
Universal Packet Scheduling

Radhika Mittal

UC Berkeley

radhika@eecs.berkeley.edu

Rachit Agarwal

UC Berkeley

ragarwal@berkeley.edu

Sylvia Ratnasamy

UC Berkeley

sylvia@eecs.berkeley.edu

Scott Shenker

UC Berkeley, ICSI

shenker@icsi.berkeley.edu

Abstract
In this paper we address a seemingly simple question: Is there
a universal packet scheduling algorithm? More precisely, we
analyze (both theoretically and empirically) whether there is
a single packet scheduling algorithm that, at a network-wide
level, can match the results of any given scheduling algorithm.
We find that in general the answer is “no”. However, we show
theoretically that the classical Least Slack Time First (LSTF)
scheduling algorithm comes closest to being universal and
demonstrate empirically that LSTF can closely, though not
perfectly, replay a wide range of scheduling algorithms in
realistic network settings. We then evaluate whether LSTF can
be used in practice to meet various network-wide objectives
by looking at three popular performance metrics (mean FCT,
tail packet delays, and fairness); we find that LSTF performs
comparable to the state-of-the-art for each of them.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design

General Terms
Algorithms, Design, Experimentation, Performance

1 Introduction
There is a large and active research literature on novel packet
scheduling algorithms, from simple schemes such as priority
scheduling [27], to complicated mechanisms to achieve fair-
ness [12, 24, 28], to schemes that help reduce tail latency [11]
or flow completion time [3], and this short list barely scratches
the surface of past and current work. In this paper we do not
add to this impressive collection of algorithms, but instead
ask if there is a single universal packet scheduling algorithm
that could obviate the need for new ones.

We can define a universal packet scheduling algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
HotNets ’15 November 16–17 2015, Philadelphia, PA USA
Copyright 2015 ACM. ISBN 978-1-4503-4047-2/15/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2834050.2834085.

(hereafter UPS) in two ways, depending on our viewpoint on
the problem. From a theoretical perspective, we call a packet
scheduling algorithm universal if it can replay any schedule
(the set of times at which packets arrive to and exit from the
network) produced by any other scheduling algorithm. This is
not of practical interest, since such schedules are not typically
known in advance, but it offers a theoretically rigorous defini-
tion of universality that (as we shall see) helps illuminate its
fundamental limits (i.e., which scheduling algorithms have
the flexibility to serve as a UPS, and why).

From a more practical perspective, we say a packet schedul-
ing algorithm is universal if it can achieve different desired
performance objectives (such as fairness, reducing tail latency,
minimizing flow completion times). In particular, we require
that the UPS should match the performance of the best known
scheduling algorithm for a given performance objective.

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic ques-
tions. If there exists no UPS then we should expect to design
new scheduling algorithms as performance objectives evolve.
Moreover, this would make a strong argument for switches
being equipped with programmable packet schedulers so that
such algorithms could be more easily deployed (as argued
in [29]; in fact, it was the eloquent argument in this paper that
caused us to initially ask the question about universality).

However, if there is indeed a UPS, then it changes the lens
through which we view the design and evaluation of packet
scheduling algorithms: e.g., rather than asking whether a
new scheduling algorithm meets a performance objective, we
should ask whether it is easier/cheaper to implement/config-
ure than the UPS (which could also meet that performance
objective). Taken to the extreme, one might even argue that
the existence of a (practical) UPS greatly diminishes the need
for programmable scheduling hardware.1 Thus, while the rest
of the paper occasionally descends into scheduling minutiae,

1Note that the case for programmable hardware as made in recent
work on P4 and the RMT switch [7, 8] remains: these systems target
programmability in header parsing and in how a packet’s processing
pipeline is defined (i.e., how forwarding ‘actions’ are applied to
a packet). The P4 language does not currently offer primitives for
scheduling and, perhaps more importantly, the RMT switch does not
implement a programmable packet scheduler; we hope our results
can inform the discussion on whether and how P4/RMT might be
extended to support programmable scheduling.

1

the question we are asking has important practical (and in-
triguing theoretical) implications.

This paper starts from the theoretical perspective, defining
a formal model of packet scheduling and our notion of re-
playability in §2. While we can prove that there is no UPS,
we prove that Least Slack Time First (LSTF) [19] comes as
close as any scheduling algorithm to achieving universality,
and empirically (via simulation) find that LSTF can closely
approximate the schedules of many packet scheduling al-
gorithms. We then take a more practical perspective in §3,
finding (via simulation) that LSTF is comparable to the state
of the art in achieving various performance objectives. We
discuss some related work in §4 and end with a discussion of
open questions and future work in §5.

