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Abstract

The proliferation of massive datasets combined with the develop-
ment of sophisticated analytical techniques has enabled a wide va-
riety of novel applications such as improved product recommenda-
tions, automatic image tagging, and improved speech-driven inter-
faces. A major obstacle to supporting these predictive applications
is the challenging and expensive process of identifying and train-
ing an appropriate predictive model. Recent efforts aiming to au-
tomate this process have focused on single node implementations
and have assumed that model training itself is a black box, limit-
ing their usefulness for applications driven by large-scale datasets.
In this work, we build upon these recent efforts and propose an
architecture for automatic machine learning at scale comprised of
a cost-based cluster resource allocation estimator, advanced hyper-
parameter tuning techniques, bandit resource allocation via runtime
algorithm introspection, and physical optimization via batching and
optimal resource allocation. The result is TUPAQ, a component
of the MLbase system that automatically finds and trains models
for a user’s predictive application with comparable quality to those
found using exhaustive strategies, but an order of magnitude more
efficiently than the standard baseline approach. TUPAQ scales to
models trained on Terabytes of data across hundreds of machines.

1. Introduction

Rapidly growing data volumes coupled with the maturity of so-
phisticated statistical techniques have led to a new type of data-
intensive workload: predictive analytics. In order to make useful
predictions, a high-quality predictive model must be built, typically
using sophisticated machine learning (ML) techniques that often
rely on large-scale, distributed datasets to achieve high statistical
performance.
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To come up with high quality models that make accurate predic-
tions, researchers, data scientists, and business analysts must make
a number of important decisions. First, an input dataset must be
transformed from a domain specific format to features which are
predictive of the field of interest. Although this feature engineering
task is challenging, it addresses only a portion of the design space
of machine learning. Once features have been engineered, users
must make several other important decisions. They must pick a
learning setting appropriate to their problem—for example, regres-
sion, classification, or recommendation. Next, users must choose an
appropriate model, such as Logistic Regression or a Kernel SVM.
Each model family has a number of hyperparameters, such as de-
gree of regularization or learning rate, and each of these must be
tuned to an appropriate value. Finally, users must pick a software
package that can train their model, choose to configure one or more
machines to execute the training routine, and evaluate the result-
ing model’s quality. In our experience, the initial model configura-
tion selected by the user is almost always suboptimal, owing to the
complexity and number of decisions that precede it. Identifying a
high quality model thus typically involves a costly and often man-
ual search process. The decision process and exponentially large
space of candidate configurations is illustrated in Figure 1.

Distributed and cloud computing provide a compelling way
to accelerate this process, but also present additional challenges.
Though parallel storage and processing techniques enable users to
train models on massive datasets and accelerate the search process
by training multiple models at once, the distributed setting forces
several more decisions upon users: what parallel execution strategy
to use, how big a cluster to provision, how to efficiently distribute
computation across it, and what machine learning framework to
use. These decisions are onerous—particularly for users who are
experts in their own field but inexperienced in machine learning
and distributed systems.

Existing techniques to automate the search for a high-quality
predictive model focus on the single node setting; extensions for
large-scale problems or distributed settings are very basic [28].
Moreover, while many machine learning frameworks have been de-
signed to train a single predictive model with fixed hyperparameter
configurations efficiently, they provide at best rudimentary and in-
efficient tools to aid in the search among hyperparameter configu-
rations for a high quality model.

To address these challenges, we present TUPAQ, a system de-
signed to efficiently and scalably automate the process of training
predictive models. Central to the system is a planning algorithm
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Figure 1: Finding an appropriate predictive model for a dataset is
a process of continuous refinement. Each stage must be carefully
tuned to ensure high quality. TUPAQ automates this process. Here
‘Ir’ denotes a learning rate parameter, ‘reg‘ the degree of regular-
ization, ‘kType’ a kernel to use and ‘nFeats‘ the number of random
features to use.

which decides on an efficient parallel execution strategy during
model training, and uses sophisticated techniques both to identify
new hyperparameter configurations to try and to proactively elimi-
nate models which are unlikely to provide good results.

In this paper, we make the following contributions:

e We introduce a simple, workload-driven cluster size estimator
that determines the appropriate number of machines to use
when fitting large-scale ML models.

We describe the TUPAQ algorithm for large scale model search
which combines advanced hyperparameter tuning techniques
with physical optimization for efficient execution.

We describe an implementation of the TUPAQ algorithm in
Apache Spark, building on our earlier work on the MLbase
architecture [29].

We evaluate several points in the design space with respect to
each of our logical and physical optimizations, and demonstrate
that proper selection of each can dramatically improve both
accuracy and efficiency.

‘We present experimental results on large, distributed datasets up
to Terabytes in size, demonstrating that TUPAQ’s search tech-
niques converge to high quality models an order of magnitude
faster than a standard model search strategy.

In the remainder of this paper, we formally define the model
search problem, and provide a high level overview of TUPAQ
and its architecture. Next, we present details about TUPAQ’s four
main optimizations. Then, we present a large-scale evaluation of
TUPAQ. We conclude with a discussion of related and future work.

2. Model Search and TUPAQ

In this section, we define the model search problem in more detail,
and compare two approaches to solving it. The first, which we call
the baseline approach, is inspired by common practice. The second
approach, used by TUPAQ, allows us to take advantage of logical
and physical optimizations in the model search process. TUPAQ
has a rich design space, which we describe in further detail in
Section 3. Finally, we describe the architecture of TUPAQ and how
it fits into the broader MLbase architecture.

2.1 Defining Model Search

Given a dataset, an attribute of that dataset to predict, and a space
of possible model configurations to consider, the goal of model
search is to find a supervised learning model that will provide
good predictions for the attribute of interest on unseen data—that
is, a model with low generalization error. We focus specifically on
the supervised learning setting, where each element of the training
dataset has a label or score associated with it. In our environment,
the user’s dataset may consist of up to millions of training data
points and hundreds of thousands of features. Datasets this size
are commonly needed to build high quality models in domains
such as computer vision, speech recognition, and natural language
processing.

The model search procedure aims to find a model that maxi-
mizes some measure of quality (e.g., in terms of goodness of fit to
held-out data) in a short amount of time, where learning resources
are constrained by some budget in terms of the number of mod-
els considered, maximum execution time, number of scans over the
training data, or even total money to spend with a cloud computing
provider. The model search procedure thus takes as input a train-
ing dataset, a description of a space of models to search, and some
budget or stopping criterion. The description of the space of mod-
els to search includes the set of model families to search over (e.g.,
SVM, decision tree, etc.) and reasonable ranges for their associ-
ated hyperparameters (e.g., regularization parameter for a regular-
ized linear model or maximum depth of a decision tree). The output
of the procedure is a model that can be applied to unlabeled data
points to obtain a prediction for the desired attribute.

2.2 Our Setting

In this work, we operate in a scenario where individual models
are of dimensionality d, where d is less than the total number
of example data points n. In the binary classification setting this
corresponds to d features in the training data. Note that, despite
being smaller than n, d can nonetheless be quite large, e.g., d =
200,000 in our large-scale speech experiments and d = 160,000
in our large scale image experiments (see Section 5). We are also
focused on the situation where the data size (n*xd) is very large.
We run experiments on up to terabytes of data and our system is
designed to scale even further.

Moreover, we focus on the classification setting, and we con-
sider a small number of model families, f € F, each with several
hyperparameters, A € A. These assumptions map well to reality, as
there are a handful of general-purpose classification methods that
are deployed in practice. Further, we expect that these techniques
will naturally apply to other supervised learning tasks—such as re-
gression and collaborative filtering.

