyperparameters which we set
using grid search on a validation set.

Different variants of this formulation can be
achieved by removing one or more of the terms from
Equation 3.12. We can achieve this effect by setting the
corresponding hyperparameters, λ0, ν, ω, τ to ∞. For
example, setting ω to ∞ will force all wl to be set to
0. Mathematically, one can take the equivalent feature
transformation in Equation 3.10 and take the limit as
one of the hyperparameters approaches ∞. The corre-
sponding feature vector block will approach 0, and the
corresponding weight vector block being a finite linear
combination of the feature vectors will approach 0. At
test time, these terms will not contribute.

3.3 Exploring the relationships between the
weight vectors: Before getting into the experiments,
we can get some insights on what our formulation will
learn by looking at the KKT conditions. The lagrangian
of the formulation in Equation 3.13 is:

L(w, b,α,β) = λ0‖w0‖2 +
ν

N

N∑
n=1

‖wn‖2 +
ω

L

L∑
l=1

‖wl‖2

+
τ

T

T∑
t=1

‖vt‖2 +

T∑
t=1

mt∑
i=1

ξit −
T∑
t=1

mt∑
i=1

βitξit(3.14)

+

T∑
t=1

mt∑
i=1

αit(1− ξit − yit(wT
t xit + b))

Taking derivatives w.r.t the primal variables and setting
to 0 gives us relationships between w0,vt,wn and wl:

λ0w
∗
0 =

τ

T

∑
t

v∗
t(3.15)

νw∗
n =

τ

T/N

∑
t:nt=n

v∗
t(3.16)

ωw∗
l =

τ

T/L

∑
t:lt=l

v∗
t(3.17)

λ0w
∗
0 =

ν

N

∑
n

w∗
n =

ω

L

∑
l

w∗
l(3.18)

Evgeniou et al., [5] also obtain Equation 3.15 in their
formulation, but the other relationships are specific to
ours. These relationships imply that these variables
shouldn’t be considered independent. wn, wl and w0

are scaled means of the vt’s of the group they capture.

3.4 Discussion and comparison to other formu-
lations: Our formulation (Equation 3.6) follows a long
line of prior work on MTL using clusters of tasks [16,
17, 18]. However, to see the advantage our formulation
offers, consider the variant of Equation 3.12 where we
remove vt. This variant does not have any task-specific
parameters, but still captures both node- and workload-
dependent properties of the learning problem. It is thus
similar to a factorized model where the node and work-
load dependent factors are grouped into separate blocks.
It has (N +L)d parameters, whereas a formulation like
that of [5, 16, 17] will still have NLd parameters (here
d is the input dimensionality). Thus, it reduces the
number of parameters while still capturing the essential
properties of the learning problems.

In addition, since this variant no longer has a sep-
arate weight vector for each task, we can generalize to
tasks (i.e node-workload pairs) that are completely un-
seen at train time: the classifier for such an unseen task
t will simply be w0 + wnt

+ wlt . It thus explicitly
uses knowledge gleaned from prior workloads run on
this node (through wnt) and other nodes running this
workload (through wlt). On the other hand, formula-
tions such as [5] will have to fall back on the generic w0

in such situations, while it is unclear how [16, 17] can be
adapted to such a case. This is especially an issue in our
application where there may be a large number of nodes
and workloads. In such cases, collecting data for each
task (i.e node-workload pair) will be time consuming,
and generalizing to unseen tasks will be a significant
advantage. We show such generalization in Section 4.

4 Empirical Evaluation

Our dataset consists of 4 real world workloads from pro-
duction clusters at Facebook and Cloudera’s customers,



% Training Data Wrangler [4] f0 fn fl f0,n,l f0,t f0,t,l

1 Insufficient data 66.88% 63.47% 66.52% 65.58% 63.71% 66.22%
2 Insufficient Data 67.1% 63.31% 67.7% 67.54% 64.33% 67.71%
5 Insufficient Data 67.54% 68.07% 69.1% 69.75% 69.59% 69.06%
10 63.91% 67.79% 70.91% 69.39% 72.3% 73.09% 72.9%
20 67.19% 67.97% 72.6% 70.1% 72.94% 74.72% 74.8%
30 68.45% 68.52% 73.18% 70.31% 74.08% 75.87% 75.79%
40 69.65% 68.17% 73.93% 70.49% 74.33% 76.43% 76.38%
50 70.08% 67.96% 73.73% 70.74% 74.72% 76.87% 76.69%
66 70.78% 68.17% 73.74% 70.1% 75.39% 77.34% 77.32%