2 Theory: Replaying Schedules
2.1 Definitions and Overview
Network Model: We consider a network of store-and-forward
routers connected by links. The input load to the network is
a fixed set of packets {p 2 P}, their arrival times i(p) (i.e.,
when they reach the ingress router), and the path path(p)
each packet takes from its ingress to its egress router. We
assume no packet drops, so all packets eventually exit. Ev-
ery router executes a nonpreemptive scheduling algorithm
which need not be work-conserving or deterministic and may
even involve oracles that know about future packet arrivals.
Different routers in the network may use different schedul-
ing logic. For each incoming load {(p, i(p), path(p))}, a
collection of scheduling algorithms {Aa} (router a imple-
ments algorithm Aa) will produce a set of packet output times
{o(p)} (the time a packet p exits the network). We call the
set {(path(p), i(p),o(p))} a schedule.
Replaying a Schedule: Applying a different collection of
scheduling algorithms {A0

a} to the same set of packets
{(p, i(p), path(p))} produces a new set of output times
{o0(p)}. We say that {A0

a} replays {Aa} on this input if
and only if 8p 2 P, o0(p) o(p).2

Universal Packet Scheduling Algorithm: We say a sched-
ule {(path(p), i(p),o(p))} is viable if there is at least one
collection of scheduling algorithms that produces that sched-
ule. We say that a scheduling algorithm is universal if it can
replay all viable schedules. While we allowed significant gen-
erality in defining the scheduling algorithms that a UPS seeks
to replay (demanding only that they be nonpreemptive), we
insist that the UPS itself obey several practical constraints
(although we allow it to be preemptive for theoretical analysis,
but then quantitatively analyze the nonpreemptive version in
§2.3):3 We impose three practical constraints on a UPS:

2We allow the inequality because, if o0(p) < o(p), one can delay
the packet upon arrival at the egress node to ensure o0(p) = o(p).
3The issue of preemption is somewhat complicated. Allowing the
original scheduling algorithms to be preemptive allows packets to be
fragmented, which then makes replay extremely difficult even in sim-
ple networks (with store-and-forward routers). However, disallowing
preemption in the candidate UPS overly limits the flexibility and
would again make replay impossible even in simple networks. Thus,

(1) Uniformity and Determinism: A UPS must use the same
deterministic scheduling logic at every router.
(2) Limited state used in scheduling decisions: We restrict
a UPS to using only (i) packet headers, and (ii) static infor-
mation about the network topology, link bandwidths, and
propagation delays. It cannot rely on oracles or other external
information. However, it can modify the header of a packet
before forwarding it (resulting in dynamic packet state [32]).
(3) Limited state used in header initialization: We assume
that the header for a packet p is initialized at its ingress node.
The additional information available to the ingress for this
initialization is limited to: (i) o(p) from the original schedule
and (ii) path(p). Later, we extend the kinds of information
the header initialization process can use, and find that this is
a key determinant in whether one can find a UPS.

We make three observations about the above model. (i) It
assumes greater capability at the edge than in the core, in
keeping with common assumptions that the edge is capable
of greater processing complexity, exploited by many archi-
tectural proposals [9, 25, 31]. (ii) When initializing a packet
p’s header, the ingress can only use the input time, output
time and the path information for p itself, and must be obliv-
ious [15] to the corresponding attributes for other packets
in the network. (iii) The key source of impracticality in our
model is the assumption that the output times o(p) are known
at the ingress. However, a different interpretation of o(p) sug-
gests a practical application of replayability (and thus our
results): if we assign o(p) as the “desired” output time for
every packet p, then the existence of a UPS tells us that if
these goals are viable then the UPS will be able to meet them.