We evaluate the quality of each model by computing accuracy
on held-out datasets, and we measure search time as the amount
of time required to explore a fixed number of models from some
model space. This accuracy measure is our measure of model
quality. In our large-scale distributed experiments (see Section 5)
we report parallel run times.

Additionally, we focus on model families that are trained via
multiple sequential scans of the training data as opposed to model
families which require random access to training data to compute
their updates. This iterative sequential access pattern encompasses
a wide range of learning algorithms, especially in the large-scale
distributed setting. For instance, efficient distributed implementa-
tions of linear regression [36], tree based models [38], Naive Bayes
classifiers [36], and k-means clustering [36] all follow this same
access pattern. In particular, we focus on three model families: lin-
ear Support Vector Machines (SVM), logistic regression trained via
gradient descent, and nonlinear SVMs using random features [41]
trained via block coordinate descent. These model families were



chosen primarily because of their practical popularity, as well as
the ease with which the batching optimization described in Sec-
tion 3 can be applied to them.

2.3 Connections to Query Optimization

Our view is that model search can be considered as a form of query
optimization. If we view model search as a task which is speci-
fied declaratively in terms of a search space, data, and an objec-
tive function, this becomes more clear. Given this observation, it is
natural to draw connections between automating the model search
process and the decades worth of research in optimizing declarative
relational database queries. Traditional database systems invest in
the costly process of query planning to determine a good execu-
tion plan that can be reused repeatedly upon subsequent execution
of similar queries. Similarly, model search involves the costly pro-
cess of identifying a high quality predictive model in order to sub-
sequently perform near real-time model evaluation. Indeed, rela-
tional query optimization is commonly viewed as a search problem,
where the optimizer must find a good query plan in the large space
of join orderings and access methods, just as model search must
find a good model in the large space of potential model families
and their configurations.

There are some notable differences between these two prob-
lems, however, leading to a novel set of challenges to address in the
context of model search. First, unlike traditional database queries,
due to the inherent uncertainty in predictive models learned from
finite datasets, the model search process does not yield a unique
answer. Hence, model search must focus on both quality and effi-
ciency (traditional query planning need only consider efficiency),
and must trade off between the two objectives when they conflict.
Second, the search space for models is not endowed with well-
defined algebraic properties, as it consists of possibly unrelated
model families, each with its own access patterns and hyperpa-
rameters. Third, evaluating a candidate model is expensive and in
this context involves learning the parameters of a statistical model.
Learning the parameters of a single model can involve upwards of
hundreds of passes over the input data, and there exist few heuris-
tics to estimate the effectiveness of a model before this costly train-
ing process.

Now, we turn our attention to scalable model search strategies.

2.4 Baseline Model Search

The conventional approach to model search is sequential grid
search [4, 31, 39], which divides the hyperparameter space into
a regular grid and trains models at these grid points. For instance,
consider a single ML model family with two hyperparameters. If
the two hyperparameters are in the range 0 to 100 and the budget
allows for 25 total model configurations, then each hyperparameter
will be sampled at (0,25,50,75,100).

In the cluster setting, in current systems users decide how to
parallelize the execution of grid search. In cases where data is small
enough to fit in memory of a single machine, often each machine is
responsible for trying a set of grid points on a copy of the training
data—we refer to this situation as model parallel. However, if data
is too large to fit in memory on a single machine, data parallel
strategies are employed, where partial statistics of a model update
are computed on worker machines, communicated back to a master
machine, combined to produce an updated model, and sent back out
to each worker. In either setting, an important factor that impacts
job completion time is the size of the cluster to use. This choice of
execution strategy is typically made by the user or developer of the
system, and is not dynamically made by the search procedure. Our
intuition is that when data no longer fits in memory on a single
node, it makes sense to operate in the data parallel setting. We
validate this intuition in Section 4.

Sequential grid search has several shortcomings. First, it is not
adaptive—the search plan is statically determined a priori and in-
termediate results do not inform subsequent model fittings. Second,
the curse of dimensionality limits the usefulness of this method in
high dimensional hyperparameter spaces. Third, grid points may
not represent a good approximation of global minima—true global
minima may be hidden between grid points, particularly in the case
of a very coarse grid. Nonetheless, sequential grid search is com-
monly used in practice, and is a natural baseline against which we
compare our system.

Algorithm 1 lists this grid search strategy. In this example, the
budget is the total number of models to train.

input : LabeledData, ModelSpace, Budget
output: BestModel
bestModel < 0;
grid < gridPoints(ModelSpace, Budget);
while Budget > 0 do
proposal < nextPoint(grid);
model < train(proposal, LabeledData,);
if quality(model) > quality(bestModel) then
| bestModel <— model;
end
Budget < Budget — 1;
end
return bestModel,
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Algorithm 1: A baseline model search procedure with conven-
tional grid search. The function “gridPoints” returns a coarse grid
over the dimensions of model space, where the total number of
grid points is determined by the budget.

2.5 TuPAQ Model Search

As discussed in the previous section, grid search is a suboptimal
search method despite its popularity. Moreover, from a systems
perspective, a naive implementation of Algorithm 1 would have
additional drawbacks beyond those of grid search. In particular, it
would ignore several physical optimizations such as proper use of
batching and optimal use of cluster resources.

In contrast, we propose the TUPAQ algorithm, described in Al-
gorithm 2, to address these shortcomings via logical and physical
optimizations. The TUPAQ algorithm automatically determines an
ideal execution strategy based on properties of the data and the
budget (Line 1). The TUPAQ algorithm also allows for more so-
phisticated hyperparameter tuning strategies. Line 7 shows that
our model search procedure can now use training history as in-
put. Here, “proposeModel” can be an arbitrary model search al-
gorithm. Second, our algorithm performs batching to train multiple
models simultaneously (Line 8). Third, our algorithm deploys ban-
dit resource allocation via runtime inspection to make on-the-fly
decisions. Specifically, the algorithm compares the quality of the
models currently being trained with historical information about
the training process, and determines which of the current models
should be trained further (Line 10).

These four optimizations are discussed in detail in Section 3,
with a focus on the design space for each of them. In Section 4, we
evaluate the options in this design space experimentally, and then in
Section 5 compare the baseline algorithm (Algorithm 1) to TUPAQ
running with good choices for execution strategy, hyperparameter
tuning method, batch size, and bandit allocation criterion, i.e.,
choices informed by the results of Section 4.



input : LabeledData, ModelSpace, Budget, BatchSize

output: BestModel

(bestModel, history, activeProposals) <— 0;

2 searcher.setSearchSpace(ModelSpace);

3 executor.determineExecStrategy(LabeledData, Budget)
// Execution Strategy

4 while Budget > 0 do

5 freeSlots <— BatchSize — size(activeProposals);

6 activeProposals < activeProposals U

searcher.proposeModels(freeSlots, history)

// Hyperparameter Tuning

7 (models, budgetUsed) <—

executor.trainPartial(activeProposals, LabeledData)

// Batching

8 (finishedModels, activeProposals) <

banditAllocation(models, history) // Bandits

9 history < history U models;

10 Budget < Budget — budgetUsed;

11 end

2 bestModel <— getBestFromHistory(history);

return (bestModel);

[
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w

Algorithm 2: The planning procedure used by TUPAQ. ‘execu-
tor’ and ‘searcher’ represent handles to execution engine and
search procedure, respectively. ‘trainPartial’ returns a partially
trained model, and the bandit allocation strategy decides which
models to keep training. The algorithm returns the best model it
has seen once the budget is exhausted.
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Figure 2: The TUPAQ planner is a critical component of the ML-
base [29] system for simplified large scale machine learning. TU-
PAQ interacts with a distributed run-time and existing machine
learning algorithms to efficiently find a model which yields high
quality predictions.
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Before exploring the design space for the TUPAQ algorithm,
we first describe the architecture of TUPAQ and how it fits into a
larger system to support large scale machine learning.