Table 1: Prediction accuracies of various MTL formulations for straggler prediction with varying amount of
training data. See Section 4.2 for details.

which we denote as FB2009, FB2010, CC b and CC e.
We replay these workloads on a 20 node EC2 cluster.
See [4, 19] for details on data and replay methodol-
ogy. Each data point is represented by a 107 dimen-
sional feature vector comprising the node’s resource us-
age counters at the time of launching a task on it. We
evaluate our approach using two metrics: first, classi-
fication accuracy, and second, improvement in overall
job completion time. Below, we describe (1) how we
use different MTL formulations and prediction accuracy
achieved by these formulations, (2) how we learn a clas-
sifier for previously unseen node and/or workload and
prediction accuracy it achieves, (3) the improvement in
overall job completion times achieved by our formula-
tion over Wrangler, and (4) reduction in resources con-
sumed using our formulation compared to Wrangler.

4.1 Variants of proposed formulation: As speci-
fied in Section 3, we learn a weight vector of the form
wt = w0 + vt + wnt

+ wlt as shown in Equation 3.12.
We consider several variants of this general formulation.
We first consider individually w0, wn and wl:

• f0: In this formulation, we set τ , ν and ω to
∞. This corresponds to removing vt, wn and wl.
This formulation thus learns a single global weight
vector, w0, for all the nodes and all the workloads.

• fn: We set τ , λ0 and ω to ∞. This corresponds
to only learning a wn, that is, one model for
each node. This model learns to predict stragglers
based on a node’s resource usage counters across
workloads, but it cannot capture any workload-
dependent properties.

• fl: We set τ , λ0 and ν to ∞. This means we only
learn wl, i.e., a workload dependent model across
nodes executing a particular workload. This model
learns to predict stragglers based on the resource

usage pattern caused due to a workload across
nodes, but ignores the node’s characteristics.

The above three formulations either discard the node
information, the workload information, or both. We
now consider multi-task variants that capture both node
and workload properties:

• f0,n,l: We set τ to∞, removing vt entirely and only
learning w0, wl and wn. As described above, this
formulation reduces the total number of parameters
and can also generalize to unseen tasks.

• f0,t: This is the formulation proposed by Evgeniou,
et al. [5], and corresponds to setting ν and ω to
∞. Note that this formulation still has to learn on
the order of NLd different parameters and hence,
might generalize worse than f0,n,l.

• f0,t,l: This formulation extends the formulation in
f0,t by additionally learning a weight vector for
each of the workloads executing across a set of
nodes. Thus, only ν is set to ∞.

4.2 Prediction accuracy: We aim at learning to
predict stragglers using as small amount of data as feasi-
ble, as this means shorter data capture time. Note that
stragglers are fewer than non-stragglers, so we oversam-
ple from the stragglers’ class to represent the two classes
equally in both the training and validation sets. Table 1
shows the percentage accuracy of predicting stragglers
with varying amount of training data. We observe that:

• With very small amounts of data, all MTL variants
outperform Wrangler. In fact, all of f0 to f0,t,l need
only one sixth of the training data to achieve the
same or better accuracy.

• It is important to capture both node- and workload-
dependent aspects of the problem: f0,n,l, f0,t and
f0,t,l consistently outperform f0, fn and fl.



FB2009 FB2010 CC b CC e

f0,n,l f0,t f0,n,l f0,t f0,n,l f0,t f0,n,l f0,t

73.07% 45.29% 46.66% 48.33% 50.18% 49.43% 52.78% 68.15%
56.2% 57.51% 57.27% 58.68% 60.96% 53.45% 64.37% 48.88%
63.87% 55.51% 50% 48.82% 59.39% 53.38% 48.85% 65.12%
63.17% 47.67% 60.63% 57.44% 55.72% 49.53% 47.33% 73.9%
50.66% 42.38% 51.42% 56.19% 50.77% 44.58% 71.2% 59.85%

Table 2: Straggler Prediction accuracies of f0,n,l and f0,t on test data from an unseen node-workload pair. See
Section 4.3 for details.