2.2 Theoretical Results
For brevity, in this section we only summarize our key results.
Interested readers can find detailed proofs in [21].
Existence of a UPS under omniscient initialization: Sup-
pose we give the header-initialization process extensive in-
formation in the form of times o(p,a) which represent when
p was forwarded by router a in the original schedule. We
can then insert an n-dimensional vector in the header of every
packet p, where the ith element contains o(p,ai), ai being the
ith hop in path(p). Every time a packet arrives at a router, the
router can pop the value at the head of the vector in its header
and use that as its priority (earlier values of output times get
higher priority). This can perfectly replay any viable schedule,
which is not surprising, as having such detailed knowledge of
the internal scheduling of the network is tantamount to know-
ing the scheduling algorithm itself. For reasons discussed
previously, our definition limited the information available to
the output time from the network as a whole, not from each
individual router; we call this black-box initialization.

we take the seemingly hypocritical but only theoretically tractable
approach and disallow preemption in the original scheduling al-
gorithms but allow preemption in the candidate UPS. In practice,
when we care only about approximately replaying schedules, the
distinction is of less importance, and we simulate LSTF in the non-
preemptive form.

2

Nonexistence of a UPS under black-box initialization: We
can prove by counter-example that there is no UPS under the
conditions stated in §2.1. The counter-example is available
in [21] (and we provide some intuition later in this section).
Given this result, we now ask how close can we get to a UPS?
Natural candidates for a near-UPS: Simple priority schedul-
ing 4 can reproduce all viable schedules on a single router,
so it would seem to be a natural candidate for a near-UPS.
However, for multihop networks it may be important to make
the scheduling of a packet dependent on what has happened
to it earlier in its path. For this, we consider Least Slack Time
First (LSTF) [19]. In LSTF, each packet p carries its slack
value in the packet header, which is initialized to slack(p) =
(o(p)� i(p)� tmin(p,src(p),dest(p))) at the ingress 5 . The
slack value, therefore, indicates the maximum queueing time
that the packet could tolerate without violating the replay
condition. Each router, then, schedules the packet which has
the least remaining slack at the time when its last bit is trans-
mitted. Before forwarding the packet, the router overwrites
the slack value in the packet’s header with its remaining slack
(i.e., the previous slack time minus how much time it waited
in the queue before being transmitted). 6

Key Results: Our analysis shows that the difficulty of replay
is determined by the number of congestion points, where a
congestion point is defined as a node where a packet is forced
to “wait” during a given schedule. Our theorems show the
following key results:
1. Priority scheduling can replay all viable schedules with
no more than one congestion point per packet, and there are
viable schedules with no more than two congestion points per
packet that it cannot replay.
2. LSTF can replay all viable schedules with no more than two
congestion points per packet, and there are viable schedules
with no more than three congestion points per packet that it
cannot replay.
3. There is no scheduling algorithm (obeying the aforemen-
tioned constraints on UPSs) that can replay all viable sched-
ules with no more than three congestion points per packet,
and the same holds for larger numbers of congestion points.
Main Takeaway: LSTF is closer to being a UPS than simple
priority scheduling, and no other candidate UPS can do better
in terms of handling more congestion points.
Intuition: The reason why LSTF is superior to priority
scheduling is clear: by carrying information about previous
delays in the packet header (in the form of the remaining slack
value), LSTF can “make up for lost time” at later congestion
points, whereas for priority scheduling packets with low pri-
4Simple priority scheduling is where the ingress assigns priority
values to the packets and the routers simply schedule packets based
on these static priority values.
5where src(p) is the ingress of p; dest(p) is the egress of p;
tmin(p,a,b) is the time p takes to go from router a to router b
in an empty network.
6There are other ways to implement this algorithm, such as using
additional state in the routers and having a static packet header as in
Earliest Deadline First (EDF), but here we chose to use an approach
with dynamic packet state.

Topology Link
Utilization

Scheduling
Algorithm

Fraction of
packets overdue
Total > T

I2 1Gbps-10Gbps 70% Random 0.0021 0.0002

I2 1Gbps-10Gbps
10%

Random
0.0007 0.0

30% 0.0281 0.0017
50% 0.0221 0.0002
90% 0.0008 4⇥10�6

I2 1Gbps-1Gbps 70% Random 0.0204 8⇥10�6

I2 10Gbps-10Gbps 0.0631 0.0448

RocketFuel 70% Random 0.0246 0.0063
Datacenter 0.0164 0.0154

I2 1Gbps-10Gbps 70%

FIFO 0.0143 0.0006
FQ 0.0271 0.0002
SJF 0.1833 0.0019

LIFO 0.1477 0.0067
FQ/FIFO+ 0.0152 0.0004

Table 1: LSTF Replayability Results across various scenarios. T
represents the transmission time of the bottleneck link.

ority might get repeatedly delayed (and thus miss their target
output times). LSTF can always handle up to two congestion
points per packet because, for this case, each congestion point
is either the first or the last point where the packet waits; we
can prove that any extra delay seen at the first congestion
point during the replay can be naturally compensated for at
the second. With three or more congestion points there is no
way for LSTF (or any other packet scheduler) to know how
to allocate the slack among them; one can create counter-
examples where unless the scheduling algorithm makes pre-
cisely the right choice in the earlier congestion points, at least
one packet will miss its target output time.