2.6 TuPAQ and the MLbase Architecture

TUPAQ lies at the heart of MLbase [29], a novel system designed
to simplify the process of implementing and using scalable ma-
chine learning techniques. By giving users a declarative interface

Search Space, Best Models

Data,

Budget Configuration

Proposals

Hyperparameter

Planner Tuner

Search Space,
Configuration
Configurations, Results

Data
Trained Models

Executor

Figure 3: TUPAQ is composed of several components, each of
which has a standard interface and may have multiple implementa-
tions.

Name Type Scale
IntegerP Continuous Uniform
FloatP Continuous Uniform/Log
DiscreteP Discrete Uniform
ChoiceP Set[Parameter] Uniform
SequenceP | Seq[Parameter] | N/A

Table 1: Users define parameter spaces by composing potentially
nested parameters of various types.

for machine learning tasks, the problem of hyperparameter tuning
and feature selection can be pushed down into the system. The ar-
chitecture of this system is shown in Figure 2.

At the center of the system, an optimizer or planner must be
able to quickly identify a suitable model for supporting predictive
queries. In the original presentation of MLbase, grid search was
suggested as an implementation for the planner. However, while
prototyping the system, it became clear that a great deal of time
was spent in this component, so optimizing it was a crucial place
to focus. Importantly, the declarative nature of MLbase allows for
arbitrary procedures to be used at this level of the system, a choice
that may not have been available otherwise. Our instantiation of
this component is TUPAQ. The entire system is built upon Apache
Spark, a cluster compute system designed for iterative comput-
ing [48], and we leverage MLIib and other components present in
Apache Spark, as well as MLI [44]. Of course, TUPAQ itself has
several moving parts, which we will now explore.

2.6.1 TuPAQ Architecture

TUPAQ is designed according to the principles of modularization
and reuse. In particular, it consists of several components which
adhere to an abstract interface. The interaction of these components
is illustrated in Figure 3.

The driver is some higher level component that calls into the
planner. The driver is responsible for providing a model search
space, and a budget. The planner passes this information on to
the hyperparameter tuner whose job is to produce new model
configurations to try. The planner passes these configurations to an
executor which is responsible for actually training models given a
handle to the user’s dataset. The executor determines an appropriate
execution strategy back to the planner, which in turn relays these to
the hyperparameter tuner and polls it for new configurations to try.
After the budget is exhausted, the planner returns the best models
it has seen to the driver.

Users define their search space using an extensible API. Table 1
lists the data structures used to represent parameters, and Figure 4
shows an example search space defined using the APIL.

While we currently expect users to specify their search space, it
is possible that developers can inform the system about reasonable
options for hyperparameter settings (e.g. step size should be > 0.0),



val searchSpace = ChoiceP ("family",
Set (
SegP ("RandomForest",
Seq/(
DiscreteP ("loss", Seg("gini","entr")),
FloatP ("fracFeatures", 0.0, 1.0),
IntP ("minSplit", 1, 20),
IntP ("maxDepth", 2, 30)
)
)y
SeqgP ("LogisticRegression",
Seq (
FloatP ("Reg", le-6, le6, scale=Log),
FloatP ("Step", le-6, le6, scale=Log)
)
)
)

Figure 4: Using the small set of parameters from Table 1, users
are able to construct rich parameter search spaces. Here, the user
supplies parameter ranges to try for Random Forests or Logistic
Regression models.

leaving the user oblivious to the methods and parameters used to fit
their models.

Now that we have explored the architecture of the system, we
turn our attention to its design space.

3. TUPAQ Design Choices

In this section, we examine the design choices available for the
TUPAQ model search procedure. We target algorithms that run
on tens to thousands of nodes in commodity computing clusters,
and training datasets that fit comfortably into cluster memory—
on the order of tens of gigabytes to terabytes. Training a single
model to convergence on such a cluster is expected to require tens
to hundreds of passes through the training data, and may take on the
order of minutes. With a multi-terabyte dataset, performing a grid
search involving even just 100 model configurations each with a
budget of 100 scans of the training data could take hours to days of
processing time, even assuming that the algorithm runs at memory
speed. Hence, in this regime the baseline model search procedure
is tremendously costly.

We now ask how the system and algorithms presented in Sec-
tion 2 might be optimized to support fast, high quality search. In
the remainder of this section, we present the following optimization
four optimizations that in concert provide TUPAQ with an order-
of-magnitude gain in performance over the baseline approach.

3.1 Cost-based Execution Strategy Selection

When data is too big to fit on a single node, data parallelism pro-
vides scalability that is linear with respect to cluster size. However,
it presents its own set of drawbacks. In particular, it requires more
coordination among workers than the model parallel strategy. Fur-
ther, there are no formal procedures to estimate the optimal number
of nodes to provision, and available guidance consists only of con-
ventional wisdom and rules of thumb.

In this section, we present a simple cost-based model of esti-
mated execution time in the data parallel setting that provides guid-
ance for optimal cluster sizing based on the workload, hardware,
and cluster management system used to execute parallel jobs.

3.1.1 Estimating Job Latency

Data parallel execution is the natural choice for model search if the
CPU requirements of the model training become excessive or the
data required to train a single model no longer fit in memory. As-
suming we are in a data parallel setting, we must choose our cluster
size to be large enough to take advantage of parallel data process-

ing, but not so large that the speedup provided by parallelism is
dominated by increased coordination (and therefore network band-
width usage) between machines. Amdahl’s law [9] provides an up-
per bound on the speedup we can hope to achieve: the maximum
speedup due to parallelization is inversely proportional to the per-
centage of a job that is sequential. Commonly used cluster comput-
ing frameworks rely on a centralized master to manage distributed
jobs, which increases the serial portion of execution time even for
tasks that are embarrassingly parallel.

To capture these effects, we propose the following cost-based
model of cluster job execution time:

c m b
tj0b(W) =ko+ k1W+HC[mk27 + Lnemks — + Lnerka — €8
w w w

Equation 1 describes our estimator, a function of w, the number
of worker nodes in the cluster, which encapsulates several impor-
tant insights. First, we explicitly separate the requirements of the
job from the capacity of the cluster hardware. The constants kp, k3,
and k4 capture the (average) compute, memory, and network band-
width available on each node in the cluster independently of c, m,
and b, which are functions that describe the total compute, mem-
ory, and network requirements of the task given properties of the
data in terms of FLOPS required, or bytes to be read from memory
or across the network. While these functions must be defined ahead
of time by an algorithm developer (or, alternatively, by sampling
empirical job behavior), this makes our model easy to use in prac-
tice: users simply specify the hardware specifications of their clus-
ter (readily available from cloud computing providers like Amazon
EC2) and the resource requirements of the algorithm to be run. We
will show an example of how these parameters may be estimated in
Section 4.1.

In addition, we use a roofline [47] inspired model of the tradeoff
between job-specific memory and compute requirements. That is,
we ask ML algorithm developers to specify whether their job is
memory, network or compute-bound, and assume that only the
most constrained resource will affect overall job latency. The model
captures this assumption with three indicator variables: I¢py, Lnem,
and [,.,;. We estimate the execution time of memory-bound jobs
based on the total memory requirements of the job divided by the
number of parallel workers, and the execution time of compute-
bound jobs based on the total compute requirements of the job
divided by the number of parallel workers.