FB2009 FB2010 CC b CC e
Wrangler f0,n,l Wrangler f0,n,l Wrangler f0,n,l Wrangler f0,n,l

Average 56.75% 96.37% 10.60% 21.77% 43.59% 44.67% 16.17% 17.72%
50p 5.29% 36.09% -1.07% 7.43% 6.62% 0.66% -10.61% -3.52%
75p 62.38% 80.99% 2.21% 6.58% 45.22% 34.44% 0.20% -2.49%
80p 62.07% 82.76% 3.74% 11.81% 50.41% 44.06% 3.33% -1.48%
85p 74.30% 89.12% 5.60% 19.87% 56.79% 52.81% 5.17% 0.84%
90p 75.00% 90.48% 9.61% 41.78% 56.05% 54.51% 11.01% -6.55%
95p 68.51% 88.48% 27.51% 41.08% 58.87% 63.70% 32.08% 2.16%
97p 65.81% 86.19% 39.66% 44.30% 62.09% 71.22% 13.07% 38.27%
98p 64.42% 84.84% 41.72% 43.35% 71.03% 72.98% 25.58% 31.19%
99p 59.98% 83.12% 27.77% 53.61% 43.12% 76.62% 15.84% 20.65%

Table 3: Improvement in the overall job completion times achieved by f0,n,l and Wrangler over speculative
execution.

• f0,t and f0,t,l perform up to 7 percentage points
better than Wrangler with the same amount of
training data, with f0,n,l not far behind.

Note that f0,n,l, f0,t and f0,t,l seem to perform sim-
ilarly, with f0,n,l performing slightly worse. However, as
mentioned earlier, formulation f0,n,l has reduced num-
ber of total parameters and, because it has no task-
specific weight vector, can generalize to new tasks un-
seen at train time. This is in contrast to f0,t which has
to fall back on w0 in such a situation, and thus may not
generalize as well. We see next if this is indeed true.

4.3 Prediction accuracy for a task with insuffi-
cient data: We trained classifiers based on f0,n,l and
f0,t leaving out 95% of the data of one node-workload
pair every time. We then test the models on the left-
out data. Table 2 shows the percentage classification
accuracy from 20 such runs. We note the following:

• For 13 out of 20 classification experiments, f0,n,l
performs better than f0,t. For 10 out of these 13
cases, the difference in performance is more than 5
percentage points.

• For workloads FB2009 and CC b, we see f0,n,l
performs better consistently.

• f0,n,l sometimes performs worse, but in only 3 of
these cases is it significantly worse (worse by more
than 5 percentage points). All 3 of these instances
are in case of the CC e workload. In general, for
this workload, we also notice a huge variance in the
numbers obtained across multiple nodes. See [4] for
a discussion of some of the issues in this workload.

This shows that f0,n,l works better in real-world
settings where one cannot expect enough data for all
node-workload pairs. In our next experiment, we see if
f0,n,l improves job completion times.

4.4 Improvement in overall job completion
time: We now evaluate our formulation, f0,n,l, using
the second metric, improvement in the overall job com-
pletion times over speculative execution. We com-
pare these improvements to that achieved by Wran-
gler (Table 3). Improvement at the 99th percentile is
a strong indicator of straggler mitigation techniques.
We see that f0,n,l significantly improves over Wran-
gler, reflecting the improvements in prediction accu-
racy. At the 99th percentile, we improve Wrangler’s
job completion times by 57.8%, 35.8%, 58.9% and 5.7%
for FB2009, FB2010, CC b and CC e respectively.



Workload
% Reduction in total task-seconds

(MTL) (Wrangler)

FB-2009 73.33 55.09
FB-2010 8.9 24.77

CC b 64.12 40.15
CC e 13.04 8.24

Table 4: Resource consumption with f0,n,l and with Wran-
gler over speculative execution, in terms of total task exe-
cution times (in seconds) across all the jobs. f0,n,l reduces
resources consumed over Wrangler for FB2009, CC b and
CC e.

4.5 Reduction in resources consumed: When a
job is launched on a cluster, it will be broken into
small tasks and these tasks will be run in a distributed
fashion. Thus, the total resources consumed is the
sum of the resources used by all the tasks. As in [4],
we use the time taken by each task as a measure
of the resources consumed by the task. Note that,
because these tasks will likely be executing in parallel,
the total time taken by the tasks will be much larger
than the time taken for the whole job to finish, i.e.,
the job completion time (Table 3). Ideally, better
straggler prediction will imply fewer stragglers and thus
fewer tasks that are replicated by straggler mitigation
mechanisms (like speculative execution). This should
result in lower resource consumption, including lower
total task-seconds.