2.3 Empirical Results
The previous section clarified the theoretical limits on a per-
fect replay. Here we investigate, via ns-2 simulations [2], how
well (a nonpreemptable version of) LSTF can approximately
replay schedules in realistic networks.
Experiment Setup: Default. We use a simplified Internet-2
topology [1], identical to the one used in [22] (consisting of 10
routers and 16 links in the core). We connect each core router
to 10 edge routers using 1Gbps links and each edge router is
attached to an end host via a 10Gbps link.7 The number of
hops per packet is in the range of 4 to 7, excluding the end
hosts. We refer to this topology as I2:1Gbps-10Gbps. Each
end host generates UDP flows using a Poisson inter-arrival
model, and our default scenario runs at 70% utilization. The
flow sizes are picked from a heavy-tailed distribution [4, 5].
Since our focus is on packet scheduling, not dropping policies,
we use large buffer sizes that ensure no packet drops.
Varying parameters. We tested a wide range of experimen-
tal scenarios and present results for a small subset here: (1)
the default scenario with network utilization varied from 10-
90% (2) the default scenario but with 1Gbps link between
the endhosts and the edge routers (I2:1Gbps-1Gbps) and
7We use higher than usual access bandwidths for our default setup to
increase the stress on the schedulers in the routers. We also present
results for smaller access bandwidths, which have better replay
performance.

3

Figure 1: Ratio of queuing delay with varying packet scheduling
algorithms, on the default Internet-2 topology at 70% utilization.

with 10Gbps links between the edge routers and the core
(I2:10Gbps-10Gbps) and (3) the default scenario applied to
two different topologies, a bigger Rocketfuel topology [30]
(with 83 routers and 131 links in the core) and a full bisection
bandwidth datacenter fat-tree topology from [3] (with 10Gbps
links). Note that our other results were generally consistent
with those presented here.
Scheduling algorithms. Our default case, which we expected
to be hard to replay, uses completely arbitrary schedules pro-
duced by a random scheduler (which picks the packet to be
scheduled randomly from the set of queued up packets). We
also present results for more traditional packet scheduling
algorithms: FIFO, LIFO, fair queuing [12], SJF (shortest job
first using priorities), and a scenario where half of the routers
run FIFO+ [11] and the other half run fair queuing.
Evaluation Metrics: We consider two metrics. First, we mea-
sure the fraction of packets that are overdue (i.e., which do
not meet the original schedule’s target). Second, to capture
the extent to which packets fail to meet their targets, we mea-
sure the fraction of packets that are overdue by more than a
threshold value T , where T is one transmission time on the
bottleneck link (⇡ 12µs for 1Gbps). We pick this value of
T both because it is sufficiently small that we can assume
being overdue by this small amount is of negligible practical
importance, and also because this is the order of violation
we should expect given that our implementation of LSTF is
non-preemptive.
Results: Table 1 shows the simulation results for LSTF replay
for various scenarios, which we now discuss.
(1) Replayability. Consider the column showing the fraction
of packets overdue. In all but three cases (we examine these
shortly) over 97% of packets meet their target output times.
In addition, the fraction of packets that did not arrive within
T of their target output times is much smaller; e.g., even in
the worst case of SJF scheduling (where 18.33% of packets
failed to arrive by their target output times), only 0.19% of
packets are overdue by more than T . Most setups perform
substantially better: e.g., in our default setup with Random
scheduling, only 0.21% of packets miss their targets and only
0.02% are overdue by more than T . Hence, we conclude
that even without preemption LSTF achieves good (but not
perfect) replayability under a wide range of scenarios.
(2) Effect of varying network utilization. The second row
in Table 1 shows the effect of varying network utilization. We
see that at 10% utilization, LSTF achieves exceptionally good
replayability with a total of only 0.07% of packets overdue.