Finally, our model makes the assumption that overheads associ-
ated with the cluster compute framework itself can be completely
separated from the job execution time. That is, all framework-
specific overheads are captured in the variables ko and kj. ko de-
scribes one-time static costs of using the framework to run a job, for
example code compilation and DAG optimization, or serialization
of code and (intermediate) results. k; describes framework costs
that scale with the number of workers running the job, primarily the
overhead of making scheduling decisions and associated queueing
delays. Both of these parameters are framework-dependent.

Intuitively, we estimate that a data-parallel job will take time
that is dictated by fixed cluster overheads, some marginal additional
time for each node in a cluster, and the greatest of the parallel time
devoted to moving data through the CPU, memory, or the network.

While this model is clearly a simplification of the nuances of
cluster job performance, we have found that it estimates execution
time for data-parallel iterative machine learning jobs reasonably
well, making it useful for TUPAQ’s model search task. We now
describe the use of our model to determine the size of clusters, and
will evaluate its use in Section 4.



3.1.2 Right Sizing the Cluster

The primary purpose of this estimator is to allow TUPAQ to deter-
mine a good choice for the number of nodes it should use to train
a model in a data parallel environment. This optimum can be com-
puted as the number of workers that should lead to the lowest pos-
sible job execution time, w* = argmin,, t,,(w). Since this model
is simple and linear, we can easily find a closed-form solution by
differentiating with respect to w and finding the roots:

(@)

W= \/]Icpuk2c + Lnemksm+Tnerkab
= 3 .

The solution in Equation 2 corresponds to intuitions about the
tradeoffs of cluster computing. If the overheads of distributing the
job to more workers (k) are as large as the resource requirements
of the job (I¢puko ¢ +Iiemk3m~+Iperkab), then the model tells us not
to distribute (w* = 1).

While a simple application of Amdahl’s law would prescribe an
infinite number of workers in the presence of unlimited budget, the
linear penalty applied to workers via k; in our model causes there
to be a unique minimum in the above solution. To our knowledge,
this type of penalty has not been explicitly modeled elsewhere in
the cluster computing literature.

We will evaluate the effectiveness of this estimator in Section 4
but for now turn our attention to better search algorithms.

3.2 Advanced Hyperparameter Tuning

We can view hyperparameter tuning as an optimization problem
over a potentially non-smooth, non-convex function in high dimen-
sional space. This function is expensive to evaluate and we have no
closed form expression for it (hence, we cannot compute deriva-
tives). Although grid search remains the standard solution to this
problem, various alternatives have been proposed for the general
problem of derivative-free optimization, some of which are particu-
larly well-suited for hyperparameter tuning. Each of these methods
provides an opportunity to speed up TUPAQ’s model search time,
and in this section we provide a brief survey of the most commonly
used methods.

Traditional methods for derivative-free optimization include
grid search (the baseline choice for model search) as well as ran-
dom search, Powell’s method [40], and the Nelder-Mead method
[37]. Given a hyperparameter space, grid search selects evenly
spaced points (in linear or log space) from this space, while ran-
dom search samples points uniformly at random from this space.
Powell’s method can be seen as a derivative-free analog to co-
ordinate descent, while the Nelder-Mead method can be roughly
interpreted as a derivative-free analog to gradient descent.

Both Powell’s method and the Nelder-Mead method expect un-
constrained search spaces, but function evaluations can be modified
to severely penalize exploring out of the search space. However,
both methods require some degree of smoothness in the hyperpa-
rameter space to work well, and can easily get stuck in local min-
ima. Additionally, neither method lends itself well to categorical
hyperparameters, since the function space is modeled as continu-
ous. For these reasons, we are unsurprised that they are inappropri-
ate methods to use in the model search problem where optimization
is done over an unknown function that is likely non-smooth and not
convex.

More recently, various methods specifically for hyperparame-
ter tuning have been recently introduced in the ML community,
including Tree-based Parzen Estimators (HyperOpt) [13], Sequen-
tial Model-based Algorithm Configuration (Auto-WEKA) [45] and
Gaussian Process based methods, e.g., Spearmint [43]. These al-
gorithms all share the property that they can search over spaces

which are nested (e.g. multiple model families) and accept cat-
egorical hyperparameters (e.g. regularization method). HyperOpt
begins with a random search and then probabilistically samples
from points with more promising minima, Auto-WEKA builds a
Random Forest model from observed hyperparameter results, and
Spearmint implements a Bayesian method based on Gaussian Pro-
cesses. In Section 4 we evaluate each method on several datasets to
determine which method is most suitable for model search.

3.3 Bandit Resource Allocation

Models are not all created equal. In the context of model search,
typically only a fraction of the models are of high-quality, with
many of the remaining models performing drastically worse. Under
certain assumptions, allocating resources among different model
configurations can be naturally framed as a multi-armed bandit
problem [16]. Indeed, assume we are given a fixed set of k model
configurations to evaluate, as in the case of grid or random search,
along with a fixed budget B. Then, each model can be viewed as an
‘arm’ and the model search problem can be cast as a k-armed bandit
problem with 7" rounds. At each round we perform a single iteration
of a particular model configuration, and return a reward indicating
the quality of the updated model, e.g., validation accuracy. In such
settings, multi-armed bandit algorithms can be used to determine
a scheduling policy to efficiently allocate resources across the k
model configurations. Typically, these algorithms keep a running
score for each of the k arms, and at each iteration choose an arm as
a function of the current scores.

input : currentModels, history
output: finishedModels, activeProposals
(finishedModels, activeProposals) < O[];
bestModel +— getBestFromHistory(history);
for m in currentModels do
if fullyTrained(m) then
| finishedModels < finishedModels U m;
else if quality(m) x(1 + €) > quality(bestModel) then
\ activeProposals < activeProposals U m;
end
end
10 return (finishedModels, activeProposals);

% NN R W N

Algorithm 3: The bandit allocation strategy used by TUPAQ.

Our setting differs from this standard setting in two crucial
ways. First, several of our search algorithms select model config-
urations to evaluate in an iterative fashion, so we do not have ad-
vanced access to a fixed set of kK model configurations. Second, in
addition to efficiently allocating resources, we aim to return a rea-
sonable result to a user as quickly as possible, and hence there is a
benefit to finish training promising model configurations once they
have been identified.

Our bandit selection strategy is a variant of the action elimi-
nation algorithm of [19], and to our knowledge this is the first
time this algorithm has been applied to hyperparameter tuning.
Our strategy is detailed in Algorithm 3. This strategy preemptively
prunes models that fail to show promise of converging. For each
model (or batch of models), we first allocate a fixed number of iter-
ations for training; in Algorithm 2 the trainPartial() function trains
each model for Partiallters iterations. Partially trained models are
fed into the bandit allocation algorithm, which determines whether
to train the model to completion by comparing the quality of these
models to the quality of the best model that has been trained to
date. This procedure acts as a filter on whether models should be
trained any further. Moreover, this comparison is performed using



a slack factor of (1+ ¢€); in our experiments we set € = .5 and thus
continue to train all models with quality within 50% of the best
quality model observed so far. We chose this value for € because
it provided a good tradeoff between maintaining model quality and
speeding up search in our experiments. The algorithm stops allo-
cating further resources to models that fail this test, as well as to
models that have already been trained to completion.

3.4 Batching

Batching is a natural system optimization in the context of train-
ing machine learning models, with applications for cross validation
and ensembling [17, 32], however, it has not previously been ap-
plied to model search. For model search, we note that the access
pattern over the training set is identical for many machine learn-
ing algorithms. Specifically, each algorithm takes multiple passes
over the input data and updates some intermediate state (e.g., model
weights) during each pass. As a result, it is possible to batch to-
gether the training of multiple models effectively sharing scans
across multiple model estimations. In a data parallel distributed en-
vironment, this has several advantages:

1. Better CPU utilization by reducing wasted cycles.

2. Amortized task launching overhead across several models at
once.

3. Amortized network latency across several models at once.

Ultimately, these three advantages lead to a significant reduction in
learning time. We take advantage of this optimization in line 8 of
Algorithm 2.