Table 4 compares the percentage reduction in
resources consumed in terms of total task-seconds
achieved by f0,n,l and Wrangler over speculative execu-
tion. f0,n,l reduces resource consumption significantly
more than Wrangler for 3 out of 4 workloads, con-
firming our intuitions. In particular, for FB2009 and
CC b, f0,n,l reduces Wrangler’s resource consumption
by ∼ 40%, while for CC b the reduction is ∼ 5%.

5 Prior Work
Straggler mitigation: Reducing the completion times
for jobs running on distributed processing frame-
works [1, 2] is a well studied problem [20, 21, 22]. Strag-
glers are one of the major contributors to elongated job
completions, and several approaches [6, 7, 8, 3, 23] at-
tempt to mitigate them. Most of these approaches are
reactive and replicative - they act only when tasks are
already running slow and launch redundant copies of
such tasks leading to additional resource consumption.

Scheduling or load-balancing approaches [20, 14, 24,
25, 22, 21] though proactive, rely on advance knowledge
of causes behind stragglers or situations causing strag-
glers. Thus, they could miss dynamically changing loads
on the nodes, resource requirements and communication
patterns that are likely to cause stragglers [6, 4].

Other proactive approaches [9, 10, 4] use machine
learning to predict slow-down of tasks. Wrangler

showed a model-informed scheduler that uses these pre-
dictions to avoid stragglers. In this work, we improve
the accuracy of these predictions by sharing data across
nodes in a cluster, thus using lesser training data per
node and per workload and enabling prediction for new
nodes and workloads.
Multitask learning: The idea that multiple learning
problems might be related and can gain from each other
dates back to Thrun [26] and Caruana [27]. This notion
was formalized by, among others, Baxter [28] and Ando,
et al. [29], who quantified this gain. Much of this early
work relied on neural networks as a means of learning
these shared representations. However, contemporary
work has also focussed on SVMs and kernel machines.
Our work is an extension of the work of Evgeniou, et
al. [5], who proposed an additive model for MTL that
decomposes classifiers into a shared component and a
task-specific component. In later work, Evgeniou, et
al. [16], propose an MTL framework that uses a general
quadratic form as a regularizer. They show that if
the tasks can be grouped into clusters, they can use
a regularizer that encourages all the weight vectors of
the group to be closer to each other. Jacob, et al. [17],
extend this formulation when the group structure is not
known a priori. Xue, et al. [18] infer the group structure
using a Bayesian approach. The formulation we propose
is also designed to handle group structure, but allows
us to dispense with task-specific classifiers entirely,
reducing the number of parameters drastically. This
allows us to handle tasks that have very little training
data by transferring parameters learnt on other tasks.
Other ways of controlling parameters include using a
2, 1-norm for feature selection [30], learning a distance
metric [31], and using low rank regularizers [32].

6 Conclusion
In this work, we have shown the utility of multitask
learning in solving the real-world problem of avoiding
stragglers in distributed data processing. Our novel
MTL formulation captures the structure of our tasks
and reduces job completion times by up to 59% over
prior work [4]. This reduction comes from a 7 point
increase in prediction accuracy. Our formulation can
achieve better accuracy with only a sixth of the train-
ing data and can generalize better than other MTL ap-
proaches for tasks with little or no data. Finally, al-
though we use straggler avoidance as the motivation,
our formulation is more generally applicable, especially
for other prediction problems in distributed computing
frameworks, such as resource allocation [10, 11].

7 Acknowledgements

We thank Chiranjib Bhattacharyya for many fruitful
conversations; Vivek Chawda, Anurag Khandelwal and



Saurabh Gupta for their helpful comments on paper
drafts, and the SDM reviewers for their constructive
comments. This research is supported in part by NSF
CISE Expeditions Award CCF-1139158, LBNL Award
7076018, and DARPA XData Award FA8750-12-2-0331,
and gifts from Amazon Web Services, Google, SAP,
The Thomas and Stacey Siebel Foundation, Adatao,
Adobe, Apple, Inc., Blue Goji, Bosch, C3Energy, Cisco,
Cray, Cloudera, EMC, Ericsson, Facebook, Guavus,
Huawei, Informatica, Intel, Microsoft, NetApp, Pivotal,
Samsung, Splunk, Virdata, VMware, and Yahoo!, and
a Microsoft Research Fellowship.

References

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In OSDI, 2004.

[2] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In EuroSys,
2007.

[3] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. Effective straggler mitigation: Attack
of the clones. In NSDI, 2013.