Replayability deteriorates as utilization is increased to 30%
but then (surprisingly) improves again as utilization increases.
This improvement occurs because with increasing utilization,
the amount of queuing (and thus the average slack across
packets) in the original schedule also increases, providing
more room for slack re-adjustments when packets wait longer
at queues seen early in their paths during the replay. We
observed this trend in all our experiments though the exact
location of the “low point” varied across settings.
(3) Effect of varying link bandwidths. The third row shows
the effect of changing the relative values of access vs. core
links. We see that while decreasing access link bandwidth
(I2:1Gbps-1Gbps) resulted in a much smaller fraction of pack-
ets being overdue by more than T (0.0008%), increasing the
edge-to-core link bandwidth (I2:10Gbps-10Gbps) resulted in
a significantly higher fraction (4.48%). For I2:1Gbps-1Gbps,
packets are paced by the endhost link, resulting in few conges-
tion points thus improving LSTF’s replayability. In contrast,
with I2:10Gbps-10Gbps, both the access and edge links have
a higher bandwidth than most core links; hence packets (that
are no longer paced at the endhosts or the edges) arrive at the
core routers very close to one another and the effect of one
packet being overdue cascades over to the following packets.
(4) Effect of varying topology. The fourth row in Table 1
shows our results using different topologies. LSTF performs
well in both cases: only 2.46% (Rocketfuel) and 1.64% (data-
center) of packets fail replay. These numbers are still some-
what higher than our default case. The reason for this is simi-
lar to that for the I2:10Gbps-10Gbps topology – all links in the
datacenter topology are set to 10Gbps, while half of the core
links in the Rocketfuel topology are set to have bandwidths
smaller than the access links.
(5) Varying Scheduling Algorithms. Row five in Table 1
shows LSTF’s replay results for different scheduling algo-
rithms. We see that LSTF performs well for FIFO, FQ, and
even the combination of FIFO+ and FQ; with fewer than
0.06% of packets being overdue by more than T . SJF and
LIFO fare worse with 18.33% and 14.77% of packets failing
replay (although only 0.19% and 0.67% of packets are over-
due by more than T respectively). The reason stems from two
factors: (1) for these algorithms a larger fraction of packets
have a very small slack value (as one might expect from the
scheduling logic which produces a larger skew in the slack
distribution), and (2) for these packets with small slack values,
LSTF without preemption is often unable to “compensate” for
misspent slack that occurred earlier in the path. To verify this
intuition, we extended our simulator to support preemption
and repeated our experiments: with preemption, the fraction
of packets that failed replay dropped to 0.24% (from 18.33%)
for SJF and to 0.25% (from 14.77%) for LIFO.
(6) End-to-end (Queuing) Delay. Our results so far evalu-
ated LSTF in terms of measures that we introduced to test
universality. We now evaluate LSTF using the more tradi-
tional metric of packet delay, focusing on the queueing delay
a packet experiences. Figure 1 shows the CDF of the ratios of

4

Figure 2: Mean FCT bucketed by flow size for the Internet2 topology
with 70% utilization. The legend indicates the mean FCT across all
flows.

the queuing delay that a packet sees with LSTF to the queuing
delay that it sees in the original schedule, for varying packet
scheduling algorithms. We were surprised to see that most of
the packets actually have a smaller queuing delay in the LSTF
replay than in the original schedule. This is because LSTF
eliminates “wasted waiting”, in that it never makes packet A
wait behind packet B if packet B is going to have significantly
more waiting later in its path.
(7) Comparison with Priorities. To provide a point of com-
parison, we did a replay using simple priorities for our default
scenario, where the priority for a packet p is set to o(p)
(which seemed most intuitive to us). As expected, the result-
ing replay performance is much worse than that with LSTF:
21% packets are overdue in total (vs 0.21% with LSTF), with
20.69% being overdue by more than T (vs 0.02% with LSTF).
Summary: We observe that, in almost all cases, less than
1% of the packets are overdue with LSTF by more than T .
The replay performance initially degrades and then starts im-
proving as the network utilization increases. The distribution
of link speeds has a bigger influence on the replay results
than the scale of the topology. Replay performance is better
for scheduling algorithms that produce a smaller skew in the
slack distribution. LSTF replay performance is significantly
better than simple priorities replay performance, with the
most intuitive priority assignment.

3 Practical: Achieving Various Objectives
In this section we look at how LSTF can be used in practice
to meet three popular network-wide objectives: minimizing
mean flow completion time, minimizing tail packet delays,
and fairness. Instead of using the knowledge of a given previ-
ous schedule (as done in §2.3), we now use certain heuristics
(described below) to assign the slacks.