For concreteness and simplicity, we will focus on one algorithm—

logistic regression trained via gradient descent—for the remainder
of this section, but we note that these techniques apply to many
model families and learning algorithms.

3.4.1 Logistic Regression

Logistic Regression is a widely used machine learning model for
binary classification. The procedure estimates a set of model pa-
rameters, w € R?, given a set of data features X € R"*?, and binary
labels y € {0,1}". The optimal model w* € R? can be found by

minimizing the negative likelihood function, f(w) = —log p(X|w).
Taking the gradient of the negative log likelihood, we have:
n
vi=Y, [(G(WT%’) _)’i)xt} ; 3)
i=1

where o is the logistic function. The gradient descent algorithm
(Algorithm 4) must evaluate this gradient function for all input
data points, a task which can be easily performed in a data parallel
fashion. Similarly, minibatch Stochastic Gradient Descent (SGD)
has an identical access pattern and can be optimized in the same
way by working with contiguous subsets of the input data on each
partition.

input : X, LearningRate, MaxIterations
output: Model

11+ 0;

2 Initialize Model;

3 while i < MaxlIterations do

4 read current;

5 Model < Model - LearningRate * Gradient(Model, X);
6 i< i+1;

7 end

Algorithm 4: Pseudocode for convex optimization via gradient
descent.

The above formulation represents the computation of the gra-
dient by taking a single point and single model at a time. We can
naturally extend this to multiple models simultaneously if we rep-
resent our models as a matrix W € R9*¥ where k is the number of
models we want to train simultaneously, i.e.,

Vf= {XT(G(XW)fy)]. @)

In effect, by computing the gradient of several models simulta-
neously, we are able to compute several model updates simultane-
ously. By scaling each of these updates by the appropriate learning
rate (an element-wise operation on the model), the procedure sup-
ports several learning rates.

This operation can be easily parallelized across data items with
each worker in a distributed system computing the portion of the
gradient for the data that it stores locally. Specifically, the portion
of the gradient that is derived from the set of local data is com-
puted independently at each machine, and these gradients are sim-
ply summed at the end of an iteration. The size of the partial gra-
dients (in this case O(d x k)) is much smaller than the actual data
(which is O(n x d)), so overheads of transferring these over the
network is relatively small. For large datasets, the time spent per-
forming this operation is almost completely determined by the cost
of performing two matrix multiplications—the input to the ¢ func-
tion which takes O(ndk) operations and requires a scan of the input
data as well as the final multiply by X | which also takes O(ndk)
operations and requires a scan of the data. This formulation allows
us to leverage high performance linear algebra libraries that im-
plement BLAS [33]—these libraries are tailored to execute exactly
dense linear algebra operations as efficiently as possible and are
automatically tuned to the architecture we are running on via [46].

3.4.2 Machine Balance

One obvious question the reader may ask is why implementing
these algorithms via matrix-multiplication should offer speedup
over vector/vector versions of the algorithms. After all, the run-
time complexities of both algorithms are identical. However, mod-
ern x86 machines have been shown to have processor cores that
significantly outperform their ability to read data from main mem-
ory [35]. In particular, on a typical x86 machine, the hardware is
capable of reading 0.45B doubles/s from main memory per core,
while the hardware is capable of executing 6.8B FLOPS in the
same amount of time [34]. Specifically, on the machines we tested
(Amazon c3.8xlarge EC2 instances), LINPACK reported peak
GFLOPS of 110 GFLOPS/s when running on all cores, while the
STREAM benchmark reported 60GB/s of throughput across 16
physical cores. This equates to a machine balance of approximately
15 FLOPS per double precision floating point number read from
main memory if the machine is using both all available FLOPs and
all available memory bandwidth solely for its core computation.
This approximate value for the machine balance suggests an oppor-
tunity for optimization by reducing unused resources, i.e., wasted
cycles. By performing more computation for every number read
from memory, we can reduce this resource gap.

The Roofline model [47] offers a more formal way to study this
effect. According to the model, total throughput of an algorithm is
bounded by the smaller of 1) peak floating point performance of
the machine, and 2) memory bandwidth times operational intensity
of the algorithm, where operational intensity is a function of the
number of FLOPs performed per byte read from memory. That is,
for an efficiently implemented algorithm, the bottleneck is either
I/0 bandwidth from memory or CPU FLOPs.

Analysis of the unbatched gradient descent algorithm reveals
that the number of FLOPs required per byte is quite small—just
over 2 flops per number read from memory—a multiply and an



add—and since we represent our data as double-precision floating
point numbers, this equates to 1/2 FLOP per byte. Batching allows
us to move “up the roofline” by increasing algorithmic complexity
by a factor of k, our batch size. The exact setting of k that achieves
balance (and maximizes throughput) is hardware dependent, but we
show in Section 5 that on modern machines, kK = 10 is a reasonable
choice.

3.4.3 Amortized Overheads

As discussed earlier, the cluster computing framework introduces
overheads with each new job that is run. Batching multiple hyper-
parameter settings into the same Spark job allows us to share a
single scan of the data across several hyperparameters and amor-
tize these overheads to decrease the effective overhead per model
trained.

4. Design Space Evaluation

Now that we have laid out the possible optimizations available to
TUPAQ, we investigate the potential speedup offered by each in
turn. In all experiments we split our base datasets into 70% training,
20% validation, and 10% testing. In all cases, models were fit to
minimize classification error on the training set, while model search
occurs based on classification error on the validation set (validation
error).! We only report validation error numbers here, but test
error was similar. TUPAQ is capable of optimizing for arbitrary
performance metrics as long as they can be computed mid-flight,
and extends to other supervised learning scenarios.

4.1 Execution Strategy Selection

To demonstrate the value of our estimator, we first investigated
the consequences of choosing an inappropriate cluster size. We
examined the overheads of data-parallel execution on a 16-node
cluster running two jobs, one that operates on a 100 GB dataset
and one that operates on only 1 GB of data. In the larger job (more
appropriate for a 16-node cluster), only a small fraction (< 10%)
of execution was spent on cluster overheads. In the smaller job,
however, virtually all (> 90%) of the execution time was consumed
by task scheduling and serialization/deserialization overheads.

Next, we evaluated the usefulness of our estimator by instru-
menting both a high-quality multi-core machine learning frame-
work [3] and our Scala/Spark codebase and executing SVM model
training runs at data scales ranging from 100 MB to 100 GB and
cluster sizes ranging from 1 to 64 Amazon c3.8xlarge EC2 in-
stances (each having 60GB of RAM). In this case, the goal of the
model is to predict the execution time for a single iteration of linear
SVM for binary classification via gradient descent. As such, the
input memory requirement (m in our estimator) is the size of the
dataset in memory (the product of its dimensions and the size of
a double-precision floating point number). The compute require-
ment, ¢, can be similarly defined. Because the CPU and memory
requirements are the same, the task is memory-bound (L;e,, = 1)
on this hardware. The network requirements are much smaller than
the CPU or memory requirements, but are proportional to the num-
ber of columns in the input dataset per machine.

Given these job requirements, we estimated the parameters of
our model (Equation 1) by fitting a regression to the observed data,
and found that the model explains a significant portion of the vari-
ance in the training data (cross-validated R?=80.1 %). We followed
a standard 5-fold cross validation procedure where 5 separate mod-
els were trained on 80% of the training data and results are pre-
sented on the remaining held-out 20%. Figure 5 demonstrates the

! While we have thus far discussed model quality, for the remainder of the
paper we report validation error, i.e., the inverse of quality, because it is
more commonly reported in practice.