[4] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and
Randy Katz. Wrangler: Predictable and faster jobs
using fewer resources. In Proceedings of the ACM
Symposium on Cloud Computing, SOCC ’14, pages
26:1–26:14, New York, NY, USA, 2014. ACM.

[5] Theodoros Evgeniou and Massimiliano Pontil. Regu-
larized multi–task learning. In KDD, 2004.

[6] Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the outliers in map-reduce clusters
using mantri. In OSDI, 2010.

[7] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy H. Katz, and Ion Stoica. Improving mapreduce
performance in heterogeneous environments. In OSDI,
2008.

[8] Ganesh Ananthanarayanan, Michael Chien-Chun
Hung, Xiaoqi Ren, Ion Stoica, Adam Wierman,
and Minlan Yu. Grass: Trimming stragglers in
approximation analytics. In NSDI, 2014.

[9] Edward Bortnikov, Ari Frank, Eshcar Hillel, and Sriram
Rao. Predicting execution bottlenecks in map-reduce
clusters. In HotCloud, 2012.

[10] Shekhar Gupta, Christian Fritz, Bob Price, Roger
Hoover, Johan Dekleer, and Cees Witteveen. Through-
putscheduler: Learning to schedule on heterogeneous
hadoop clusters. In ICAC, 2013.

[11] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
In ASPLOS, 2014.

[12] Hadoop. http://hadoop.apache.org.
[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The google file system. In SOSP, 2003.
[14] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,

Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay

scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Eurosys, 2010.

[15] YongChul Kwon, Magdalena Balazinska, Bill Howe,
and Jerome Rolia. Skewtune: Mitigating skew in
mapreduce applications. In SIGMOD, 2012.

[16] Theodoros Evgeniou, Charles A Micchelli, Massimil-
iano Pontil, and John Shawe-Taylor. Learning multiple
tasks with kernel methods. JMLR, 6(4), 2005.

[17] Laurent Jacob, Jean philippe Vert, and Francis R.
Bach. Clustered multi-task learning: A convex formu-
lation. In NIPS. 2009.

[18] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji
Krishnapuram. Multi-task learning for classification
with dirichlet process priors. JMLR, 8, 2007.

[19] Yanpei Chen, Sara Alspaugh, and Randy H. Katz.
Interactive analytical processing in big data systems: A
cross-industry study of mapreduce workloads. PVLDB,
5(12), 2012.

[20] Matei Zaharia. The Hadoop Fair Sched-
uler. http://developer.yahoo.net/blogs
/hadoop/FairSharePres.ppt.

[21] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang,
Dhruba Borthakur, Srikanth Kandula, Scott Shenker,
and Ion Stoica. PACMan: Coordinated memory
caching for parallel jobs. In NSDI, 2012.

[22] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair scheduling for distributed computing clusters. In
SOSP, 2009.

[23] YongChul Kwon, Magdalena Balazinska, Bill Howe,
and Jerome Rolia. Skewtune: Mitigating skew in
mapreduce applications. In SIGMOD, 2012.

[24] Hadoop’s Capacity Scheduler. http://hadoop.apache
.org/core/docs/current/capacity scheduler.html.

[25] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghu-
nathan, and T. N. Vijaykumar. Tarazu: Optimizing
mapreduce on heterogeneous clusters. In ASPLOS,
2012.

[26] Sebastian Thrun. Is learning the n-th thing any easier
than learning the first? NIPS, 1996.

[27] Richard A Caruana. Multitask learning: A knowledge-
based source of inductive bias. In Proceedings of the
10th International Conference of Cognitive Science.

[28] Jonathan Baxter. A model of inductive bias learning.
JAIR, 12, 2000.

[29] Rie Kubota Ando and Tong Zhang. A framework for
learning predictive structures from multiple tasks and
unlabeled data. JMLR, 6, 2005.

[30] Andreas Argyriou, Theodoros Evgeniou, and Massim-
iliano Pontil. Convex multi-task feature learning. Ma-
chine Learning, 73(3), 2008.

[31] Shibin Parameswaran and Kilian Q. Weinberger. Large
margin multi-task metric learning. In NIPS. 2010.

[32] Ting Kei Pong, Paul Tseng, Shuiwang Ji, and Jieping
Ye. Trace norm regularization: reformulations, algo-
rithms, and multi-task learning. SIAM Journal on Op-
timization, 20(6), 2010.