For each objective, we first describe the slack initialization
heuristic and then present some ns-2 simulation results on
how LSTF performs relative to the state-of-the-art scheduling
algorithm on the I2 1Gbps-10Gbps topology running at 70%
average utilization.8 The switches have finite buffers (packets
with the highest slack are dropped when the buffer is full).

3.1 Mean Flow Completion Time
While there have been several proposals on how to minimize
flow completion time (FCT) via the transport protocol [13,22],
8We have run our simulations in a wide variety of scenarios and find
similar results to what we present here.

Figure 3: Tail packet delays for LSTF compared to FIFO. The mean
and 99%ile packet delay values are indicated in the legend.

here we focus on scheduling’s impact on FCT. In [3] it is
shown that (i) Shortest Remaining Processing Time (SRPT)
is close to optimal for minimizing the mean FCT and (ii)
Shortest Job First (SJF) produces results similar to SRPT for
realistic heavy-tailed distribution. Thus, these are the two
algorithms we use as benchmarks.
Slack Initialization: The slack for a packet p is initialized
as slack(p) = f s(p)⇤D, where f s(p) is the size of the flow
to which the packet p belongs and D is a value much larger
than the delay seen by any packet in the network (D = 1 sec
in our simulations).
Evaluation: We use TCP flows with a 5MB buffer in each
router (which is equal to the average delay-bandwidth product
for the Internet2 topology we are using). Figure 2 compares
LSTF with FIFO, SJF and SRPT with starvation prevention
as in [3] 9. SJF has a slightly better performance than SRPT,
both resulting in a significantly lower mean FCT than FIFO.
LSTF’s performance is nearly the same as SJF.

3.2 Tail Packet Delays
Clark et. al. [11] proposed the FIFO+ algorithm for mini-
mizing the tail packet delays in multi-hop networks, where
packets are prioritized at a router based on the amount of
queuing delay they have seen at their previous hops.
Slack Initialization: All incoming packets are initialized
with the same slack value (1 sec in our simulations). This
makes LSTF identical to FIFO+.
Evaluation: We compare our LSTF policy (which, with the
above slack initialization, is identical to FIFO+) with FIFO.
We present our results using UDP flows, which ensures that
the input load remains the same in both cases, allowing a fair
comparison for the in-network packet-level behavior across
the two scheduling policies. Figure 3 shows our results. With
LSTF, packets that have traversed through more number of
hops, and have therefore spent more slack in the network,
get preference over shorter-RTT packets that have traversed
through fewer hops. While this might produce a slight in-
crease in the mean packet delay, it reduces the tail. This is
in-line with the observations made in [11].

3.3 Fairness
Fairness is the most challenging objective to achieve with
LSTF, but we show that it can achieve asymptotic fairness (i.e.
eventual convergence to the fair-share rate).

9The router always schedules the earliest arriving packet of the flow
which contains the highest priority packet.

5

Figure 4: Fairness for long-lived flows on Internet2 topology. The
legend indicates the value of rest used for LSTF slack initialization.

Slack Initialization: Our approach is inspired from [33]. We
assign slack = 0 to the first packet of the flow and the slack
of any subsequent packet pi is then initialized as:

slack(pi) = max
⇣

0,slack(pi�1)+
1

rest
�
�
i(pi)� i(pi�1)

�⌘

where i(p) is the arrival time of the packet p at the ingress
and rest is an estimate of the fair-share rate r⇤. We show that
the above heuristic leads to asymptotic fairness, for any value
of rest that is less than r⇤, as long as all flows use the same
value. A reasonable value of rest can be estimated using some
knowledge about the network topology and traffic matrices,
though we leave a detailed exploration of this to future work.
We can also extend the slack assignment heuristic to achieve
weighted fairness by using different values of rest for different
flows, in proportion to the desired weights.
Evaluation: We evaluate the asymptotic fairness property by
running our simulation on the Internet2 topology with 10Gbps
edges (I2 10Gbps-10Gbps), such that all the congestion is
happening at the core. However, we reduce the propagation
delay, to make the experiment more scalable, while the buffer
size is kept large so that the fairness is dominated by the
scheduling policy. We start 90 long-lived TCP flows with
a random jitter in the start times ranging from 0-5ms. The
topology is such that the fair share rate of each flow on each
link in the core network (which is shared by up to 13 flows)
is around 1Gbps. We use different values for rest 1Gbps
for computing the initial slacks and compare our results with
fair queuing (FQ). Figure 4 shows the fairness computed
using Jain’s Fairness Index [17], from the throughput each
flow receives per millisecond. Since we use the throughput
received by each of the 90 flows to compute the fairness
index, it reaches 1 with FQ only at 5ms, after all the flows
have started. We see that LSTF is able to converge to perfect
fairness, even when rest is 100X smaller than r⇤, though it
converges slightly sooner when rest is closer to r⇤.