Actual vs. Cross-Validated Estimate of
Time to fit an SVM Across Cluster and Data Sizes
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Figure 5: Measured time to run SVM for 20 iterations on small
to larger datasets at various cluster sizes. In red, the observed
time to run a particular configuration. In blue, cross-validated time
predicted by our estimator. One and two machine configurations
for the 100.0GB case not shown because the datasets do not fit in
cluster memory.

tightness of this fit visually, showing the estimated execution times
overlaid on the times observed in the experimental data. In addition,
the coefficients fit by regression matched our knowledge about the
hardware the jobs were run on and our experience with the over-
heads associated with Apache Spark’s scheduler. The & term maps
to 175ms of task overhead to launch a Spark job, the k; term in-
dicates an additional 6ms of overhead per cluster node (penalizing
very large clusters), while the k3 term maps to 30GB/s of memory
bandwidth on this memory-constrained job.

I00MB | 1GB | 10GB | 100 GB
Vowpal Wabbit 0.4 2.2 19.1 1445.1
MLIib 2.9 3.5 38.4 268.8
MLLib Cluster Size | 1 2 8 32

Table 2: A comparison of total machine x seconds spent on training
an SVM in an optimized single-node framework (Vowpal Wabbit)
and a data-parallel framework (MLIib). Once the problem can no
longer be solved in-memory on a single node, it is better to use the
data-parallel framework. The MLIib runs are the best times for the
cluster sizes we tried — from 1 to 32 nodes.

Finally, we used our model to validate the intuition that model
parallel execution only makes sense while the data fits in memory
on a single node. Table 2 reports execution times (in machines x
seconds) of the SVM model training runs described above. Note
that the per machine execution time for Vowpal Wabbit is signifi-
cantly lower than MLLib for datasets that fit comfortably in mem-
ory, indicating that a model parallel strategy is reasonable in this
regime. However, once data does not fit into a single node’s mem-
ory (i.e., 100GB datasets), Vowpal Wabbit must read from disk and
data-parallel execution strategies on the cluster make more sense.

We use cluster sizes advised by this model for the remainder of
the paper, rounding to the nearest power of two for simplicity of
interpretation.

4.2 Hyperparameter Tuning

We evaluated the strategies for model search with a variable model
fitting budget on five representative datasets for binary classifica-
tion taken from the UCI Machine Learning Repository [10]. The
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Figure 6: Hyperparameter tuning methods were compared across
several datasets with a variable number of function evaluations.
Classification error on a validation dataset is shown for each combi-
nation. HyperOpt and Auto-WEKA provide state of the art results,
while random search performs best of the classic methods.

model search task involved tuning four hyperparameters—Ilearning
rate, L2 regularization parameter, size of a random projection ma-
trix, and noise associated with the random feature matrix. The ran-
dom features are constructed according to the procedure outlined in
[41]. To accommodate the linear scale-up that comes with adding
random features, we down sample the number of data points for
each model training by the same proportion.

Our ranges for these hyperparameters were learning rate €
(1073,10"), regularization € (10~%,10%), projection size € (1 x
d,10 x d), and noise € (1074,102).

We evaluated seven tuning methods: grid search, random search,
Powell’s method, the Nelder-Mead method, Auto-WEKA, Hyper-
Opt, and Spearmint.

Each dataset was processed with each search method with a
varying number of model fittings, chosen to align well with a reg-
ular grid of n* points where we vary n from 2 to 5. This restriction
on a regular grid is only necessary for grid search but included for
comparability.

Results of the hyperparameter tuning experiments are presented
in Figure 6. Each tile represents a different dataset/tuning method
combination. Each bar within the tile represents a different budget
in terms of models trained. The height of each bar represents
classification error on the validation dataset.

With this experiment, we are looking for tuning methods that
converge to good models in as small a budget as possible. Of all
methods tried, HyperOpt and Auto-WEKA tend to achieve this cri-
teria best, but random search is not far behind. This result has been
noted by others [14], but intuitively this is because, absent other
information, routines for hyperparameter tuning can do no better
than random sampling at initialization. As with traditional statisti-
cal methods, one must collect a reasonable number of samples to
get a good idea of the shape of “model space.” In our regime, each
model is expensive to compute, so the resources to try many models
are limited. We chose to integrate HyperOpt into the larger experi-
ments because it performed slightly better than Auto-WEKA. Our
architecture fully supports additional search methods, and we ex-
pect to implement additional methods in our system over time.
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Figure 7: Here we show the effects of bandit resource allocation
on trained model performance. Model search completed in an aver-
age of 84% fewer passes over the training data than without bandit
allocation. Except in one case, validation error is nearly indistin-
guishable vs. the case where we do not employ the bandit strategy.

4.3 Bandit Resource Allocation

We evaluated the TUPAQ bandit resource allocation scheme on
the same datasets with random search and 625 total function
evaluations—the same as the maximum budget in the search ex-
periments. The key question to answer here was whether we could
identify and terminate poorly performing models early in the train-
ing process without significantly affecting overall search quality.

In Figure 7 we illustrate the effect that the TUPAQ bandit
strategy has on validation error as well as on the number of total
scans of the input dataset. Models were allocated 100 iterations
to converge on the correct answer. After the first 10 iterations,
models that were not within 50% of the classification error of the
best model trained so far were preemptively terminated. A large
percentage of models that show little or no promise of converging
to a reasonable validation error were eliminated.

In the figure, the top set of bars represents the number of scans
of the training data at the end of the entire search process. The
bottom set of bars represent the validation error achieved at the end
of the search procedure. The four scenarios evaluated—No Bandit,
Bandit, Budget, and Baseline—represent the results of the search
with no bandit allocation procedure (that is, each model is trained to
completion), the algorithm the bandit allocation procedure enabled,
a procedure with a limited budget (that is, exactly 10 scans per
model evaluated), and the baseline error rate for each dataset. The
Baseline scenario is a classifier that simply picks the most common
class for each dataset, which is a natural naive baseline which can
be trained by only looking at the training labels. Any reasonable
machine learning method should improve on this result.

There was an 84% decrease in total epochs across these five
datasets, and the validation error was roughly comparable to the
unoptimized strategy. On average, this method achieves 97% reduc-
tion in model error vs. not stopping early when compared with val-
idation error of a model which deterministically picks the most fre-
quent class. By comparison, the Budget strategy only achieves an
89% reduction in model error with a 90% decrease in total epochs
across these datasets, with higher variance. This relatively simple
resource allocation method presents opportunities for dramatic re-
ductions in runtime.

These results represent one point in the tradeoff space between
training everything to full budget and training every model with
only a very limited set of resources. While this heuristic seemed
to work well for the datasets mentioned in TUPAQ), it has already



D

Batch Size 100 1000 10000
1 826.44 599.60 553.59

2 1521.23 | 1214.37 701.07

5 2411.53 | 3037.97 992.01

8 5557.69 | 3502.79 | 1243.79

10 7148.53 | 4216.44 | 1769.12

15 7874.01 | 6260.14 | 2485.15

20 | 11881.18 | 8248.36 | 244598

(a) Models trained per hour for varying batch sizes and model
complexity. Data sizes ranged from 750MB (D=100) to 75GB
(D=10000).

D
Batch Size 100 1000 | 10000
1 1.00 1.00 1.00
2 1.84 2.02 1.26
5 291 5.06 1.79
8 6.72 5.84 2.24
10 8.64 7.03 3.19
15 9.52 | 10.44 4.48
20 | 14.37 | 13.75 4.41

(b) Speedup factor vs fastest sequential unbatched method for
varying batch size and model complexity.