4 Related Work
The real-time scheduling literature has studied optimality of
scheduling algorithms10 (in particular EDF and LSTF) for
single and multiple processors [19, 20]. Liu and Layland [20]
proved the optimality of EDF for a single processor in hard
real-time systems. LSTF was then shown to be optimal for
single-processor scheduling as well, while being more ef-

10where a scheduling algorithm is said to be optimal if it can (fea-
sibly) schedule a set of tasks that can be scheduled by any other
scheduling algorithm.

fective than EDF (though not optimal) for multi-processor
scheduling [19]. In the context of networking, [10] provides
theoretical results on emulating the schedules produced by a
single output-queued switch using a combined input-output
queued switch with a smaller speed-up of at most two. To
the best of our knowledge, the optimality or universality of
a scheduling algorithm for a network of inter-connected re-
sources (in our case, switches) has never been studied before.

A recent paper [29] proposed programmable hardware in
the dataplane for packet scheduling and queue management,
in order to achieve various network objectives without the
need for physically replacing the hardware. It uses simulation
of three schemes (FQ, CoDel+FQ, CoDel+FIFO) competing
on three different metrics to show that there is no “silver
bullet” solution. As mentioned earlier, our work is inspired
by the questions the authors raise; we adopt a broader view of
scheduling in which packets can carry dynamic state leading
to the results presented here.

5 Open Questions and Future Work
Theoretical Analysis: Our work leaves several theoretical
questions unanswered, including the following. First, we
showed existence of a UPS with omniscient header initializa-
tion, and nonexistence with black-box initialization. What is
the least information we can use in header initialization in
order to achieve universality? Second, we showed that the
fraction of overdue packets is small and most are only overdue
by a small amount during an LSTF replay. Are there tractable
bounds on both the number of overdue packets and/or their
degree of lateness? Finally, while we have a formal analysis
of LSTF’s ability to replay a given schedule, we do not yet
have any formal model for the scope of LSTF in meeting
various objectives in practice. Can one describe the class of
performance objectives that LSTF can meet?
Real Implementation: We need to show the feasibility of
implementing LSTF in hardware. However, we can prove that
LSTF execution at a particular router is no more complex
than the execution of fine-grained priorities, which can be
carried out in almost constant time using specialized data-
structures such as pipelined heap [6, 16].
Incorporating Feedback: Typically congestion control in-
volves endhosts reacting to network feedback, which can be
implicit (e.g., packet drops by Active Queue Management
schemes [14, 23]) or explicit (e.g., ECN markings [26] or rate
allocations schemes such as RCP [13] and XCP [18]). It is
unclear whether it is necessary to incorporate such feedback
mechanisms in our notion of universality, and if so how.

6 Acknowledgments
We are thankful to Prof. Satish Rao for his helpful tips re-
garding the theoretical aspects of this work. We would also
like to thank Prof. Ion Stoica, Kay Ousterhout, Justine Sherry,
Aurojit Panda and our anonymous HotNets reviewers for their
thoughtful feedback. This material is based upon work sup-
ported by Intel Research and by the National Science Foun-
dation under Grant No. 1117161, 1343947 and 1040838.

6

7 References

[1] Internet2. http://www.internet2.edu/.
[2] The Network Simulator NS-2.

http://www.isi.edu/nsnam/ns/.
[3] M. Alizadeh, S. Yang, M. Sharif, S. Katti,

N. McKeown, B. Prabhakar, and S. Shenker. pFabric:
Minimal Near-optimal Datacenter Transport. In Proc.
ACM SIGCOMM, 2013.

[4] M. Allman. Comments on bufferbloat. ACM
SIGCOMM Computer Communication Review, 2013.

[5] T. Benson, A. Akella, and D. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc.
ACM IMC, 2012.

[6] R. Bhagwan and B. Lin. Fast and Scalable Priority
Queue Architecture for High-Speed Network Switches.
In Proc. IEEE Infocom, 2000.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
Protocol-independent Packet Processors. ACM
SIGCOMM Computer Communication Review, 2014.

[8] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding Metamorphosis: Fast Programmable
Match-action Processing in Hardware for SDN. In Proc.
ACM SIGCOMM, 2013.

[9] M. Casado, T. Koponen, S. Shenker, and
A. Tootoonchian. Fabric: A Retrospective on Evolving
SDN. In Proc. ACM HotSDN, 2012.

[10] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar.
Matching output queueing with a combined
input/output-queued switch. IEEE Journal on Selected
Areas in Communications, 1999.

[11] D. D. Clark, S. Shenker, and L. Zhang. Supporting
Real-time Applications in an Integrated Services Packet
Network: Architecture and Mechanism. ACM
SIGCOMM Computer Communication Review, 1992.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. ACM
SIGCOMM Computer Communication Review, 1989.

[13] N. Dukkipati and N. McKeown. Why Flow-Completion
Time is the Right Metric for Congestion Control. ACM
SIGCOMM Computer Communication Review, 2006.

[14] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM Trans.
Netw., 1993.

[15] A. Gupta, M. T. Hajiaghayi, and H. Räcke. Oblivious
Network Design. In Proc. ACM-SIAM Symposium on
Discrete Algorithm (SODA), 2006.

[16] A. Ioannou and M. G. H. Katevenis. Pipelined Heap
(Priority Queue) Management for Advanced
Scheduling in High-speed Networks. IEEE/ACM Trans.
Netw., 2007.

[17] R. Jain, D.-M. Chiu, and W. Hawe. A Quantitative
Measure Of Fairness And Discrimination For Resource
Allocation In Shared Computer Systems. CoRR,
arXiv:cs/9809099, 1998.

[18] D. Katabi, M. Handley, and C. Rohrs. Congestion
Control for High Bandwidth-Delay Product Networks.
In Proc. ACM SIGCOMM, 2002.

[19] J. Y.-T. Leung. A new algorithm for scheduling
periodic, real-time tasks. Algorithmica, Springer-Verlag
New York Inc., 1989.

[20] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.
Journal of the ACM (JACM), 1973.

[21] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker.
Universal Packet Scheduling. CoRR, arXiv:1510.03551,
2015.

[22] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Recursively Cautious Congestion Control. In Proc.
USENIX NSDI, 2014.

[23] K. Nichols and V. Jacobson. Controlling Queue Delay.
ACM Queue, 2012.

[24] A. K. Parekh and R. G. Gallager. A Generalized
Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single-node Case.
IEEE/ACM Trans. Netw., 1993.

[25] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy,
A. Ghodsi, and S. Shenker. Software-defined Internet
Architecture: Decoupling Architecture from
Infrastructure. In Proc. ACM HotNets, 2012.

[26] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168, 2001.

[27] S. Blake and D. Black and M. Carlson and E. Davies
and Z. Wang and W. Weiss. An Architecture for
Differentiated Services. RFC 2475, 1998.

[28] M. Shreedhar and G. Varghese. Efficient Fair Queueing
Using Deficit Round Robin. ACM SIGCOMM
Computer Communication Review, 1995.

[29] A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No Silver Bullet: Extending SDN to
the Data Plane. In Proc. ACM HotNets, 2013.

[30] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP Topologies with Rocketfuel. In Proc. ACM
SIGCOMM, 2002.

[31] I. Stoica, S. Shenker, and H. Zhang. Core-stateless Fair
Queueing: Achieving Approximately Fair Bandwidth
Allocations in High Speed Networks. In Proc. ACM
SIGCOMM, 1998.

[32] I. Stoica and H. Zhang. Providing Guaranteed Services
Without Per Flow Management. In Proc. ACM
SIGCOMM, 1999.

[33] L. Zhang. Virtual Clock: A New Traffic Control
Algorithm for Packet Switching Networks. ACM
SIGCOMM Computer Communication Review, 1990.

7

http://www.internet2.edu/
http://www.isi.edu/nsnam/ns/

	Introduction
	Theory: Replaying Schedules
	Definitions and Overview
	Theoretical Results
	Empirical Results

	Practical: Achieving Various Objectives
	Mean Flow Completion Time
	Tail Packet Delays
	Fairness

	Related Work
	Open Questions and Future Work
	Acknowledgments
	References