Figure 8: Effect of batching is examined on 16 nodes with a syn-
thetic dataset. Speedups diminish but remain significant as models
increase in complexity.

inspired further study [27] and a more principled approach may be
present in future incarnations of the system.

4.4 Batching

To evaluate the batching optimization, we used a synthetic dataset
of 1,000,000 data points in various dimensionality. To illustrate the
effects of amortizing scheduler overheads vs. achieving machine
balance, these datasets vary in size between 750MB and 75GB.

We trained these models on a 16-node cluster of ¢c3.8xlarge
nodes on Amazon EC2, running Apache Spark 1.1.0. We trained a
logistic regression model on these data points via gradient descent
with no batching (batch size = 1) and batching up to 20 models at
once. We implemented both a naive version of this optimization—
with while loops evaluating Equation 3 over each model in each
task—as well as a more sophisticated version of this model which
makes BLAS calls to perform the computation described in equa-
tion 4. For the batching experiments, we ran each algorithm for 10
iterations over the input data.

In Figure 8 we show the total throughput of the system in terms
of models trained per hour varying the batch size and the model
complexity. For models trained on the smaller dataset, we see the
total number of models per hour can increase by up to a factor of
15 for large batch sizes. This effect should not be surprising, as the
actual time spent computing is on the order of milliseconds and vir-
tually all the time goes to scheduling task execution. In its current
implementation, due to these scheduling overheads, this implemen-
tation of the algorithm under Spark will not outperform a single
machine implementation for a dataset this small. As discussed ear-
lier, data sets this small should likely be trained on a single node.
We discuss an alternative execution strategy that would better uti-
lize cluster resources for situations where the input dataset is small
in Section 7.

At the other end of the spectrum in terms of data size and
model complexity, we see the effects of scheduler delay start to
lessen, and we maximize throughput in terms of models per hour
at batch size 15. In Figure 9 we compare two different strategies of
implementing batching—one via the naive method, and the other

Comparison of TuPAQ's
Matrix—Oriented Batching vs. the Naive Method
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Figure 9: Leveraging high performance linear algebra libraries for
batching leads to substantial speedups vs. naive methods. The dot-
ted line shows models per hour via the fastest sequential strategy,
and batching yields a 5x improvement.

via the more sophisticated method—computing gradient updates
via BLAS matrix multiplication. For small batch sizes, the naive
implementation actually performs faster than the BLAS optimized
one. The matrix-based implementation easily dominates the naive
implementation as batch size increases because the algorithm is
slightly more cache efficient and requires only a single pass through
the input data. The overall speedup due to batching with matrix
multiplication is nearly a factor of 5.

A downside to batching in the context of model search is that
the system may gain information by trying models sequentially that
could inform subsequent models that is not incorporated in later
runs. By fixing our batch size to a relatively small constant (O(10))
we are able to balance this tradeoff.

5. Pautting It All Together

Now that we have examined each point in the model search design
space individually, we evaluate the end-to-end performance of the
TUPAQ procedure and show that the techniques evaluated in the
previous section yield a 10x increase in raw throughput (models
trained per unit time) while finding models that have as good or
higher quality than those found with the baseline approach. We
evaluate TUPAQ on very large scale data problems, at cluster sizes
ranging from 16 to 128 nodes and datasets ranging from 30GB
to over 3TB in size. These sizes represent the size of the actual
features the model was trained on.

5.1 Platform Configuration

We evaluated TUPAQ on Linux machines running under Amazon
EC2, instance type c3.8xlarge. These machines were config-
ured with Redhat Enterprise Linux, Scala 2.10, version 1.9 of the
Anaconda python distribution from Continuum Analytics[1], and
Apache Spark 1.1.0. Additionally, we made use of Hadoop 1.0.4
configured on local disks as our data store for the large scale ex-
periments. Total runtime would have been similar if we had used
a cloud provider’s file system infrastructure, because the datasets
used fit comfortably into cluster memory and are cached after first
use—that is, most of the time in model search goes into making hun-
dreds or thousands of passes over the dataset in memory. Finally,
we use MLI as of commit 3e164a2d8c as a basis for TUPAQ. As
with any complex system, proper configuration of the platform to
execute a given workload is necessary and Apache Spark is no ex-
ception. Specifically—choosing a correct BLAS implementation,
configuring Spark to use it, and picking the right balance of execu-
tor threads per executor process took considerable effort. This con-
figuration is generally applicable to BLAS-heavy, machine learning
workloads and shouldn’t need to change appreciably given a new



dataset. The complete system involves a Scala codebase built on
top of Apache Spark, MLIib, and MLI.

Tuning Method .
Optimization Grid | Random | HyperOpt
None | 104.7 100.5 103.9
Bandits Only 313 29.7 50.5
Batching Only 313 32.1 31.8
All (TUPAQ) 11.5 10.4 15.8

Figure 10: Learning time in minutes for a 128-configuration bud-
get across various optimization levels for ImageNet data. Unopti-
mized, sequential execution takes over 100 minutes regardless of
search procedure used. Fully optimized execution can be an order
of magnitude faster with TUPAQ.

5.2 Experimental Setup and Datasets

We used two datasets with two different learning objectives to eval-
uate our system at scale. The first dataset is a pre-featurized version
of the ImageNet 2010 dataset [12], featurized using a procedure at-
tributed to [18]. This process yields a dataset with 160,000 features
and approximately 1,200,000 examples, or 1.4 TB of raw image
features. In our 16-node experiments we downsample to the first
16,000 of these features and use 20% of the base dataset for model
training, which is approximately 30GB of data. In the 128-node
experiments we train on the entire dataset. We explore five hyper-
parameters here—one parameter for the classifier we train—SVM
or logistic regression, as well as learning rate and L2 Regulariza-
tion parameters for each matching the above experiments. We allot
a budget of 128 model fittings to the problem, each with 100 iter-
ations over the training data. The cluster sizes are informed by the
estimator presented in Section 3. While this process is not yet fully
automated, future iterations of the system will use models similar
to those described here to automatically determine the cluster size.

For this dataset, we search for a model capable of discriminat-
ing plants from non-plants given these image features. The images
are generally in 1000 base classes, but these classes form a hier-
archy and thus can be mapped into plant vs. non-plant categories.
Baseline error for this modeling task is 14.2%, which is a bit more
skewed than the previous examples. Our goal is to reduce valida-
tion error as much as possible, but our experience with this particu-
lar dataset has put a lower bound on validation error to around 9%
accuracy with linear classification models.

The second dataset is a pre-featurized version of the TIMIT
Acoustic-Phonetic continuous speech corpus [20], featurized ac-
cording to the procedure described in [42]—yielding roughly
2,300,000 examples each having 440 features. While this dataset is
quite small, in order to achieve strong performance on this dataset,
other researchers have noted that Kernel Methods offer the best
performance [25]. Following the process of [41], this involves ex-
panding the feature space of the dataset by nearly two orders of
magnitude, yielding a dataset that has 204,800 features, or ap-
proximately 3.4 TB. We explore five hyperparameters here—one
parameter describing the distribution family of the random projec-
tion matrix—in this case Cauchy or Gaussian, the scale and skew
of these distributions, as well as the L2 regularization parameter for
this model, which will have a different setting for each distribution.

A necessary precondition to supporting speech-to-text systems,
this dataset provides a examples of labeled phonemes, and our
challenge is to find a model capable of labeling phonemes given
some input audio. Baseline error for this modeling task is 95%, and
state-of-the-art performance on this dataset is 35% error [25].

5.3 Optimization Effects

In Figure 10 we can see the effects of batching and bandit allocation
on the throughput of the model search process for the ImageNet

[ Search Method | Search Time (m) | Test Error (%) ]

Grid (unoptimized) 104.7 11.05

Random (optimized) 10.4 11.41

HyperOpt (optimized) 15.8 10.38
Figure 11: Search time and best achieved model error for training

128 models on the 16-node ImageNet task. Both optimized Hyper-
Opt and Random search perform significantly faster than unopti-
mized Grid search, while HyperOpt yields the best model for this
image classification problem.
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Figure 12: Performance of TUPAQ on large-scale problems using
a 128-node cluster. (left) Training a model on a 1.2M X 160K
dataset takes 90 minutes. (right) Training a multiclass phoneme
classification model on 3.4 TB of TIMIT features yields accuracy
approaching that of state of the art models in 3.5 hours.

dataset. Specifically, though it takes nearly 2 hours to fit all 128
models on the 30GB dataset on the 16 node cluster without any
optimizations, with the bandit rule and batching turned on, the
system takes just 10 minutes to train 128 random search models to
completion. This is a 10x speedup in the case of random search and
a 7x speedup in the slightly slower case of HyperOpt. HyperOpt
takes a bit longer because it does a good job of picking points that
do not need to be terminated preemptively by the bandit strategy.
That is, more of the models that HyperOpt selects are trained to
completion than random search. Accordingly, HyperOpt arrives at
a better model than random search given the same training budget.

Turning our attention to statistical performance illustrated in
Figure 11, we can see that on this dataset HyperOpt converges to
the best answer in just 15 minutes, while random search converges
to within 5% of the best test error achieved by grid search a full
order of magnitude faster than the baseline approach.

5.4 Large Scale Speech and Vision

Because we employ data-parallel versions of our learning algo-
rithms, TUPAQ readily scales to multi-terabyte datasets that are
an order of magnitude more complicated with respect to the fea-
ture space. For the ImageNet experiments, we used the same pa-
rameter search settings used with the smaller dataset, but we fixed
the budget to 32 models to train. Our results are illustrated in
Figure 12(top). Using the fully optimized HyperOpt based search
method, we are able to search this space in under 90 minutes,
and the method achieves a validation error of 8.2% in that time.
In contrast, training all 32 models to completion using sequential
grid search would have taken over 8 hours and cost upwards of
$2000.00—an expense we chose not to incur.

Turning our attention to an entirely different application area,
we demonstrate the ability of the system to scale to a multi-
terabyte, multi-class phoneme classification problem. Here, a
multi-class kernel SVM was trained on 2,251,569 data points
with 204,800 features, in 147 distinct classes. As shown in Fig-
ure 12(bottom), the system is capable of getting to a model with
39.5% test error—approaching that of state-of-the-art results in
speech-to-text modeling—in just 3.5 hours. For this dataset, train-



ing the entire budget to completion without batching or bandit
allocation would have taken 35 hours.

6. Related Work

There has been a recent proliferation of systems designed for
low-level, ad-hoc distributed predictive analytics, e.g., Apache
Spark [48], GraphLab [22], Stratosphere [8], but few provide tool-
ing for searching over a large space of predictive models.

In terms of system-level optimization, both Kumar et. al. [32]
and Canny et. al. [17] discuss batching as an optimization for
speeding up machine learning systems. However, Kumar et. al. dis-
cuss this technique in the context of automatic feature selection, an
important problem but distinct from model search, while Canny et.
al. explore this technique in the context of parameter exploration,
model tuning, ensemble methods and cross validation. We explore
the impact of batching in a distributed setting at greater depth in
this work, and present a novel application of this technique to the
model search problem.

Herodotu et. al. [23] explore performance modeling for MapRe-
duce jobs on Hadoop clusters in great depth, but their model re-
quires extensive profiling in order to accurately estimate job com-
pletion time. In contrast, our estimator requires more input from
an algorithm developer and is focused on predicting a reasonable
cluster size for a given machine learning model.

In the data mining and machine learning communities, most
related to TUPAQ is Auto-WEKA [45]. As the name suggests,
Auto-WEKA aims to automate the use of Weka [5] by applying re-
cent derivative-free optimization algorithms, in particular Sequen-
tial Model-based Algorithm Configuration (SMAC) [26], to the hy-
perparameter tuning problem. In fact, their proposed algorithm is
one of the many optimization algorithms we use as part of TU-
PAQ. However, in contrast to TUPAQ, Auto-WEKA focuses on
single node performance and does not optimize the parallel exe-
cution of algorithms. Moreover, Auto-WEKA treats algorithms as
black boxes to be executed and observed, while our system takes
advantage of knowledge of algorithm execution from both a statis-
tical and physical perspective. Aside from SMAC, various methods
for derivative-free optimization and hyperparameter tuning have
been proposed. We discuss and evaluate several of these methods
in Sections 3 and 4, and two of these methods are used in TUPAQ.

With respect to the bandit optimization discussed in Section 3,
both Agarwal et. al. [6] and Jamieson et. al. [27] have discussed
bandit-like techniques for pruning during model search. Agarwal
et. al., however, require explicit forms of the convergence rate be-
havior of intermediate results, which may be difficult to calcu-
late and thus make their work difficult to implement in practice.
Jamieson et. al. drew inspiration from TUPAQ when formulating
their theoretically principled algorithm, and versions of this may
be included in future versions of the system.

Weka [5], MLIib [36], Vowpal Wabbit [3], Hyracks [15] and
Mabhout [2] are notable open-source ML libraries. These systems
(all distributed with the exception of Weka), along with proprietary
projects such as SystemML [21], all focus on training single models
rather than model search.

While much recent work on image classification and speech
recognition has been done in the context of “Deep Learning” [24,
30], our focus is on learning methods that scale horizontally for
efficient use of cluster resources, which can be difficult with Deep
Learning methods.

7. Future Work and Conclusions

In this work, we have described a system for large scale model
search which leverages both logical and physical improvements to
provide faster search over conventional methods. Specifically, by

combining better model search methods, bandit methods, batching
techniques, and a cost-based cluster sizing estimator, TUPAQ can
find high quality models built on very large datasets an order of
magnitude more efficiently than than the baseline approach.

Several avenues exist for further exploration, and we note two
broad classes of natural extensions to TUPAQ.

Machine learning extensions. From an accuracy point of view,
as additional model families are added to MLbase, TUPAQ could
naturally lend itself to the construction of ensemble models at
training time—effectively for free. That is, while TUPAQ discards
all but the best model as part of its training process, the process
of model training is expensive, and the results can potentially be
reused for better performance. Ensembles over a diverse set of
methods are particularly known to improve predictive performance,
but as more models and more hyperparameter configurations are
considered, model search systems run the risk of overfitting to the
validation data, and accounting for this issue, e.g., by controlling
the false discovery rate [11], would become especially important.

Systems extensions. Multi-stage ML pipelines, in which the ini-
tial data is transformed one or more times before being fed into a
supervised learning algorithm, are common in most practical ML
systems. Since each stage will likely introduce additional hyperpa-
rameters, model search becomes more challenging in the pipeline
setting. In a regime where a dataset is relatively small but users
still have access to cluster resources, there can be benefits (both in
terms of simplicity and speed) to broadcast the data to each worker
machine and train various models locally on each worker. Model
search could be made more efficient by considering the tradeoffs
between these regimes. Training models on subsets of data can ef-
ficiently yield noisy evaluations of candidate models, though care-
ful subsampling is required to yield high-quality and trustworthy
models [7]. Akin to traditional query planners, model search sys-
tems can learn from knowledge of the data they store and historical
workloads. A model search system could store search statistics to
tailor its search strategy to the types of models have been used for
a user’s data in the past. The evaluation of these techniques in TU-
PAQ will be natural once the system has been exposed to a larger
set of workloads.
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